409 research outputs found

    Control Strategies for Autonomous Vehicles

    Full text link
    This chapter focuses on the self-driving technology from a control perspective and investigates the control strategies used in autonomous vehicles and advanced driver-assistance systems from both theoretical and practical viewpoints. First, we introduce the self-driving technology as a whole, including perception, planning and control techniques required for accomplishing the challenging task of autonomous driving. We then dwell upon each of these operations to explain their role in the autonomous system architecture, with a prime focus on control strategies. The core portion of this chapter commences with detailed mathematical modeling of autonomous vehicles followed by a comprehensive discussion on control strategies. The chapter covers longitudinal as well as lateral control strategies for autonomous vehicles with coupled and de-coupled control schemes. We as well discuss some of the machine learning techniques applied to autonomous vehicle control task. Finally, we briefly summarize some of the research works that our team has carried out at the Autonomous Systems Lab and conclude the chapter with a few thoughtful remarks

    Efficient Automated Driving Strategies Leveraging Anticipation and Optimal Control

    Get PDF
    Automated vehicles and advanced driver assistance systems bring computation, sensing, and communication technologies that exceed human abilities in some ways. For example, automated vehicles may sense a panorama all at once, do not suffer from human impairments and distractions, and could wirelessly communicate precise data with neighboring vehicles. Prototype and commercial deployments have demonstrated the capability to relieve human operators of some driving tasks up to and including fully autonomous taxi rides in some areas. The ultimate impact of this technology’s large-scale market penetration on energy efficiency remains unclear, with potential negative factors like road use by empty vehicles competing with positive ones like automatic eco-driving. Fundamentally enabled by historic and look-ahead data, this dissertation addresses the use of automated driving and driver assistance to optimize vehicle motion for energy efficiency. Facets of this problem include car following, co-optimized acceleration and lane change planning, and collaborative multi-agent guidance. Optimal control, especially model predictive control, is used extensively to improve energy efficiency while maintaining safe and timely driving via constraints. Techniques including chance constraints and mixed integer programming help overcome uncertainty and non-convexity challenges. Extensions of these techniques to tractor trailers on sloping roads are provided by making use of linear parameter-varying models. To approach the wheel-input energy eco-driving problem over generally shaped sloping roads with the computational potential for closed-loop implementation, a linear programming formulation is constructed. Distributed and collaborative techniques that enable connected and automated vehicles to accommodate their neighbors in traffic are also explored and compared to centralized control. Using simulations and vehicle-in-the-loop car following experiments, the proposed algorithms are benchmarked against others that do not make use of look-ahead information

    Spatial Model Predictive Control for Smooth and Accurate Steering of an Autonomous Truck

    Full text link

    Clothoid-based Planning and Control in Intelligent Vehicles (Autonomous and Manual-Assisted Driving)

    Full text link
    [EN] Nowadays, there are many electronic products that incorporate elements and features coming from the research in the field of mobile robotics. For instance, the well-known vacuum cleaning robot Roomba by iRobot, which belongs to the field of service robotics, one of the most active within the sector. There are also numerous autonomous robotic systems in industrial warehouses and plants. It is the case of Autonomous Guided Vehicles (AGVs), which are able to drive completely autonomously in very structured environments. Apart from industry and consumer electronics, within the automotive field there are some devices that give intelligence to the vehicle, derived in most cases from advances in mobile robotics. In fact, more and more often vehicles incorporate Advanced Driver Assistance Systems (ADAS), such as navigation control with automatic speed regulation, lane change and overtaking assistant, automatic parking or collision warning, among other features. However, despite all the advances there are some problems that remain unresolved and can be improved. Collisions and rollovers stand out among the most common accidents of vehicles with manual or autonomous driving. In fact, it is almost impossible to guarantee driving without accidents in unstructured environments where vehicles share the space with other moving agents, such as other vehicles and pedestrians. That is why searching for techniques to improve safety in intelligent vehicles, either autonomous or manual-assisted driving, is still a trending topic within the robotics community. This thesis focuses on the design of tools and techniques for planning and control of intelligent vehicles in order to improve safety and comfort. The dissertation is divided into two parts, the first one on autonomous driving and the second one on manual-assisted driving. The main link between them is the use of clothoids as mathematical formulation for both trajectory generation and collision detection. Among the problems solved the following stand out: obstacle avoidance, rollover avoidance and advanced driver assistance to avoid collisions with pedestrians.[ES] En la actualidad se comercializan infinidad de productos de electrónica de consumo que incorporan elementos y características procedentes de avances en el sector de la robótica móvil. Por ejemplo, el conocido robot aspirador Roomba de la empresa iRobot, el cual pertenece al campo de la robótica de servicio, uno de los más activos en el sector. También hay numerosos sistemas robóticos autónomos en almacenes y plantas industriales. Es el caso de los vehículos autoguiados (AGVs), capaces de conducir de forma totalmente autónoma en entornos muy estructurados. Además de en la industria y en electrónica de consumo, dentro del campo de la automoción también existen dispositivos que dotan de cierta inteligencia al vehículo, derivados la mayoría de las veces de avances en robótica móvil. De hecho, cada vez con mayor frecuencia los vehículos incorporan sistemas avanzados de asistencia al conductor (ADAS por sus siglas en inglés), tales como control de navegación con regulación automática de velocidad, asistente de cambio de carril y adelantamiento, aparcamiento automático o aviso de colisión, entre otras prestaciones. No obstante, pese a todos los avances siguen existiendo problemas sin resolver y que pueden mejorarse. La colisión y el vuelco destacan entre los accidentes más comunes en vehículos con conducción tanto manual como autónoma. De hecho, la dificultad de conducir en entornos desestructurados compartiendo el espacio con otros agentes móviles, tales como coches o personas, hace casi imposible garantizar la conducción sin accidentes. Es por ello que la búsqueda de técnicas para mejorar la seguridad en vehículos inteligentes, ya sean de conducción autónoma o manual asistida, es un tema que siempre está en auge en la comunidad robótica. La presente tesis se centra en el diseño de herramientas y técnicas de planificación y control de vehículos inteligentes, para la mejora de la seguridad y el confort. La disertación se ha dividido en dos partes, la primera sobre conducción autónoma y la segunda sobre conducción manual asistida. El principal nexo de unión es el uso de clotoides como elemento de generación de trayectorias y detección de colisiones. Entre los problemas que se resuelven destacan la evitación de obstáculos, la evitación de vuelcos y la asistencia avanzada al conductor para evitar colisiones con peatones.[CA] En l'actualitat es comercialitzen infinitat de productes d'electrònica de consum que incorporen elements i característiques procedents d'avanços en el sector de la robòtica mòbil. Per exemple, el conegut robot aspirador Roomba de l'empresa iRobot, el qual pertany al camp de la robòtica de servici, un dels més actius en el sector. També hi ha nombrosos sistemes robòtics autònoms en magatzems i plantes industrials. És el cas dels vehicles autoguiats (AGVs), els quals són capaços de conduir de forma totalment autònoma en entorns molt estructurats. A més de en la indústria i en l'electrònica de consum, dins el camp de l'automoció també existeixen dispositius que doten al vehicle de certa intel·ligència, la majoria de les vegades derivats d'avanços en robòtica mòbil. De fet, cada vegada amb més freqüència els vehicles incorporen sistemes avançats d'assistència al conductor (ADAS per les sigles en anglés), com ara control de navegació amb regulació automàtica de velocitat, assistent de canvi de carril i avançament, aparcament automàtic o avís de col·lisió, entre altres prestacions. No obstant això, malgrat tots els avanços segueixen existint problemes sense resoldre i que poden millorar-se. La col·lisió i la bolcada destaquen entre els accidents més comuns en vehicles amb conducció tant manual com autònoma. De fet, la dificultat de conduir en entorns desestructurats compartint l'espai amb altres agents mòbils, tals com cotxes o persones, fa quasi impossible garantitzar la conducció sense accidents. És per això que la recerca de tècniques per millorar la seguretat en vehicles intel·ligents, ja siguen de conducció autònoma o manual assistida, és un tema que sempre està en auge a la comunitat robòtica. La present tesi es centra en el disseny d'eines i tècniques de planificació i control de vehicles intel·ligents, per a la millora de la seguretat i el confort. La dissertació s'ha dividit en dues parts, la primera sobre conducció autònoma i la segona sobre conducció manual assistida. El principal nexe d'unió és l'ús de clotoides com a element de generació de trajectòries i detecció de col·lisions. Entre els problemes que es resolen destaquen l'evitació d'obstacles, l'evitació de bolcades i l'assistència avançada al conductor per evitar col·lisions amb vianants.Girbés Juan, V. (2016). Clothoid-based Planning and Control in Intelligent Vehicles (Autonomous and Manual-Assisted Driving) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/65072TESI

    A unified framework for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 111-117).This thesis describes the design of an active safety framework that performs trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios. The vehicle navigation task is formulated as a constrained optimal control problem with the constraints bounding a navigable region of the environment derived from forward -looking sensors. First, a constrained model predictive controller is designed to iteratively plan an optimal or "best-case" vehicle trajectory through the constrained corridor. This "best-case" scenario is then used to establish the minimum threat posed to the vehicle given its current state and driver inputs. Based on this threat assessment, the level of controller intervention required to prevent departure from the navigable corridor is calculated and driver/controller inputs are scaled accordingly. This approach minimizes controller intervention while ensuring that the vehicle does not depart from a navigable corridor. It also provides a unified architecture into which various vehicle models, actuation modes, trajectory-planning objectives, driver preferences, and levels of autonomy can be seamlessly integrated without changing the underlying controller structure. Simulated and experimental results are presented to demonstrate the framework's ability to incorporate multiple threat metrics and configurable intervention laws while sharing control with a human driver. Various maneuvers are tested, including lane-keeping, hazard avoidance, and multiple hazard avoidance and show that this framework capable of maintaining vehicle stability while semi-autonomously avoiding road hazards and conceding significant control to the human driver.by Sterling J. Anderson.S.M

    Graceful Navigation for Mobile Robots in Dynamic and Uncertain Environments.

    Full text link
    The ability to navigate in everyday environments is a fundamental and necessary skill for any autonomous mobile agent that is intended to work with human users. The presence of pedestrians and other dynamic objects, however, makes the environment inherently dynamic and uncertain. To navigate in such environments, an agent must reason about the near future and make an optimal decision at each time step so that it can move safely toward the goal. Furthermore, for any application intended to carry passengers, it also must be able to move smoothly and comfortably, and the robot behavior needs to be customizable to match the preference of the individual users. Despite decades of progress in the field of motion planning and control, this remains a difficult challenge with existing methods. In this dissertation, we show that safe, comfortable, and customizable mobile robot navigation in dynamic and uncertain environments can be achieved via stochastic model predictive control. We view the problem of navigation in dynamic and uncertain environments as a continuous decision making process, where an agent with short-term predictive capability reasons about its situation and makes an informed decision at each time step. The problem of robot navigation in dynamic and uncertain environments is formulated as an on-line, finite-horizon policy and trajectory optimization problem under uncertainty. With our formulation, planning and control becomes fully integrated, which allows direct optimization of the performance measure. Furthermore, with our approach the problem becomes easy to solve, which allows our algorithm to run in real time on a single core of a typical laptop with off-the-shelf optimization packages. The work presented in this thesis extends the state-of-the-art in analytic control of mobile robots, sampling-based optimal path planning, and stochastic model predictive control. We believe that our work is a significant step toward safe and reliable autonomous navigation that is acceptable to human users.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120760/1/jongjinp_1.pd

    Fuel Optimal Control Algorithms for Connected and Automated Plug-In Hybrid Vehicles

    Full text link
    Improving the fuel economy of light-duty vehicles (LDV) is a compelling solution to stabilizing Greenhouse Gas (GHG) emissions and decreasing the reliance on fossil fuels. Over the years, there has been a considerable shift in the market of LDVs toward powertrain electrification, and plug-in hybrid electric vehicles (PHEVs) are the most cost-effective in avoiding GHG emissions. Meanwhile, connected and automated vehicle (CAV) technologies permit energy-efficient driving with access to accurate trip information that integrates traffic and charging infrastructure. This thesis aims at developing optimization-based algorithms for controlling powertrain and vehicle longitudinal dynamics to fully exploit the potential for reducing fuel consumption of individual PHEVs by utilizing CAV technologies. A predictive equivalent minimization strategy (P-ECMS) is proposed for a human-driven PHEV to adjust the co-state based on the difference between the future battery state-of-charge (SOC) obtained from short-horizon prediction and a future reference SOC from SOC node planning. The SOC node planning, which generates battery SOC reference waypoints, is performed using a simplified speed profile constructed from segmented traffic information, typically available from mobile mapping applications. The PHEV powertrain, consisting of engine and electric motors, is mathematically modeled as a hybrid system as the state is defined by the values of the continuous variable, SOC, and discrete modes, hybrid vehicle (HV), and electric vehicle (EV) modes with the engine on/off. As a hybrid system, the optimal control of PHEVs necessitates a numerical approach to solving a mixed-integer optimization problem. It is of interest to have a unified numerical algorithm for solving such mixed-integer optimal control problems with many states and control inputs. Based on a discrete maximum principle (DMP), a discrete mixed-integer shooting (DMIS) algorithm is proposed. The DMIS is demonstrated in successfully addressing the cranking fuel optimization in the energy management of a PHEV. It also serves as the foundation of the co-optimization problem considered in the remaining part of the thesis. This thesis further investigates different control designs with an increased vehicle automation level combining vehicle dynamics and powertrain of PHEVs in within-a-lane traffic flow. This thesis starts with a sequential (or decentralized) optimization and then advances to direct fuel minimization by simultaneously optimizing the two subsystems in a centralized manner. When shifting toward online implementation, the unique challenge lies in the conflict between the long control horizon required for global optimality and the computational power limit. A receding horizon strategy is proposed to resolve the conflict between the horizon length and the computation complexity, with co-states approximating the future cost. In particular, the co-state is updated using a nominal trajectory and the temporal-difference (TD) error based on the co-state dynamics. The remaining work aims to develop a unified model predictive control (MPC) framework from the powertrain (PT) control of a human-driven to the combined vehicle dynamics (VD) and PT control of an automated PHEV. In the unified framework, the cost-to-go (the fuel consumption as the economic cost) is represented by the co-state associated with the battery SOC dynamics. In its application to automated PHEVs, a control barrier function (CBF) is augmented as an add-on block to modify the vehicle-level control input for guaranteed safety. This unified MPC framework allows for systematically evaluating the fuel economy and drivability performance of different levels and structures of optimization strategies.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169876/1/dichencd_1.pd

    Narrow Urban Vehicles with an Integrated Suspension Tilting System: Design, Modeling, and Control

    Get PDF
    Narrow urban vehicles are proposed to alleviate urban transportation challenges like congestion, parking, fuel consumption, and pollution. They are designed to seat one or two people in tandem, which saves space in road infrastructures as well as improves the fuel efficiency. However, to overcome the high rollover tendency which comes as a consequence of reduced track-width ratio, tilting systems for vehicle roll motion control are suggested. Existing tilting solutions, which mechanically connect the wheel modules on both sides for motion synchronization, are not space-friendly for the narrow vehicle footprint. The mechanical linkages also add extra weight to those urban vehicles initially designed to be light-weighted. A novel integrated suspension tilting system (ISTS) is proposed in this thesis, which replaces rigid mechanical linkages with flexible hydraulic pipes and cylinders. In addition, combining the suspension and tilting into an integrated system will result in even more compact, light-weighted, and spacious urban vehicles. The concept is examined, and the suspension mechanism for the tilting application is proposed after examining various mechanisms for their complexity and space requirements. Kinematic and dynamic properties of the tilting vehicle under large suspension strokes are analyzed to optimize the mechanism design. Control of the active tilting systems for vehicle roll stability improvement is then discussed. Rather than tilting the vehicle to entirely eliminate the lateral load transfer during cornering, an integrated envelope approach considering both lateral and roll motion is proposed to improve the energy efficiency while maintaining the vehicle stability. A re-configurable integrated control structure is also developed for various vehicle configurations as well as enhancing the system robustness against actuator failures. The model predictive control (MPC) scheme is adopted considering the non-minimum phase nature of active tilting systems. The predictive feature along with the proposed roll envelope formulation provides a framework to balance the transient and steady-state performances using the tilting actuators. The suggested controller is firstly demonstrated on a vehicle roll model, and then applied to high-fidelity full vehicle models in CarSim including a four-wheeled SUV as well as a three-wheeled narrow urban vehicle. The SUV simulation results indicate the potential of using the developed envelope controller on conventional vehicles with active suspensions, while the narrow urban vehicle simulations demonstrate the feasibility of using the suggested ISTS on narrow tilting vehicles. By adopting the integrated envelope control approach, actuation effort is reduced and the vehicle handling, along with the stability in both lateral and roll, can be further improved

    Design a Reliable Model Predictive Control for Path Following with Application to the Autonomous Vehicle and Considering Different Vehicle Models

    Get PDF
    Despite many advances that aim to bring autonomous cars to market, several challenges remain to overcome before such technology is widely adopted. Among these is the need for a reliable cornering control that can work efficiently in real-time. This thesis will focus on the successful development, implementation, and validation of reliable control algorithms for motion control of autonomous vehicles, which will give the University of Waterloo Watanomous team a competitive edge in the annual Auto-Drive competition. A reliable path following controller based on Model Predictive Control(MPC) and using different types of vehicle models are developed to 1) minimize the lateral distance between the vehicle and a reference path, 2) minimize the heading error of the vehicle, and 3) limit the rate of steering inputs to their saturation values and produce smooth motions. The control algorithm proposed in this thesis will rely on a known path as the desired input. Such input will be used to define a horizon over which reliable control actions can be computed to command the vehicle along the desired path with minimum lateral position error. The proposed MPC is implemented in MATLAB in which the associated Optimal Control Problem (OCP) is discretized using the direct Multiple Shooting method. MPC is tested using the CarSim vehicle simulator to validate its performance for double lane change(DLC) vehicle maneuver at constant low/high forward speeds and roads with different known friction coefficients. The effects of changing prediction horizon, sampling time, and weighting factors on path-following controllers’ performance are also discussed. Simulation results show that designed controllers pulled the system back to the predefined reference path, and tracking performances were satisfactory. It is also observed that MPC designed using a linear dynamic model and a combined single-track model, both had comparable performances and less lateral tracking error than MPC designed using the non-linear kinematic model for various speeds on the dry road, and at the speeds below 80kph on the wet road. Moreover, MPCs using linear dynamic and combined single-track vehicle models both worked in the shorter horizon. Overall, MPC using a combined single-track model showed enhanced performance by comparing the other two schemes for all the tests conducted on wet and dry roads at various vehicle speeds

    Constraint-based navigation for safe, shared control of ground vehicles

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 138-147).Human error in machine operation is common and costly. This thesis introduces, develops, and experimentally demonstrates a new paradigm for shared-adaptive control of human-machine systems that mitigates the effects of human error without removing humans from the control loop. Motivated by observed human proclivity toward navigation in fields of safe travel rather than along specific trajectories, the planning and control framework developed in this thesis is rooted in the design and enforcement of constraints rather than the more traditional use of reference paths. Two constraint-planning methods are introduced. The first uses a constrained Delaunay triangulation of the environment to identify, cumulatively evaluate, and succinctly circumscribe the paths belonging to a particular homotopy with a set of semi autonomously enforceable constraints on the vehicle's position. The second identifies a desired homotopy by planning - and then laterally expanding - the optimal path that traverses it. Simulated results show both of these constraint-planning methods capable of improving the performance of one or multiple agents traversing an environment with obstacles. A method for predicting the threat posed to the vehicle given the current driver action, present state of the environment, and modeled vehicle dynamics is also presented. This threat assessment method, and the shared control approach it facilitates, are shown in simulation to prevent constraint violation or vehicular loss of control with minimal control intervention. Visual and haptic driver feedback mechanisms facilitated by this constraint-based control and threat-based intervention are also introduced. Finally, a large-scale, repeated measures study is presented to evaluate this control framework's effect on the performance, confidence, and cognitive workload of 20 drivers teleoperating an unmanned ground vehicle through an outdoor obstacle course. In 1,200 trials, the constraint-based framework developed in this thesis is shown to increase vehicle velocity by 26% while reducing the occurrence of collisions by 78%, improving driver reaction time to a secondary task by 8.7%, and increasing overall user confidence and sense of control by 44% and 12%, respectively. These performance improvements were realized with the autonomous controller usurping less than 43% of available vehicle control authority, on average.by Sterling J. Anderson.Ph.D
    corecore