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ABSTRACT 
 
This thesis describes the design of an active safety framework that performs trajectory 
planning, threat assessment, and semi-autonomous control of passenger vehicles in 
hazard avoidance scenarios. The vehicle navigation task is formulated as a constrained 
optimal control problem with the constraints bounding a navigable region of the 
environment derived from forward-looking sensors. First, a constrained model predictive 
controller is designed to iteratively plan an optimal or “best-case” vehicle trajectory 
through the constrained corridor. This “best-case” scenario is then used to establish the 
minimum threat posed to the vehicle given its current state and driver inputs. Based on 
this threat assessment, the level of controller intervention required to prevent departure 
from the navigable corridor is calculated and driver/controller inputs are scaled 
accordingly. This approach minimizes controller intervention while ensuring that the 
vehicle does not depart from a navigable corridor. It also provides a unified architecture 
into which various vehicle models, actuation modes, trajectory-planning objectives, 
driver preferences, and levels of autonomy can be seamlessly integrated without changing 
the underlying controller structure.  
 
Simulated and experimental results are presented to demonstrate the framework’s ability 
to incorporate multiple threat metrics and configurable intervention laws while sharing 
control with a human driver. Various maneuvers are tested, including lane-keeping, 
hazard avoidance, and multiple hazard avoidance and show that this framework capable 
of maintaining vehicle stability while semi-autonomously avoiding road hazards and 
conceding significant control to the human driver. 
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1 CHAPTER  1:  INTRODUCTION  CHAPTER 1: INTRODUCTION

1.1 Problem Statement and Motivation 

Recent traffic safety reports from the National Highway Traffic Safety 

Administration (NHTSA) show that in 2007 alone, over 41,000 people were killed and 

another 2.5 million injured in motor vehicle accidents in the United States [1]. The 

longstanding presence of passive safety systems in motor vehicles, combined with the 

ever-increasing influence of active systems, has contributed to a decline in these numbers 

from previous years. Still, the need for improved collision avoidance technologies 

remains significant.  

Passenger safety in human-controlled motor vehicles has historically focused on 

passive safety systems. Such systems, which include seat belts, air bags, and crumple 

zones, concentrate primarily on mitigating the effects of collisions on passengers. In 

recent years, the focus of motor vehicle safety has shifted from simply minimizing the 

damage caused by collisions to actively preparing for and avoiding accidents altogether. 

With the advent of anti-lock brakes, yaw stability control, roll stability control, and 

traction control, such active safety systems have begun to play a major role in collision 

mitigation [2].  

While effective at reducing accident frequency, current active safety systems are 

still limited in one respect: their accident avoidance methods are fundamentally 

“reactive” in nature. In each of these systems, intervention is based on current vehicle 

(and possibly road surface) conditions. Because they do not utilize 1) sensory information 

related to the vehicle surroundings or 2) a prediction of the vehicle’s path through its 



surroundings, they are limited in their ability to assess the threat of impending accidents, 

and thus cannot exert corrective actions to avoid them. 

Recent developments in onboard sensing and drive-by-wire technology have 

facilitated the development of active safety systems that consider the vehicle’s 

surroundings and share steering and/or braking control with the driver. These 

“predictive” systems generally attempt to honor driver intentions, opposing them only 

when doing otherwise would lead to a collision or loss of control. This differs from the 

abovementioned reactive systems which seek to match the driver’s desired (steering- 

braking- or acceleration-implied) trajectory by minimizing longitudinal and/or lateral 

wheel slip. For example, anti-lock braking systems react to excessive longitudinal slip 

and a driver’s forceful braking inputs by controlling wheel slip. Similarly, excessive 

longitudinal or lateral wheel slip makes traction- or stability-control systems a sensible 

form of interaction which presumably does not alter the driver’s intended trajectory.  

For predictive safety systems that alter the vehicle trajectory, however, controller 

intervention more significantly affects the driver’s desired vehicle trajectory. In order to 

determine when, how, and how strongly to intervene, predictive systems must first assess 

the threat posed to the vehicle by a given scenario and its associated environmental 

constraints, vehicle states, and driver inputs/performance level. Such systems should 

honor safe driver inputs and maneuvers while intervening when necessary to correct or 

override those deemed unsafe or insufficient given the current (and/or predicted) threat 

scenario. This intervention should strike a necessary balance between the level and 

frequency of intervention: not altering the driver’s steering and braking inputs “too 

much”, “too soon”, or “too often” while still guaranteeing that the vehicle avoid hazards 

independent of that driver input. 

1.2 Background and Literature Review 

In recent years, extensive research has focused on intelligent vehicle navigation. 

Many warning, intervention (i.e. driver-assistance or semi-autonomous control), and 

autonomous control schemes have been developed to perform lateral and longitudinal 

vehicle guidance [2-5]. Supporting technologies such as onboard sensing, lane detection 
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techniques, and obstacle recognition algorithms have also been proposed and 

implemented in test vehicles [6-9]. 

1.2.1 Autonomous Vehicle Navigation and Control 

As described in [21,23-25], the autonomous vehicle guidance system may be 

broken down into three main tasks: trajectory generation, trajectory re-planning, and low-

level control. The trajectory generation task pre-computes the vehicle trajectory. This 

may be performed online or offline. In ground vehicle applications, the desired trajectory 

may be selected either by driving a vehicle along a desired trajectory and recording GPS 

waypoints to use as a subsequent reference path as in [14-18], or by predefining a 

navigable corridor that circumnavigates road hazards as in [19]. When the former 

planning approach is used, a trajectory re-planner may modify the desired trajectory 

based on current measurements or in response to disturbances. For the latter, however, an 

original vehicle trajectory through the constrained environment must be computed by a 

trajectory re-planner. The task of a trajectory re-planner is thus to compute (or re-

compute) online the desired vehicle trajectory based on current measurements and the 

occurrence of disturbances such as wind gusts, road elevation changes, or obstacles. This 

requires information from onboard sensing to perceive and plan for such occurrences. 

The low-level control system may use any of a multitude of vehicle actuation 

modes (e.g. front and rear wheel steering, differential braking, active suspension, velocity 

control etc.) to track reference commands generated by the trajectory re-planner. While 

the low-level controller is not required to share the same vehicle or environmental model 

as the trajectory re-planner [12,20], recent work in autonomous vehicle control using 

Model Predictive Control (MPC) has shown that using similar models for trajectory re-

planning and low-level control can improve the guidance, navigation, and control 

system’s path-tracking performance [15,21,22].  

In [23], a corridor – as opposed to a specific path – is preselected and a Finite 

Horizon Constrained Optimal Controller (FHCOC) is used perform both the re-planning 

and low-level control tasks required to keep the vehicle within the navigable corridor 

while satisfying input constraints, safety constraints, and ride comfort preferences. This 

approach reduces the path planning task to the simpler task of corridor selection and 
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merges the path re-planning and low level control tasks into the same MPC calculation. 

Furthermore, because the corridor selection in this approach does not plan a specific 

vehicle trajectory, the “re-planning” task performed online by the model predictive 

controller may be more clearly described as an online trajectory “plan” (rather than a “re-

plan”). Having noted the distinction between a pre-computed path/trajectory plan and the 

iterative, online path/trajectory re-plan that is calculated via MPC within a constrained 

corridor, the remainder of this thesis will refer to the MPC trajectory prediction as a 

path/trajectory plan. 

Fully-autonomous vehicle navigation techniques have been developed to track 

pre-defined trajectories [14,24], travel within lane markings [6,23,25,26], or avoid 

obstacles [27] via front wheel steering [15,28,29], rear wheel steering [30], four-wheel-

steering [31], and differential brake steering [3,32]. Control laws employed in these 

systems include PID schemes [12], linear-quadratic regulators [33], non-linear fuzzy 

controllers [34], and finite-horizon constrained optimal controllers [23]. 

1.2.2 Semi-Autonomous Vehicle Navigation and Control 

Among existing proposals for semi-autonomous vehicle navigation, lane-keeping 

systems using audible warnings [27,35], haptic alerts [4,36], steering torque overlays 

[23,37], and various combinations of these have been developed with mixed results [4]. 

In a recent subproject of the European PReVENT consortium, a lane-keeping system was 

designed to prevent lane departure by perceiving the environment, making heuristic-

based trajectory planning decisions based on perceived threat, and implementing warning 

mechanisms or slight steering torque overlay when the vehicle drifts from the desired 

trajectory [38]. 

Many of the semi-autonomous systems developed in previous work address only 

one piece of the active safety problem. While some use planning algorithms such as 

rapidly-exploring random trees [7,39,40], evolutionary programming [41,42] or potential 

fields [43-45] to plan a safe vehicle path, others simply begin with such a path presumed 

[3,16,31]. The threat posed by a particular path is seldom assessed by the controller itself 

and is often only estimated by a simple threat metric based on, for example, the constant 

deceleration required to stop before or constant lateral acceleration required to steer 
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around a static or dynamic road hazard [46-51]. Finally, hazard avoidance is commonly 

performed using one or more actuation methods (e.g. steering, differential braking, etc.) 

without explicitly accounting for the effect of driver inputs on the vehicle trajectory [38]. 

Such controllers selectively replace (rather than assist) the driver in performing the 

driving task. 

Yu addressed shared control problem in mobility aids for the elderly by designing 

an adaptive shared controller which allocates control authority between the human user 

and a controller in proportion to the user’s performance [52]. Measures of user 

performance in this controller include deviation from a pre-defined trajectory, tip over 

margins, and distance to obstacles. These metrics and the associated intervention are 

designed to act on current and past user performance, however, and do not anticipate 

future deviations, tip over margins, or distances to obstacles. This reactive approach to 

semi-autonomy, while sufficient to control low speed mobility aids, is not well suited for 

high speed applications with significant inertia effects and no pre-planned trajectory. 

1.3 Purpose and Outline of this Thesis 

In this thesis, a framework for passenger vehicle active safety is developed that 

performs vehicle trajectory planning, threat assessment, and hazard avoidance in a 

unified manner. This framework leverages the predictive and constraint-handling 

capabilities of MPC to plan trajectories through a pre-selected corridor, assess the threat 

this path poses to the vehicle, and regulate driver and controller inputs to maintain this 

threat below a given threshold. 

First, an objective function is established to capture desirable performance 

characteristics of a safe or “optimal” vehicle path through a bounded corridor. The 

boundaries of this corridor trace the edges of the navigable road surface and are assumed 

to have been derived from forward-looking sensor data and a higher-level corridor 

planner. A model predictive controller then calculates the “best case” vehicle trajectory 

through this bounded corridor using a model of the vehicle and environmental 

disturbances. This predicted trajectory and its associated control inputs are assumed to 

provide a “best case” or minimum-threat avoidance maneuver given the vehicle’s current 

state. Key stability metrics from this prediction are then used to calculate the intervention 
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required to prevent departure from the safe region of travel and driver/controller inputs 

are scaled accordingly. Figure 1.1 shows a block diagram of this system. 

 

Figure 1.1: Diagram of an active safety system 

This thesis is organized as follows. Chapter 2 describes the constrained MPC 

problem setup, establishes its utility in trajectory planning, and demonstrates its 

effectiveness in autonomous lane/corridor tracking. Methods for assessing the threat 

implicit to a given maneuver are then presented in Chapter 3, followed by a semi-

autonomous control framework and intervention law in Chapter 4.
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In this proposed semi-autonomous framework, the best case (or baseline) vehicle 

path through a given region of the state space is established by a model predictive 

controller. Metrics from this predicted path will be used to assess the threat presented to 

the vehicle and steering/braking inputs calculated by the controller will be used to track 

the path. This chapter describes the model predictive controller setup and demonstrates – 

via simulation and experiment – its ability to plan optimal trajectories through static and 

time-varying constrained roadway corridors. 

2.1 Problem Statement 

Previous research from as early as 1938 has shown that human drivers tend to 

operate vehicles within a field of safe travel [53] rather than along a specific path. 

Effective semi-autonomous controllers should account for and allow this freedom of 

motion within a navigable corridor to avoid unnecessarily constraining human driver. 

Additionally, a semi-autonomous controller should accurately predict departure from the 

navigable corridor early enough to keep the vehicle from leaving it. In high-threat 

situations, this may require the controller to assume full control of the vehicle in order to 

guide it to safety autonomously (or until control can safely be returned to the driver). 

Model Predictive or “receding horizon” Control (MPC) can be configured to meet 

each of these needs [54-56]. By constraining the vehicle position to remain within the 

navigable corridor, this optimal control method may be designed to assert little or no 

control when the driver keeps the vehicle within that corridor. The predictive nature of 

the algorithm allows it to anticipate and avoid imminent corridor departure by 

considering both current and predicted vehicle states and environmental conditions. 



Finally, a semi-autonomous controller based on the foundation of constrained MPC may 

be configured to appropriate full control authority to the controller in high-threat 

situations with confidence that, acting autonomously, the controller can guide the vehicle 

to safety. Further advantages offered by this control method are discussed in 2.1.3. 

This chapter begins with a description of the MPC problem setup and a definition 

of key terms. The remainder of the chapter then explores the relationship between critical 

controller parameters, including objective function setup, constraint enforcement, and 

prediction/control horizons on MPC-based vehicle navigation within constrained 

corridors. Key metrics of this relationship include corridor-keeping performance (defined 

proximately), vehicle stability, and controller robustness to unmeasured disturbances. The 

MPC controller that emerges from this chapter will serve as the foundation to the semi-

autonomous navigation framework developed in Chapter 3. 

2.1.1 Model Predictive Control 

Model Predictive (or “receding horizon”) Control is a family of finite-horizon 

optimal control schemes that iteratively minimizes a performance objective defined for a 

forward-simulated plant model subject to performance and input constraints [33,57,58]. 

Stated another way, MPC uses a model of the plant to predict future vehicle state 

evolution and optimize a set of inputs such that this prediction satisfies constraints and 

minimizes a user-defined objective function. When it was originally developed in the 

petrochemical process control industry in the late 1970’s, MPC’s intensive computational 

requirements restricted its application to processes with low control update rates. 

Subsequent improvements in the speed of computing hardware and the efficiency of 

optimization algorithms have significantly expanded its range of opportunity to include 

diverse applications ranging from robot manipulators [59,60] to vehicle navigation 

systems [14,15,21,61], inventory management [62], and clinical anesthesia [63]. 

The algorithm sequence is as follows. At each time step, t, the current plant state 

is sampled and a cost-minimizing control sequence spanning from time t to the end of a 

control horizon of n sampling intervals, t+n∆t, is computed subject to inequality 

constraints. The first element in this input sequence is implemented at the current time 
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and the process is repeated at subsequent time steps. The basic MPC problem setup as 

implemented in the current work is described here. 

For a discrete plant model described by  

kvkukk vBuBAxx ++=+1  (2.1) 

kvkky vDCx +=  (2.2)

with x, y, u, and v representing states, outputs, inputs, and disturbances of the system  

respectively, a quadratic objective function over a prediction horizon of p sampling 

intervals is defined as 
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where Ry, Ru, and R∆u represent diagonal weighting matrices penalizing deviations from 

yi = ri,  and ui = 0, ρε represents the penalty on constraint violations and ε represents the 

maximum constraint violation over the prediction horizon p. Inequality constraints are 

defined as: 
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where the vector ∆u represents the change in input from one sampling instant to the next, 

the superscript “(•)j ” represents the jth component of a vector, k represents the current 

time, and the notation (•)j(k+i|k) denotes the value predicted for time k+i based on the 

information available at time k. The vector V allows for variable constraint softening over 

the prediction horizon, p, when ε is included in the objective function. With n 

representing the number of free control moves, ∆Uk and Uk are calculated by choosing a 

blocking vector Jm such that  
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where z = [z0, …, zn-1]T represents the free optimization variables of the optimization 

problem. By augmenting the vectors y, U, ∆U, and V over the prediction horizon as 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ

Δ
Δ

=Δ

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−+

+

−+

+

−+

+

+

+

+

+

1

1

1

1

1

12

1

1  , , ,

pk

k

k

k

pk

k

k

k

pk

k

k

k

pk

k

k

k

v

v
v

u

u
u

u

u
u

y

y
y

MMMM
VUUY , (2.7)

the weighting matrices Su, Su1, Sx, and Hx can be calculated to express the augmented 

plant outputs over p by 
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The objective function can also be expressed in terms of the augmented outputs, 

inputs, and disturbances by calculating Kx, Ku, Kut, Kv, and K∆u such that 

( ) 2
11 2

1 ερε+ΔΔ+Δ+++= −− kkkvkutkukxk uxJ UHUUKVKUKK TTTTT  (2.9)

and expressing the constraints as  
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ckc bUA ≤Δ . (2.10)

Having thus expressed the control problem as a quadratic program, it can then be 

solved using conventional optimization routines [33,57]. 

2.1.2 Notes on Stability 

Previous work in robust MPC methods has shown that in finite-horizon control 

problems, stability can be guaranteed by forcing predicted behavior to reach steady state 

within a finite number of sampling intervals. This stability condition has inspired the use 

of end-point constraints [64-67], min-max feedback formulations [68], and stabilizing 

feedback loops which replace transfer functions with finite impulse responses while using 

future values of the reference signal (rather than future values of the control inputs) as 

degrees of freedom in the optimization routine [69]. Each of these approaches effectively 

seeks to retain a margin for future feedback action, making it available to the MPC 

optimization only as prediction time passes. This guarantees that the optimization will 

remain feasible even when disturbances and/or model mismatch create discrepancy 

between predicted and true state evolution. 

When applied to transient control problems, stabilizing MPC imposes significant 

restrictions on the target set/cost function combination. In vehicle control problems, 

mission requirements dictate the target set, which is rarely invariant as stabilizing MPC 

requires. In [70], a variable horizon is used in combination with the constraint tightening 

approach in order to enable robust entry into an arbitrary (and not necessarily invariant) 

target set. This approach includes the horizon as a decision variable in the optimization 

and tightens target constraints as a function of this horizon. Further, by determining an 

appropriate objective function cost on time, this approach guarantees finite-time entry 

into the target set despite disturbances. In this work, input and input rates were 

constrained to remain within feasible limits while terminal constraints on vehicle position 

were tightened to ensure a feasible end-state within the navigable corridor. 
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2.1.3 Advantages of Model Predictive Control in Vehicle Navigation 

Model predictive control offers a number of significant advantages that make it 

particularly well-suited to autonomous and semi-autonomous vehicle navigation 

problems. Its ability to explicitly consider environmental, performance and actuator 

constraints enables corridor-based navigation and allows it to operate near the limits 

imposed by those constraints. This environmentally-aware prediction, coupled with an 

objective-function-optimal control law, has been shown to closely mimic the 

performance of a human driver [54]. Its finite prediction horizon fits naturally with and 

may be based on the information provided by finite-horizon, forward-looking sensors. 

Additionally, the model-based nature and multivariable-compatibility of the control 

calculation allows MPC to account for and easily adapt to structural changes and actuator 

availability from one vehicle model and/or loading configuration to the next. This 

adaptability may allow for reduced-cost controller implementation across product 

families and through ever-shifting safety requirements. 

Finally, MPC’s predictive nature allows certain constrained configurations to 

effectively plan their own path within a partitioned environment without requiring any 

pre-defined vehicle trajectories. That is, where other control methods require a specific 

pre-planned path through the environment (which is often planned by a separate and 

suboptimal system), MPC can plan its own (optimal) path given a set of situational 

position constraints. The path thus planned through the (pre-delineated) safe operating 

environment potentially offers a number of advantages over alternative trajectory 

planning methods; not only is it explicitly aware of vehicle dynamics, measured 

disturbances, and actuator limitations, but the constraint-satisfying trajectory plan it 

generates is both feasible (since it is obtained from an already-calculated set of control 

inputs) and optimal (with respect to some performance metric such as minimum lateral 

acceleration over a future time horizon, minimum wheel slip, etc). In the semi-

autonomous framework described below, this optimal prediction can serve not only as a 

best case trajectory plan, but also as an effective threat assessor. The remainder of this 

chapter develops and demonstrates an MPC-based autonomous controller in corridor-

based active hazard avoidance. 
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2.2 Assumptions 

In this thesis it is assumed that the position of road lanes is available with no noise 

or uncertainty and that road hazards have been detected, located, and mapped into a 2-

dimensional navigable corridor. Existing systems and previous work in onboard sensing 

and sensor fusion justify this as a reasonable assumption [8,71]. Radar, LIDAR, and 

vision-based lane-recognition systems [2,7,9], along with various sensor fusion 

approaches [72,73] have been proposed to provide the lane, position, and environmental 

information needed by this framework. 

Additionally, where multiple corridor options exist (such as cases where the 

roadway branches or the vehicle must navigate around an obstacle in the center of the 

lane), it is assumed that a high-level path planner has selected a single corridor through 

which the vehicle should travel. 

2.3 Simulation Studies 

Simulations were conducted to explore the effect of various MPC configurations 

on its utility and suitability as a path planner. Setup and results from these simulations are 

discussed below. 

2.3.1 Simulation Setup 

Autonomous control maneuvers were simulated using two different vehicle plant 

models. The first plant (“Plant A”) was represented by a nonlinear ADAMS® model* of a 

generic truck featuring a double wishbone suspension, passive roll stabilizers, and rack 

and pinion steering. Tire forces were approximated via a Pacejka tire model. An 

isometric view of this model is shown in Figure 2.1 and its parameters are defined in 

Appendix A. 

                                                 

* Steven Peters wrote and generously lent an ADAMS-Matlab interface to couple this 

model with the Simulink-based controller. 



  
Figure 2.1. ADAMS plant model 

The second vehicle plant model (“Plant B”) is similar to the one presented in [17]. 

This model describes longitudinal and lateral tire forces with the semi-empirical Pacejka 

tire model, where the longitudinal and cornering forces are assumed to depend on the 

normal force, tire slip angle, surface friction, and longitudinal slip. 

I) Vehicle Model 

Two different vehicle models were used in this study’s control calculations. The 

first (“Model A”) accounts for the kinematics of a 4-wheeled vehicle, along with its 

lateral, yaw, and roll dynamics. This controller model was used for simulations 

conducted with Plant A (for which roll dynamics are appreciable).  

The second model (“Model B”) does not consider suspension compliance, making 

it better suited for passenger vehicles with low centers of gravity and little appreciable 

roll dynamics. This more computationally efficient model was used to control Plant B in 

simulation and the test vehicle in experiment. Vehicle states for Model A include the 

position of its center of gravity [x, y], the vehicle yaw angle ψ, yaw rate , sideslip angle 

β, roll angle φ, and roll rate ϕ&  as illustrated in Figure 2.2 (a and b). Model B is described 

by the same set of states less the roll angle φ, and roll rate ϕ& . This model is illustrated by 

Figure 2.2 (a) alone. 
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 (a) 

  
(b) 

Figure 2.2: Vehicle roll (a and b) and slip (a only) models used in MPC controller 

Tire compliance is included in the model by approximating lateral tire force (Fy) 

as the product of each tire’s cornering stiffness (C) and sideslip angle (α) as shown in 

(2.11) and illustrated in Figure 2.3. 

  (2.11)

 
Figure 2.3: Linearized tire compliance model used in equations of motion 
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Table 2.1 defines and quantifies each model’s parameters. These parameters were 

chosen to best match the vehicle plant being tested: roll model parameters were chosen to 

emulate those of the ADAMS plant while the slip model parameters were matched to the 

low-roll-center simulation model and experimental plant. 

Table 2.1: Vehicle model parameters 

Value 
Symbol Description [units] 

Roll Model Slip Model 

m Total vehicle mass  [kg] 2450 2050

Izz Yaw moment of inertia  [kg·m2] 3053 3344

xf C.g. distance to front wheels  [m] 1.13 1.43

xr C.g. distance to rear wheels  [m] 1.43 1.47

yw Track width [m] 1.56 1.44

Cf Front cornering stiffness  [N/deg] 1640 1433

Cr Rear cornering stiffness  [N/deg] 1140 1433

μ Surface friction coefficient {0.25, 0.5, 1} 1

ms Chassis sprung mass [kg] 1880 --

Ixx Roll moment of inertia [kg·m2] 834 --

h Sprung c.g. height [m] 0.34 --

kf Front axle roll stiffness [N·m/rad] 30 x 103 --

kr Rear axle roll stiffness [N·m/rad] 30 x 103 --

bf Front axle roll damping [N·m·s/rad] 1600 --

br Rear axle roll damping [N·m·s/rad] 1600 --

Equations of motion for the roll model are 

( )βψ += cosVx&  (2.12)

( )βψ += sinVy&  (2.13)

( ) ( ) ( )[ ] ϕϕβψβψβψ sincossin &&&&& hmVVmF xy −++++=∑  (2.14)
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∑ = ψ&&zzz IM  (2.15)

∑ = ϕ&&xxx IM  (2.16)

Linearized about a constant speed and assuming small slip angles, these become 

Vx =&  (2.17)

( )βψ +=Vy&  (2.18)
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where Cf and Cr represent the cornering stiffness of the lumped front wheels and the 

lumped rear wheels, 
xx

s

I
hmD

2

1+= , and xf and xr denote the longitudinal distances from 

the c.g. of the front and rear wheels, respectively. 

Equations of motion for the slip model include 

( )βψ += cosVx&  (2.22)

( )βψ += sinVy&  (2.23)

( ) ( ) ( )[ ]∑ ++++= βψβψβψ cossin &&& VVmFy  (2.24)
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∑ = ψ&&zzz IM  (2.25)

Similarly linearized about a constant speed and assuming small slip angles, these 

become 

Vx =&  (2.26)

( )βψ +=Vy&  (2.27)
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II) Objective Function and Constraint Handling 

The controller’s projected path along a predefined trajectory or through a 

constraint-imposed corridor is shaped by the performance objectives implicit in the MPC 

cost function. Many options exist for characterizing desirable vehicle trajectories [54]. In 

this chapter, various vehicle states and trajectory characteristics, including vehicle 

sideslip β, yaw rate ψ& , roll angle φ, and lateral acceleration ÿ are penalized in the 

objective function to understand how minimizing each affects the controller’s ability to 1) 

track a predefined reference trajectory and 2) navigate within a constrained corridor. 

For reference trajectory tracking, lateral deviation of the vehicle’s center of 

gravity (yy) from the corridor centerline (ry) is penalized by including Ryy > 0 in an 

objective function of the form 

where 

( )ϕϕϕϕψψψψββ RRRRRRdiag yyy &&&&&&&&=R . (2.31)
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The resulting trajectory-tracking setup through a hazard-containing environment may 

then be illustrated by Figure 2.4. 

 

Figure 2.4: Illustration of a trajectory-tracking control setup 

For corridor-keeping, penalties on deviation from a desired trajectory (Ry) are 

replaced with lateral position constraints. As explained in 2.2, this form of corridor-based 

navigation assumes that the environment has been delineated previously, with the 

boundaries of the navigable road surface at each time step described by the constraint 

vectors 
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In (2.32), yy
max and yy

min represent the upper and lower limits on the vehicle lateral 

position (y) as illustrated in Figure 2.5. These limits exclude more than simply off-

road/out-of-lane regions from the navigable corridor – they also extend to stationary 

and/or moving hazards in the roadway such as debris, pedestrians or other vehicles.  

Thus, a hazard in the roadway looks to the controller like a constriction in the corridor as 

illustrated in Figure 2.5. 
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Figure 2.5: Illustration of constraint placement (yy

max ,  yy
min) for static hazards 

In order for the constraint space to remain feasible,  

yy
max – yy

min > 0. (2.33) 

Constraints were softened as described in (2.4) by including the magnitude of 

their violation (ε) in the objective function, which takes the form 

0   ,
2
1

2
1

2
1

2
1 2

1

1

1

=+++= ∑∑ ∑
−+

=

+

+=

−+

=
yyyy

pk

ki
iui

pk

ki

pk

ki
iuiiyik uuuuyyJ RΔRΔRR Δ

TTT ερ  (2.34)

A spatial interpretation of the constrained and unconstrained approaches is 

illustrated in Figure 2.6. 

 

 
 (a) 
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(b) 

Figure 2.6. Spatial interpretation for autonomous vehicle navigation using (a) 

penalties on lateral position deviation from a specific trajectory (Ryy > 0 and ρy = 0) 

vs. (b) penalties on departure from a constrained corridor (Ryy = 0 and ρy > 0) 

In summary, the constrained MPC controller was configured to use vehicle 

position, input magnitude, and input rate constraints to avoid hazards while minimizing 

one of many possible performance measures to maximize vehicle stability. By enforcing 

vehicle position constraints at the boundaries of the navigable region of the road surface 

(i.e. the lane edges on an unobstructed road), the controller forces the MPC-generated 

path to remain within the constraint-bounded corridor whenever dynamically feasible. 

Coupling this lateral position constraint with input constraints, input rate constraints, and 

vehicle dynamic considerations, the corridor delineated by yy
max and yy

min translates to a 

safe operating “tube” within the state space [19,74]. 

III) Prediction and Control Horizons 

Few studies have investigated the influence of prediction (p) and control horizon 

(n) on MPC performance. Those that have [75,76] studied horizon length have shown 

that, in general, longer prediction horizons lead to more stable controllers, with stability 

in the limiting case (as Hp → ∞) approaching that of infinite horizon linear quadratic 

regulators. In the autonomous simulations presented here, p was varied to assess its effect 

on control performance. In experiments, p was fixed at 35 or 40 samples, with n = p/2. 



Chapter 3 explores how varying prediction and control horizon length affects threat 

assessment and vehicle trajectory in various hazard scenarios. 

IV) Maneuvers through Static Corridors 

Lane keeping, hazard avoidance, and double lane change maneuvers were 

simulated to test this controller’s ability to keep the vehicle within a navigable corridor 

bounding static hazards. Qualitatively, each of these maneuvers requires varying degrees 

of constraint-handling and trajectory optimization. Lane-keeping tests gauge the 

controller’s ability to keep the vehicle – initially headed out of the corridor – inside it. 

Hazard avoidance tests require that the controller keep the vehicle inside a constricting 

corridor by navigating around a roadway obstacle, and double lane change maneuvers 

measure the controller’s ability to handle maneuvers with significant load transfer. 

V) Maneuvers through Time-Varying Corridors 

Moving hazards were factored into the autonomous control problem by estimating 

their future position based on their current position, velocity, and (optionally) 

acceleration. In the simulation results shown below, unnavigable regions representing 

obstacles moving in one dimension (results may be generalized to 2-dimensional motion) 

were factored into the placement of time-varying corridors as follows: 

Given a (constant) host velocity  and obtaining the current velocity of 

roadway hazards  from tracking sensors or vehicle-to-vehicle communication, where 

 and  represent the current position of the host and hazard, respectively at 

time t, the estimated time to collision 

hostx&

hazx&

( )t( )txhost xhaz

ctΔ  evaluated at time t0 is given by 
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to first order where ( ) ( ) hosthaz xtxtx &&& −=~ , ( ) ( ) ( )txtxtx hosthaz −=~ , or  
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to second-order (requiring that ( ) 0~
0 ≤tx  in (2.36)). 

Given 
0tctΔ , the x position of each road hazard at tc is then estimated as 

( ) ( ) ( )
00

00 tchazhaztchaz ttxtxtx Δ⋅+= &  (2.37)

or 

( ) ( ) ( ) ( ) 2
000

000 2
1

tchaztchazhaztchaz ttxttxtxtx Δ⋅+Δ⋅+= &&& (2.38)

to first- and second-order, respectively. Hazard depth from the host vehicle’s perspective 

is then estimated by 

( ) ( ) ( ) ( ) ( )( )0000
~

0
txtxtxtxtx hazhazhaztchaz

&& Δ⋅−Δ≈Δ . (2.39)

Constraints on vehicle position are drawn at each sampling instant to form a convex (in y) 

corridor from the outline of each hazard’s anticipated position and depth at time tc. Figure 

2.7 illustrates what a snapshot of this time-varying constraint placement might look like 

to the controller. 

Chapter 2 : Path Planning 33 



 
Figure 2.7: Illustration of constraint placement (yy

max ,  yy
min) for moving hazards 

Notice that the constraint “shadow” cast by a hazard moving in the opposite 

direction as the host vehicle appears shallower than the hazard’s true depth. Similarly, the 

shadow cast by a hazard moving in the same direction as the host vehicle is effectively 

deepened. 

VI) Actuator Configuration 

In previous studies, autonomous path-tracking control has been performed via 

front wheel steering [15,28], rear wheel steering [30], four-wheel-steering [31], 

differential brake (i.e. front and/or rear wheel skid-) steering [3,32], and combinations of 

braking and steering [16,22,77,78]. In [29], an LQ controller used each of these input 

strategies to track a modified step trajectory similar to a single lane change. Comparing 

each strategy, this study found that front wheel steering provided the greatest efficiency 

in terms of the ratio of peak tire force used to total available tire force. Four wheel 

steering showed similar efficiency to front wheel steering, followed by front- and four-

wheel braking input schemes. Due to load transfer experienced during braking 

maneuvers, along with low efficiency in general for differential brake steering, rear wheel 

steering is ill-suited as a standalone actuation method for autonomous hazard avoidance 

applications. 

In the simulations shown below, front wheel steering was used predominantly, 

though to demonstrate this control framework’s applicability to multiple actuator 

configurations, one result is shown that uses a combination of front wheel steer with four 
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wheel differential braking. Yaw moment actuation is added to the control calculation by 

including ( ) zzz MI1  in equation (2.20) for the roll model and (2.29) for the slip model. 

The moment command Mz may then be distributed across the four wheels using various 

braking allocation schemes. In the simulation shown below, it was distributed evenly 

across all four wheels. 

2.3.2 Simulation Results 

Autonomous MPC-based control was successfully simulated using both static and 

moving hazards. The results below demonstrate the controller’s suitability for both sets of 

conditions. 

I) Static Hazards 

Static hazards such as lane/road edges and stationary obstacles can be avoided by 

planning a specific path around them or by excluding them from a bounded corridor via 

position constraints. The simulation results below note the differences between these two 

approaches, demonstrate the advantages provided by “corridor-keeping” over “trajectory 

tracking”, and illustrate the effect of prediction horizon length on corridor-tracking 

performance. 

a) Trajectory Tracking vs. Corridor-Keeping 

Figure 2.8 shows simulation results for double lane change maneuvers performed 

using a) a reference trajectory with lateral deviation from that trajectory penalized (Ryy > 

0 and ρy = 0) and b) a constrained corridor with Ryy = 0 and lateral position constrained to 

remain within the corridor (ρy > 0). In both simulations, vehicle sideslip β was also 

penalized by setting Rββ > 0. 
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 (a) (b) 

Figure 2.8: Simulation results for a double lane change path-tracking (a) and 

corridor-keeping (b) maneuver 

As Figure 2.8 (a) and (b) illustrate, constraint-based navigation allows the 

controller greater freedom to minimize sideslip and stability/comfort-related performance 

metrics (such as steer angle, yaw rate, roll angle, and lateral acceleration) while still 

ensuring that the vehicle does not leave the navigable roadway. In contrast, trajectory-

following does not consider an available corridor of travel, requiring instead that the 

controller sacrifice other performance metrics to ensure as little deviation from the path 

centerline as possible. 

Figure 2.9 (a) – (c) show the RMS lateral position (y) and sideslip (β) experienced 

by an autonomously-controlled vehicle as it navigates a 1-m wide lane during a double 

lane change maneuver. Figure 2.9 (a) and (b) plot the maximum and root mean square 

(RMS) lateral deviation (y) and vehicle sideslip (β) against the ratio of the objective 

function weights Ryy / RXX, where RXX penalizes one of several possible nonzero vehicle 

states such as sideslip β (RXX = Rββ), yaw rate ψ& ( ψψ &&RRXX = ), roll angle φ (RXX = Rφφ), 

lateral acceleration alat (RXX = Rÿÿ), and lateral load transfer LTF (RXX = RLTF,LTF). Figure 

2.9 (c) shows simulation results for the weighting ratios labeled i), ii), and iii) in (a) and 

(b). 

36 Chapter 2 : Path Planning  



 

 
(a) 

 
(b) 

 
i 

 
ii iii 

(c) 

Chapter 2 : Path Planning 37 



Figure 2.9. Tradeoffs between maximum (a) and RMS (b) lateral vehicle position 

(dotted) and other vehicle states (solid) observed for various relative 

weightings Ryy/RXX in a path-tracking scenario. 

As expected, Figure 2.9 shows that as Ryy / RXX increases, the vehicle trajectory 

more closely matches the desired trajectory at the expense of more control effort and 

greater sideslip, lateral acceleration, and related vehicle states. Also note that similar 

results are obtained for various choices of RXX due to dynamic coupling of sideslip, yaw 

rate, roll, lateral acceleration, and load transfer. This result suggests that MPC-based 

trajectory tracking control of ground vehicles may penalize any of these in combination 

with lateral position error with similar results and controller tuning tradeoffs. 

Figure 2.10 shows how these tradeoffs differ in a constrained corridor-keeping 

framework when the penalty on lateral deviation from the centerline (Ryy) is replaced with 

a soft constraint on lateral deviation from the navigable corridor via (2.4). 

 
(a) 
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Figure 2.10. Corridor-keeping performance tradeoffs between maximum (a) and 

RMS (b) vehicle states observed for various position-constraint-to-vehicle state 

penalties (ρy/RXX) 

Comparing Figure 2.10 with Figure 2.9 shows that by constraining lateral vehicle 

position (rather than weighting its deviation from the lane centerline) and penalizing 

stability-critical performance criteria, the vehicle trajectory can be tuned to satisfy 

roadway-imposed constraints while simultaneously reducing vehicle sideslip, lateral 

acceleration, and other stability-critical states. Notice that instead of leveling off at the 

3.25º (max) and 1.5º (RMS) sideslip required by the trajectory-tracking controller, the 

corridor-keeping alternative remains within the navigable roadway while requiring only 

~0.9º (max) and ~0.55º (RMS) sideslip. Figure 2.11 shows a set of corridor-keeping 
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maneuvers performed with different vehicle states penalized and 01.0≈XXy Rρ  

(corresponding to position iii in Figure 2.10). 

 
Figure 2.11. Autonomous corridor-keeping controller with various states X weighted 

in the objective function 

As Figures 2.9—2.11 illustrate, various vehicle states can be penalized in the 

objective function with relatively similar path- or corridor tracking results due to dynamic 

coupling of these states in the vehicle model. Having noted this similarity, front wheel 

sideslip ( ( ) δβψα −+= &Vx f ) was chosen as the trajectory characteristic to minimize in 

the corridor-based MPC framework for the remainder of the tests presented in this thesis. 

This choice was motivated by a number of observations. In addition to offering similar 

performance to that obtained by minimizing other trajectory characteristics in the 

objective function, front wheel sideslip strongly influences the controllability of front-

wheel-steered vehicles since cornering friction begins to decrease above critical slip 

angles. These critical angles are well-known and provide a direct mapping from 

environmental conditions to vehicle handling limitations. The linearized tire compliance 

model’s failure to account for this decrease further motivates the suppression of front 

wheel slip angles to reduce controller-plant model mismatch. In [30] it is shown that 

limiting tire slip angle to avoid this strongly nonlinear (and possibly unstable) region of 

the tire force curve can significantly enhance vehicle stability and performance. Finally, 
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trajectories that minimize wheel slip also tend to minimize lateral acceleration and yaw 

rates, leading to a safer and more comfortable ride. 

b) Prediction Horizon 

Figure 2.12 illustrates tradeoffs between lateral vehicle position and vehicle 

sideslip for various relative objective function weightings and prediction horizons. Notice 

that for short prediction horizons ( )15=n , small changes in objective function weightings 

leads to large variation in sideslip and lateral vehicle position. Similarly, longer 

prediction horizons (n ≥ 25) lead to more uniform state tradeoffs as they allow the 

controller to anticipate roadway hazards earlier. 

 
Figure 2.12. Response surface illustrating the relationship between lateral vehicle 

position, sideslip, and prediction horizon length (with control horizon = 12) 

Figure 2.13 shows the effect of combining steering and differential braking (i.e. 

four wheel skid steering) in the MPC control calculation to navigate autonomously within 

a constrained corridor. Notice that compared to controlling only steering angles, using 

both actuation modes allows the controller to reduce vehicle sideslip with a brake-

imposed moment while controlling lateral vehicle position via an applied steer angle. 

These differences, along with the larger steer command required in the combined input 
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case to compensate for the yaw-correcting moment applied by the brakes, are apparent in 

a comparison of Figure 2.13 to Figure 2.10(c)iii. 

 
Figure 2.13: Simulation showing the combined effect of steering and braking 

actuation on autonomous corridor-keeping 

II) Moving Hazards  

Figure 2.14 shows the result of autonomous vehicle navigation through a moving 

corridor in which the velocity of hazards 1 and 2 varied as shown in the final subplot. 

Note that in these plots, the host vehicle is located at the leftmost edge of the predicted 

trajectory. The trajectory prediction is color-coded according to the front wheel sideslip 

predicted at each sample, with the step predicting the largest sideslip marked by a circle. 
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T1 = 1.05 sec 

T2 = 4.25 sec 

T3 = 5.95 sec 

T4 = 6.15 sec 

T5 = 7.80 sec 

 

 

 
Figure 2.14: Autonomous vehicle navigation through moving hazards using a first-

order estimation of future hazard position  
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At T1, hazard 1 is moving with the same velocity as the host vehicle ( 0~
1 =x ) and 

thus poses no threat. By T2, hazard 1 has decelerated to a constant velocity of 10 m/s 

( ), leading to a finite time to collision as given by 10~
1 −=x (2.35) and a corresponding 

placement of the lateral position constraint (2.37). At T3, the host vehicle successfully 

clears the corner of hazard 1 and by T4, the prediction has “seen” hazard 2 (which is 

gaining speed in the opposite/negative direction). By T5, the host vehicle successfully 

clears the second hazard and proceeds toward the outside edge of the navigable corridor.  

Note that by using the first-order-hold described by (2.35) and (2.37), the 

predicted collision time and location does not account for the acceleration of each hazard. 

This is corrected to a small degree by updating hazard position and velocity at every 

sampling instant (20 hz). For larger hazard accelerations, the second-order prediction 

described by (2.36) and (2.38) is better suited to forecast future hazard position. 

2.4 Experimental Studies 

2.4.1 Experimental Setup 

Experimental testing was performed using a human-driver-operated test vehicle at 

Ford’s Dearborn Development Center on dry asphault (μ ≈ 1). As current law requires a 

mechanical linkage between the driver and the wheels, an Active Front Steer (AFS) setup 

was used to couple driver and actuator inputs via a planetary gear. For autonomous 

control tests, the driver input was removed from the control problem by asking the driver 

to hold the steering wheel at δdriver = 0. An inertial and GPS navigation system was used 

to measure vehicle position, sideslip, yaw angle, and yaw rate while a 1 GHz dSPACE 

processor ran controller code and interfaced with steering actuators. As in simulations, 

lane data was assumed to have been derived from forward-looking sensors and was 

therefore predefined virtually. 

Table 2.2 shows the controller parameters used in autonomous experiments. 
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Table 2.2: Controller parameters 

Symbol Description Value [units]

p Prediction horizon {35, 40} [steps]

n Control horizon {18, 20} [steps]

ΔtMPC Prediction time step 0.05 [s]

Rαα Weight on front wheel slip 0.2657 [1/rad2]

Ru Weight on steering input 0.01 [1/rad2]

RΔu Weight on steering input rate (Δ per Δt) 0.01 [1/rad2]

umin/max Steering input constraints ± 10 [deg]

Δumin/max steering input rate (per Δt) constraints ± .75 [deg]  (15 deg/s)

yy
min/max Lateral position constraints  Scenario-dependent

ρε Weight on constraint violation 1 x 105 

V Variable constraint relaxation on vehicle position [1.25, ···, 1.25, 0.01]

 

Two common scenarios were used to analyze the performance of the autonomous 

system. In both, obstacles and hazards were represented to the driver by cones and lane 

markings and to the controller by a constrained corridor (with constraint mapping 

performed by “virtual sensors” and a priori high-level planning). Single hazard 

avoidance tests required that the vehicle avoid a roadway-restricting hazard on a straight 

roadway. Multiple hazard avoidance tests required that the vehicle navigate around two 

hazards with a double lane change maneuver. These scenarios are described below. 

Hazard avoidance tests required that the vehicle avoid an obstacle in the current 

lane of travel. In these tests, the vehicle was driven at a constant velocity in the center of 

a lane with the driver holding the steering wheel at δ = 0, as if asleep or inattentive. A 

row of cones blocked the vehicle’s lane of travel, requiring the controller to: 1) plan a 

safe lane change maneuver around them, 2) assess the threat posed by that maneuver, and 

3) intervene as necessary to avoid the hazard. Figure 2.15 illustrates this test setup. 



 
Figure 2.15: Hazard avoidance test setup showing hazard cone placement (large 

circles) and lane boundaries (dashed) enforced by the controller 

Multiple hazard avoidance experiments tested the controller’s ability to navigate 

more complex road/hazard setups that required maneuvers with appreciable load transfer. 

In these tests (illustrated in Figure 2.16), both lanes of travel were blocked at different 

locations, forcing the vehicle to change lanes to avoid the first hazard, then change lanes 

again to avoid the second, as in a double lane change maneuver. 

 
Figure 2.16: Multiple hazard avoidance test setup showing hazard cone placement 

(circles) and lane boundaries (dashed) 

2.4.2 Experimental Results 

Experimental results closely matched those achieved in simulation. In each 

experiment, the control system successfully maneuvered the vehicle through a 

constrained corridor (i.e. around hazards) while minimizing front wheel sideslip. Figure 

2.17 shows the results of autonomous hazard avoidance experiments conducted at V = 14 

and 10 m/s. 
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Figure 2.17: Autonomous hazard avoidance experiments at 10 and 14 m/s  

Notice that both experiments successfully avoided the corner of the hazard while 

smoothing the avoidance maneuver (to reduce front wheel sideslip). Also note that the 

prediction horizon distance scales with velocity (p samples spaced by ΔtMPC span 

). This velocity scaling allows the controller to effectively “see” the 

hazard from a greater distance when the vehicle is traveling faster, which in turn allows 

the controller to find and follow a smoother path around the hazard. The third subplot of 

ptVx MPChostpred ⋅Δ⋅=

Figure 2.17 shows how a 40-sample prediction horizon at 14 m/s compares to a 35-

sample prediction horizon at 10 m/s. At the higher speed, lateral acceleration is reduced 

due to a combination of 5 additional prediction samples and an extended preview 

distance. 

Figure 2.18 shows the results of multiple hazard avoidance experiments at varying 

velocities and through various corridors. In each experiment, the autonomous controller 

successfully kept the vehicle within the corridor. Notice that even with a shorter (less 

computationally-expensive) prediction horizon of 35 samples, the experiment conducted 
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at 10 m/s (Figure 2.18 c) foresaw and began to maneuver around the hazard while still at 

a distance of 17.5 meters – earlier than the 10 meters from which the 5 m/s, 40-sample 

horizon experiment first saw the hazard. 

 
(a) 

 
(b) 

 
(c) 

Figure 2.18: Autonomous multiple hazard avoidance experiments at V = 14 (a), V = 

10 (b), and V = 5 (c) m/s 

2.5 Summary and Conclusions 

This chapter has presented a constrained optimal controller that both plans and 

tracks a best case (with respect to some user-defined criteria) trajectory through a 

constrained corridor. This corridor-keeping controller has been shown in simulation and 
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experiment to safely navigate around both static and moving hazards while satisfying 

actuator constraints and minimizing sideslip at the front wheels. Various objective 

function and constraint setups have been presented and their results discussed. The 

controller developed in this chapter now serves as a foundation for the threat assessment 

and semi-autonomous control presented in Chapters 3 and 4. 
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3.1 Introduction 

The semi-autonomous vehicle navigation framework presented in this thesis was 

designed specifically for semi-autonomous control of passenger vehicles. The optimal-

control-based method that it uses to get from sensor information (and corresponding 

corridor boundaries) to controller intervention, however, also provides a metric for 

analyzing the threat posed to the vehicle by a given scenario. This metric is comparable 

to and in many situations more useful/accurate than existing metrics. This chapter 

explains. 

The basic premise of threat assessment is as follows. First, sensing systems such 

as radar, LIDAR, or cameras are used to detect, classify, and track objects in the host 

vehicle’s vicinity. Once these potential hazards have been localized and their motion has 

been estimated, a threat metric is used to predict (or “assess”) the threat they pose to the 

host vehicle. Many threat assessment technologies are designed to then trigger and/or 

implement countermeasures to reduce the threat. These countermeasures can be passive 

or active. Examples of passive countermeasures include driver warning [35,79] and 

seatbelt pretensioning [80]. Active countermeasures include braking [27], steering 

[30,31], and other forms of actuation that seek to reduce the threat by altering the host 

vehicle’s trajectory. The effectiveness of both passive and active threat assessment and 

countermeasures depends on their ability to correctly identify hazards and accurately 

assess the threat those hazards pose to the host vehicle. 

Threat metrics described in the literature predominantly use time-based, distance-

based, and deceleration-based measures to characterize the threat level of a given 



 

scenario. Time-based threat measures project time to collision (TTC) based on current 

speeds, positions, trajectories, and (in some formulations) other vehicle states [47,48,81]. 

Distance-based metrics are generally calculated using prevailing range and vehicle speeds 

and require constant velocity/acceleration assumptions and simple hazard geometry 

[50,51]. Finally, acceleration-based metrics assess the threat of a given maneuver based 

on the minimum (and often assumed constant) lateral or longitudinal acceleration that a 

simple avoidance maneuver would require, given the current position, velocity, and 

acceleration of both host and hazard [46,49]. In [46], the inventors estimate the lateral 

acceleration required to execute a constant radius evasive maneuver. Their 

implementation then compares this acceleration to a threshold value. When the required 

acceleration reaches this threshold, braking countermeasures are implemented to reduce 

the vehicle’s longitudinal velocity. 

While the above threat metrics have been shown to provide useful estimates of the 

danger posed by a given maneuver, they are not well suited to consider multiple hazards, 

complex vehicle dynamics, or complicated environmental geometry with its attendant 

constraints. The geometrically-simple (straight-line or constant-radius-curve) avoidance 

maneuvers assumed by these metrics may also misestimate the true threat posed by 

scenarios where the optimal avoidance trajectory follows a curve of varying radius or 

non-constant velocity/acceleration.  

In contrast, calculating instantaneous threat from an MPC-derived optimal 

avoidance trajectory inherently considers multiple hazards, actuator limitations/effects, 

measured disturbances, and (using nonlinear MPC), variable vehicle velocities and 

accelerations. Configuring the controller to plan a (sideslip-minimizing) trajectory within 

a safe region of travel ensures that the MPC-based threat assessment provides a true “best 

case” instantaneous threat assessment. In a driver warning context, threshold threat 

values may trigger driver warnings at critical/desired threat thresholds. For semi-

autonomous control via computer control, threat assessment may be used to determine 

when and how strongly to intervene. The latter application is the topic of the next 

chapter. This chapter focuses on the design and development of the threat assessment 

metric itself. 
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3.2 Optimal-Control-Based Threat Assessment 

Chapter 2 presented the design of a corridor-based trajectory-planning method 

based on constrained optimal control. When the objective function and constraints are 

defined as described in 2.3.1, the vehicle path calculated at each time step by the MPC 

controller is assumed to be the best case or safest path through the environment. Key 

metrics from this prediction may be used to assess the instantaneous threat posed to the 

vehicle.  

The MPC objective function can be configured to force the constrained optimal 

solutions to satisfy corridor constraints before minimizing front wheel sideslip. This 

hierarchy of objectives is achieved by setting constraint violation weights (ρε) 

significantly higher than the competing minimization weight (Rαα) on front slip. Then 

when constraints are not active, as illustrated by the gray vehicle in Figure 3.1, front 

wheel sideslip – and the corresponding threat – remains low. When the solution is 

constrained, predicted front wheel sideslip increases with the severity of the maneuver 

required to remain within the navigable corridor. The dark vehicle in Figure 3.1 

illustrates how the MPC-predicted optimal vehicle trajectory might appear as the lateral 

acceleration, tire slip angles and corresponding threat increase in the presence of an 

active constraint.  

Physical limits on tire cornering friction dictate maximum safe angles of wheel 

sideslip. These angles provide an objective limit against which predicted sideslip may be 

normalized; when predicted threat approaches this known limit, loss of stability is 

imminent. This inherent limitation on stability-critical states such as front wheel slip 

makes them particularly well suited as objective threat assessors.  

 
Figure 3.1: Obstacle avoidance scenario showing MPC trajectory plans with varying 

levels of required front wheel sideslip corresponding to varying levels of threat 
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3.2.1 Threat Calculation 

Various norms may be used to reduce the vector of predicted vehicle states xv  to a 

scalar threat metric  (instantaneous threat assessment at time k). In this work, the 

performance of several norms was studied. 

( )kxvΦ

Table 3.1 describes how each was calculated. 

Table 3.1. Norms used to reduce predicted states to a scalar threat metric ( )kxvΦ  

Symbol Description Calculation 
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( )kx
∞
vΦ  Maximum predicted state xv  ( ) xkx

v
v max=∞Φ  

 

3.2.2 Control Horizons 

The length of the MPC prediction and control horizons (p and n respectively) 

influences both the size and profile of predicted vehicle states xv . Longer horizons “see” 

hazards sooner and allow the controller more distance over which to plan an evasive 

maneuver. The number and placement of control inputs determined by n and Jm (2.5), 

respectively, also affect the evasive maneuver and its attendant threat assessment. 

3.2.3 Threat Metrics 

Just as various vehicle states may be penalized in the objective function without 

significantly changing the MPC-generated trajectory plan (as discussed in 2.3.2 I), these 

states may also be used interchangeably to assess threat posed by a given trajectory 
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prediction. In this chapter, threat assessment based on lateral acceleration ( yayx v&&vv ≡= ), 

front wheel slip ( αvv =x ), and a modified objective function cost ( SIJx
vv = ) are compared.  

While lateral acceleration is commonly used in existing threat metrics, front 

wheel slip was chosen based on three observations. First, front wheel slip is directly tied 

to, and tends to be a good indicator of, vehicle stability and controllability by front wheel 

steering. Second, available surface friction places a measureable limit on how large front 

wheel slip angles can become before loss of control is imminent. This limit provides a 

useful benchmark against which threat assessments can be compared to assess maneuver 

stability. Finally, when the cost function’s only state objective is to minimize front wheel 

slip (while remaining within corridor- and actuator-imposed constraints), the path 

prediction explicitly minimizes the very metric used to assess threat. This hierarchy of 

objectives – remain within the corridor while minimizing front slip as much as possible – 

thereby provides a “best case” or minimal-threat assessment from a dynamically-feasible 

maneuver. 

For some scenarios, however, the controller may not completely satisfy position 

constraints, making α an incomplete indicator of the true anticipated threat. These 

scenarios may arise when complex corridors cause constraints such as maximum input 

value or maximum input rate to activate. In these situations, the MPC-predicted vehicle 

path may violate position constraints, making Φα = f(αpredicted) an incomplete threat 

assessment since it does not does not capture the additional threat posed by the predicted 

departure from the navigable corridor. To account for such scenarios, an alternative threat 

metric similar to the objective function cost may be used, where SIJx
vv = , with SIJ

v
 

defined as 

(3.1)

This threat metric, while somewhat more difficult to interpret physically, accounts 

for the additive presence of the various objective function considerations, such as 
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constraints, input costs, etc, and increases rapidly when constraints are violated. This rate 

of intervention is tuned independent of the controller cost function by introducing a 

modified (and adjustable) constraint violation weight, ρSI. From (2.3), the cost-based 

prediction SIJ
v

 is related to the predicted front wheel sideslip by 

( ) ( )ααααα αα vvv
vvvvv
rRrJ T −−=

~
. (3.2)

With 0=αr
v , this relation allows the cost-based threat assessment 

SIJ
vΦ  to be mapped to 

an equivalent (and physically-bounded) front-wheel-slip-based assessment  via  JΦ

ααR
SIJ

J

vΦ
=Φ . (3.3)

Simulation results below show how these prediction calculations, threat metrics, 

and prediction horizons affect the threat assessment. 

3.3 Simulation Setup 

Two hazard avoidance scenarios were simulated to compare various threat 

assessments to a simple metric that assumes a constant radius turn (CRT). The first was a 

single hazard avoidance scenario in which the vehicle drove toward and maneuvered 

around a single hazard represented by a corner in the constraint corridor (Figure 3.2 a). 

The second was a lane change maneuver in which the vehicle was required not only to 

avoid the first hazard, but to then perform the equivalent of a single lane change in order 

to remain within the constrained corridor (Figure 3.2 b). 

 
(a) 



 
(b) 

Figure 3.2: Illustration of hazard avoidance (a) and lane-change (b) maneuvers used 

in threat assessment simulations 

Two types of simulation were conducted. In the first, threat was assessed as the 

vehicle traveled directly through a road hazard rather than attempting to avoid it. These 

“passive” tests compared the lateral acceleration calculated by the MPC-based framework 

to that estimated by a CRT and illustrated the effect of prediction calculations, controller 

horizons, and threat metric choices on this framework’s threat assessment.  

The second set of tests studied how closely predicted threat (which was based on 

the MPC controller’s prediction of future vehicle states) matched true threat/states when 

the controller navigated the vehicle autonomously. Except for prediction horizon p, 

control horizon n, and constraint relaxation V, these tests used the same controller 

parameters as those described in Table 2.2. Table 3.2 lists the horizon lengths and 

relaxation vectors used in these simulations. 

Table 3.2: Controller parameters tested in threat assessment simulations 

Symbol Description Value [units]

p Prediction horizon {30, 35, 40, 45, 50, 55, 60} 
[steps]

n Control horizon {2, p/2, p} [steps]

V Variable constraint relaxation on vehicle 
position 

[1 x 10-20… 1 x 10-20]

[1 x 10-5… 1 x 10-5]
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In the context of autonomous control, threat assessment evaluation criteria change 

slightly. Whereas passive threat assessment seeks to describe threat with respect to a 

“best possible” maneuver, threat assessment in the presence of active countermeasures 

must also consider the planned avoidance maneuver’s similarity to what the controlled 

vehicle can actually achieve or will actually experience. For other threat assessment 

metrics (e.g. CRT-based prediction), this comparison of expected to actual threat 

becomes less useful for two reasons: first, threat assessors that assume CRTs rarely 

implement a control law that seeks to follow that CRT [27,46]. When they do implement 

active countermeasures, these systems more often seek to avoid the hazard by non-CRT-

compatible means such as braking or combined braking and steering. This disconnect 

between what is actually predicted and what the controller seeks to achieve inherently 

changes the utility of a threat assessment since it no longer represents an true/achievable 

maneuver, but instead only some notion of how close the vehicle is to collision.  

The framework developed in this thesis was designed with the intention of 

providing a best case – and achievable – threat assessment. That is, given a set of initial 

conditions, the threat predicted by the optimal trajectory is presumably attainable if the 

MPC-calculated inputs are implemented. Thus, autonomously-controlled hazard 

avoidance and lane change maneuvers were used in addition to similar maneuvers 

without active countermeasures to assess how closely this framework’s predicted best 

case threat matched the true values of the metric on which it was based (ie. how closely 

true front wheel slip at a given point represents the predicted front wheel slip at the same 

point). 

3.4 Simulation Results 

Simulation results for various threat calculations, prediction/control horizons, and 

threat metrics are shown below. First, simulations that did not implement active 

countermeasures are presented to compare the proposed framework’s threat assessment to 

that predicted by a CRT. Results from similar scenarios using an MPC-based autonomous 

control are then presented. 
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3.4.1 Threat Assessment without Active Countermeasures 

The MPC-based threat assessor provided an accurate prediction of the threat 

posed by single hazard avoidance and lane change scenarios. The results below 

demonstrate its efficacy in each. 

I) Single Hazard Avoidance 

Figure 3.3 shows the results of a single hazard avoidance test with no active 

countermeasures, a prediction horizon of 40 samples, and a control horizon of the same 

length. Lateral vehicle acceleration ( yayx v&&vv ≡= ) was used as the threat metric in order to 

compare this framework’s assessments to those predicted by a CRT.  

 

 
Figure 3.3: Threat assessment comparison 

Notice that the “0” norm of the optimal maneuver’s prediction most closely 

resembles the CRT assessment. This similarity arises from the MPC calculation, whose 

first prediction is calculated based on the current steer angle (which is constant between 

samples). This constant steer angle roughly translates to a short-lived (one time sample 



 

long) CRT and thereby causes the framework’s predicted lateral acceleration to closely 

mirror the CRT’s. Also note that the ∞ norm causes this framework’s threat assessment 

to increase at roughly the same rate, though slightly earlier than the CRT assessment.  

The average and root mean square norms on predicted sideslip both match the 

CRT assessment when the hazard is initially detected and then again just before the 

steering constraints activate. This is due to the fact that when the hazard is first detected, 

the objective-function-minimizing avoidance maneuver exhibits a relatively-constant 

radius of curvature. This causes both average and root mean square values to mimic the 

acceleration required by a CRT. As soon as the end of the prediction passes the corner of 

the hazard (x ≈ 114 m), the controller begins to relax its predicted inputs and required 

lateral acceleration on all positions with x > 114 m. This causes the threat assessment 

based on these norms to decrease. Just before the steering constraints activate, the 

predicted maneuver becomes infeasible, the steering angle reaches its limit, and predicted 

lateral acceleration from the resultant vehicle trajectory peaks at a constant value similar 

to what the CRT requires at that location.  

Figure 3.4 shows the trajectories, threat assessments, and steering inputs 

calculated by the controller, along with each prediction’s location (k) within the 

prediction horizon p. Notice that when the hazard was first “seen”, the controller planned 

an avoidance trajectory of relatively constant lateral acceleration as mentioned above. 

From , this path plan required increasing levels of lateral acceleration 

initially while tapering off to low lateral acceleration past the hazard. Also notice that 

because the ∞ norm selects the maximum lateral acceleration resulting from any two 

(possibly unequal) steer commands over the prediction horizon, it provides a more 

conservative estimate of threat in this particular scenario than the CRT-based assessment. 

For generous steering rate constraints, this result is expected to be common to most other 

scenarios. 

85~100~ ≤≤ hostx
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Figure 3.4: Predicted vehicle trajectories and attendant threat assessments and 

optimal steering inputs 

Figure 3.5 shows the result of varying prediction horizon on threat assessments 

calculated from the lateral acceleration metric. As these plots illustrate, lengthening the 
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prediction horizon tends to change primarily the distance from which the hazard is first 

detected. As soon as the controller “sees” it, regardless of the prediction horizon length, 

the lateral acceleration required to avoid it jumps to a value similar to that required by a 

CRT. Controllers with each of these prediction horizons, metrics, and threat calculations 

then follow the same threat line until the steering constraints activate at δ = 10 deg.  
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Figure 3.5: Effect of prediction horizon (p) on threat assessments 

The length of the control horizon (n) was shown to exert relatively little influence 

on this framework’s threat assessment. Only at very small values (n = 2), did this 
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parameter appreciably affect the threat assessment and then only for long (p > 45) 

prediction horizons. Figure 3.6 illustrates. 

 
(a) 

 
(b) 

 
(c) 

Figure 3.6: Threat assessments resulting from n=p (a), n=p/2 (b), and n=2 (c)  

The drop in predicted threat observed for the third set (n=2) of prediction-control 

horizons is the result of the controller’s attempt to plan an objective-function-optimal 

path around the hazard using only two control inputs. Once avoiding the hazard using 

two inputs becomes impossible (x≈100 m), the optimal solution seeks to minimize total 

constraint violation using maneuver that requires a lower lateral acceleration. Figure 3.7 

shows the optimal trajectories and steering inputs calculated when p = 60 and n = 2. 
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Figure 3.7: Predicted vehicle trajectories and attendant steering inputs 

Notice that Jm in these simulations allocated both control inputs at the first two 

steps of the optimal control calculation, causing the controller to calculate a large control 

input for the first step, followed by a reduced input for the second. Steering rate limits 

constrained the step change between these two inputs and thus led to a solution requiring 

greater vehicle sideslip than would be required had more control inputs been allowed or 

the inputs been spaced differently. It is not unreasonable to expect that, with real-time 

adaptation of Jm, the threat assessment for n=2 could be decreased, but for threat 

assessment purposes, this configuration provides a conservative estimate of threat. 

II) Lane Change 

For lane change maneuvers, the MPC-based framework correctly assessed a 

slightly higher threat than the CRT prediction as the vehicle approached the road hazard. 

Whereas the CRT maneuver predicts only the lateral acceleration required to avoid the 
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corner of the first hazard, the MPC-based assessment also accounts for the lateral 

acceleration required to avoid leaving the road surface after the first hazard has been 

avoided. Figure 3.8 compares the threat calculated using various norms and prediction 

horizons to the CRT assessment. 

 
(a) 

 
(b) 

Figure 3.8: Lane change maneuvers without active intervention showing how the 

proposed framework’s threat assessment varied by (a) threat calculation and (b) 

prediction horizon 

As Figure 3.8 illustrates, the threat assessed by the ∞-norm in this scenario rises 

sharply as soon as the opposite road edge is detected. When the driver does not respond 

or correct course as in this simulation, predicted threat settles to a lower value for the 

same reasons as discussed above (trajectory cost minimization). Meanwhile, the CRT-
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based threat assessment considers only the corner of the nearest hazard, causing its 

prediction to completely miss the additional lateral acceleration required to level off in 

the avoidance lane. Figure 3.9 illustrates how infeasible initial conditions caused by 

driver (and controller) inaction affect the control inputs and predicted trajectories 

computed by this MPC formulation. 

 
Figure 3.9: Predicted vehicle trajectories and attendant steering inputs for a lane 

change maneuver, p=40, n=40  

Notice that as soon as the maneuver can no longer satisfy position constraints, the 

controller saturates both δ and Δδ in a vain attempt to guide the vehicle back onto the 

navigable road surface. As soon as these constraints activate, the predicted threat 

saturates. 

The above results show that the MPC-based threat assessment provided by the 

proposed framework gives a similar, albeit more situation- and plant-aware threat 

assessment to that based on a constant radius turn. When calculated from the maximum 
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MPC-predicted lateral acceleration (∞-norm), these predictions provide slightly earlier 

warning which explicitly accounts for more complex hazard geometry and more realistic 

actuator limits. 

3.4.2 Threat Assessment with Autonomous Control 

As mentioned in 3.3, assessing threat based on a controller-achievable maneuver 

requires some measure of how well the predicted threat/state represents what the vehicle 

would actually experience under autonomous control. This relationship between 

predicted threat and the controller’s ability to maintain true threat at or below this level 

plays an important role in the semi-autonomous control implementation discussed in 

Chapter 4. Below, threat assessments using various controller and prediction parameters 

are compared to the true vehicle state and shown to provide a reliable estimate of the 

vehicle’s true states under autonomous control. 

I) Single Hazard Avoidance 

Figure 3.10 shows how predicted front wheel sideslip (Φα) as assessed by various 

prediction norms compares to true front wheel sideslip (α). 

 
Figure 3.10: Threat assessment using the front wheel slip metric 
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As Figure 3.10 illustrates, threat assessment based on the next available sample of 

front wheel slip (Φ0
α) most closely estimated the true threat at that location. This is not 

surprising as the “0” norm samples the vehicle’s next predicted state (5 ms forward in 

time) from the vehicle’s current state. Notice in the third subplot that the ratio of 

predicted-to-true slip from this norm is nearly unity leading up to the hazard. This close 

correlation between prediction and reality also implies that for the low sideslip and yaw 

angles experienced in this maneuver, the linear controller model closely approximates the 

plant. 

Figure 3.10 also shows that the ∞-norm closely approximates the true vehicle 

state from almost the moment the hazard is “seen” at x≈85 m to the point at which the 

host vehicle successfully clears the hazard corner (x≈114 m). This close correlation is 

also apparent in the third subplot where the ∞-norm result is nearly overlayed with the 

“0”-norm result at 1pred =αα true . The only significant difference between the ∞- and the 

“0” norms here is that the former anticipates the hazard slightly earlier and adjusts its 

threat assessment accordingly. This anticipation, together with the ∞-norm’s accurate 

prediction of true front wheel slip (or the slip to be expected if the controller is given full 

control authority) make it an especially useful norm for governing semi-autonomous 

control. The ∞-norm is thus used exclusively in the simulations and experiments 

presented in Chapter 4. 

Figure 3.11 shows how threat assessment based on lateral acceleration performs 

in an autonomous control context. 
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Figure 3.11: Threat assessment using the lateral acceleration metric 

Notice that while threat assessments based on the 
yaΦ  metric lead true lateral 

acceleration (similar to those predicted by Φα), they fail to accurately capture the 

magnitude of this state as evidenced in the third subplot. Where for Φα-based threat 

assessment, this ratio of true-to-predicted state was nearly unity for the ∞- and “0”-

norms, the -based assessment exhibits ratios closer to 1.7. This may evidence greater 

sensitivity in this metric to model mismatch, further warranting the use of Φα- or ΦJ-

based metrics for threat assessment and semi-autonomous control.  

yaΦ

Figure 3.12 shows how modified objective function cost (with α weighted in the 

objective function) performs as a threat metric. 
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Figure 3.12: Threat assessment using the objective function cost metric 

Similar to Φα, ΦJ accurately predicts front wheel sideslip when used in 

conjunction with both the ∞- and “0”-norms. The only significant difference between 

these two metrics occurs at x≈113 m. At this location, the predicted vehicle trajectory 

slightly violates the corner of the ymin constraint, causing a spike in JSI and a 

corresponding spike in ΦJ. This slight constraint violation, while not unexpected when 

position constraints are softened, may be accounted for by providing a “buffer region” 

around hazards when defining constraint positions. 
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Figure 3.13 shows the effect of prediction horizon on threat assessments Φα and 

ΦJ. Notice that as prediction horizon increases, the autonomous MPC controller 

effectively smoothes the avoidance maneuver in order to reduce both steering inputs and 

front wheel sideslip (which are both penalized in the objective function). This control 

input smoothing affects both predicted and actual threat in a similar fashion, leading to 

nearly identical xvΦα  ratios for each metric. From a robustness standpoint, this is 

desirable as it suggests that the autonomous MPC controller configured as described in 

Chapter 2 can be used to plan, predict, and track optimal (i.e. threat-minimizing) 

trajectories through a constrained corridor. This ability is key to the semi-autonomous 

control method described in the next chapter. 

 
Figure 3.13: Threat assessment using Φα and ΦJ for varying prediction horizons 
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II) Lane Change 

Figure 3.14 shows the result of threat assessment using the ∞ norm of the Φα and 

ΦJ metrics in a lane change maneuver. 

 
Figure 3.14: Threat assessment using Φα and ΦJ for varying prediction horizons in a 

lane change maneuver 

Notice that between x≈60 and x≈70, the true front sideslip decreases sharply as 

the vehicle clockwise right to remain within the narrow corridor. Meanwhile, the threat 

prediction increases in anticipation of the corrective maneuver required to remain within 

the corridor. This leads to a temporary reduction in xvΦα . As the vehicle passes the 

corner of the first hazard at x ≈ 85m, true slip once again matches predicted slip. These 
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results suggest that the MPC controller may be configured to accurately plan, assess, and 

track aggressive maneuvers using Φ∞
α and Φ∞

J metrics. 

3.5 Summary and Conclusions 

This chapter has developed a method for assessing the threat posed by a given 

scenario from the trajectory plan of a constrained MPC controller. This method has been 

compared to others that assume a constant radius turn (CRT) avoidance maneuver. When 

hazard geometry is simple, this method’s prediction closely mirrors and slightly preempts 

the CRT-based assessment. For more complex hazard avoidance scenarios, such as those 

requiring a lane change maneuver, this method is shown to account for the increased 

threat, thus providing a significant improvement over simple CRT-based assessments. 

The principal contribution of this chapter was the demonstration of this method’s 

ability to accuracy predict an MPC-controlled vehicle’s performance as it tracks the 

MPC-predicted trajectory plan through a constrained corridor. Two metrics are shown to 

provide a nearly one-to-one mapping of predicted threat to true threat, suggesting that, if 

provided full control of a vehicle, this MPC controller can reasonably be expected to 

maintain critical vehicle states/threat at or below their predicted values. Chapter 4 

explains why this is important to the design of the overall semi-autonomous system. 

Note that in this chapter, only results from MPC controllers penalizing front 

wheel slip in the objective function (Rαα >0) were shown. For a comparison of predictions 

obtained using this objective function setup to an objective function that penalizes lateral 

acceleration rather than front wheel slip ( >0), see Appendix B. 
yyaaR

 



74  Chapter 4: Semi-Autonomous Control  

44  
4 CHAPTER  4:  SEMI-AUTONOMOUS  CONTROL    CHAPTER 4: SEMI-AUTONOMOUS CONTROL

4.1 Introduction 

This chapter describes the final component of the semi-autonomous framework: a 

shared control scheme for active hazard avoidance. The controller described here builds 

on the methods for path planning and threat assessment described in Chapters 2 and 3. 

The resulting control framework provides a powerful means of semi-autonomously 

avoiding road hazards. 

4.1.1 Intervention Law 

Given a best case vehicle path through the environment (Chapter 2) and a 

corresponding threat assessment (Chapter 3), a semi-autonomous intervention law 

determines how much control authority to allocate to the driver and how much to allocate 

to the MPC controller. This allocation is based on the scalar threat assessment Φ. 

Generally speaking, low predicted threat causes more of the driver’s input and less of the 

controller’s input to be applied to the vehicle while high threat allows controller input to 

dominate that of the driver. An intervention function is defined to allow for a smooth 

blending of driver and controller inputs. 

Denoting the current driver input by udr and the current controller input by uMPC, 

the blended input seen by the vehicle, uv , is defined as 

( ) ( )( ) drMPCv uKuKu Φ−+Φ= 1  (4.1)

The intervention function K(Φ) translates predicted vehicle threat Ф into a scalar 

blending gain ], defined as  [ 10∈K
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As shown in (4.2), the shape of K is described by the threat level at which the 

MPC controller engages (Φeng) and the level at which the MPC control system assumes 

full authority and effectively acts as an autonomous controller (Φaut).  When the predicted 

threat Φ is less than the low-threat threshold Φeng, K is set to zero, effectively passing all 

of the driver’s control input (and none of the controller’s) to the vehicle. Above the high-

threat threshold Φaut, K is set to one. This allows the MPC controller full control authority 

to autonomously track the high-threat path. Once the predicted threat is reduced to a 

safe(r) level (i.e. below Φaut), the driver’s control authority is increased. 

In this chapter, linear and piecewise linear intervention functions are employed, 

though nonlinear formulations – including some with dependence on 

controller/plant/environmental parameter dynamics – have also been tested. In the results 

below, linear and piecewise linear intervention functions were parameterized by Φeng and 

Φaut as in (4.3). Figure 4.1 illustrates gain (K) as a function of threat (Φ) for various forms 

of f(Φ). 

( )
engaut

autf
Φ−Φ
Φ−Φ

=Φ  (4.3)
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Figure 4.1: Intervention laws used to translate threat assessments into controller 

blending gains 

The intervention threshold Φeng may be chosen based on driver preference. 

Increasing Φeng widens the “low threat” band in which the driver’s inputs are unaffected 

by the controller. While this provides greater driver freedom for low-threat situations, this 

freedom comes at the cost of increasing the rate of controller intervention when Φeng is 

exceeded. This increased rate of intervention may adversely affect driver experience, as 

discussed in the results below. 

Increasing the value of Φaut, on the other hand, delays complete controller 

intervention until more severe maneuvers are predicted. This threshold can be set to 

ensure the controlled maneuvers remain feasible. When physically-limited states, such as 

front wheel sideslip α or modified objective function cost JSI, are used for threat 

assessment, Φaut may be set at known stability limits of these states. In the case of front 

wheel sideslip, the friction-limited bounds on the linear region of the tire force curve 

(2.11) suggest Φaut ≤ 5º on surfaces with a friction coefficient μ = 1. Setting Φaut ≤ 5º thus 

places an effective limit on the amount of front wheel sideslip allowed in semi-

autonomous operation. By the time the predicted hazard avoidance maneuver reaches this 
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level of severity, the controller has full control authority and can – unless unforeseen 

constraints dictate otherwise – guide the vehicle to safety.  

When controller intervention is based on ΦJ (rather than Φα), control authority 

gains become coupled with the “optimal” MPC solution. With an appropriate cost 

function formulation and choice of ρSI, this guarantees that 1) the threat metric regulating 

controller intervention is minimized in the path planning process (and associated control 

calculation) and 2) the controller maintains complete control authority when constraints 

are binding. Note that due to the additive presence of other objective function terms such 

as constraints and input costs, intervention based on SIJ
v

 may cause  to reach 

threshold values Φeng  and Φaut before the predictive state α reaches a critical level. This 

behavior is by design, since constraint violation is seen as an added threat warranting 

additional control intervention. For this reason, similar thresholds are used below to 

govern slip-based (Φα) and cost-based (ΦJ) intervention. 

JΦ

4.1.2 Driver Input Consideration 

In some scenarios, driver inputs may differ significantly from controller inputs. 

Such cases can lead to abrupt adjustments in the overall steering input (uv) as K increases. 

These abrupt changes may saturate steering rate constraints (which are limited by the 

available steering actuators) and may be uncomfortable and/or unnerving to the human 

driver. To account for differences between driver and controller input, K may be 

augmented by an additional term to increase controller intervention in proportion to the 

driver’s deviation from the best case input. This augmentation can be described by  

( ) ( ) ( )( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−Φ−+Φ=Φ Δ

−−

max11,, u
uu

drMPCaug

drMPC

effuuK (4.4)

where f(Φ) is defined as in (4.2) and Δumax represents the maximum difference between 

driver and controller inputs ( minmaxmax uuu )−=Δ . Figure 4.2 shows the effect of this 

modification on piecewise linear intervention laws. 



 
Figure 4.2: Intervention law showing the effect of augmenting K according to 

driver-controller input deviation 

4.2 Simulation Studies 

Semi-autonomous hazard avoidance was tested for various threat metrics (Φα and 

ΦJ), intervention thresholds (Φeng  and Φaut), and intervention laws (K and Kaug) for 

several avoidance maneuvers and diverse driver inputs. Simulation setup and results are 

presented below. 

4.2.1 Simulation Setup 

Controller performance was simulated using Plant B (described in 2.3.1). The 

vehicle model described by (2.26) – (2.29), with the parameters given in Table 2.1 was 

used in the receding horizon controller. Controller parameters were set as specified in 

Table 2.2. Both front-wheel-slip- and cost-based threat assessment were tested as inputs 

to the intervention law, with intervention thresholds Φeng and Φaut varied from 0 to 2 and 

2.5 to 5 degrees respectively. Blending gains K and Kaug were both tested to assess the 

effect of each on semi-autonomous system performance. 
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I) Driver Input 

Open-loop and closed-loop driver inputs were tested. Open-loop inputs were 

simulated by pre-specifying a sequence of driver inputs and implementing this sequence 

independent of the resulting vehicle trajectory. The trajectory independence of these 

inputs was chosen to emulate an inattentive driver. For the tests below, the driver’s steer 

angle was held constant at δdr = 0º as though s/he did not see the impending hazard.  

Closed-loop inputs were used to emulate an attentive driver who actively attempts 

to track a desired trajectory. Here, a pure pursuit driver model similar to the one 

described in [82] was used. This model implements proportional feedback on the path 

tracking error, with the main tuning parameter being the lookahead distance L (illustrated 

in Figure 4.3). 

 
Figure 4.3: Illustration of pure pursuit driver model parameters 

In simulation, the lookahead distance L was reduced (or “de-tuned”) to simulate a 

poor driver input and increased (or tuned) to simulate an experienced driver. Together 

with the wheelbase length, this distance forms a gain on path error as shown in the 

steering calculation: 

( )
( )Θ+

= sin
 

2~
2L

xx
y rfδ . (4.5)

where ( ) ( )tytyy des −=~ . 
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Figure 4.4 shows a block diagram of the semi-autonomous controller with the 

pure pursuit driver in the loop. 

 
Figure 4.4: Block diagram of “pure pursuit” driver in the loop with MPC controller 

II) Maneuvers 

Lane-keeping, hazard avoidance, and multiple hazard avoidance maneuvers 

similar to those described in 2.3.1 IV) were used to test the semi-autonomous controller’s 

ability to share control with a human driver while keeping the vehicle within the safe 

corridor. With the exception of lane-keeping maneuvers – for which closed-loop driver 

inputs are difficult to credibly simulate – both open- and closed-loop driver inputs were 

tested with each maneuver. Simulations with moving hazards similar to those described 

in 2.3.1 V) were also tested.  

4.2.2 Simulation Results 

The semi-autonomous controller maintained the vehicle within the navigable 

corridor for each of the threat metrics, intervention thresholds, intervention laws, 

maneuvers, and driver inputs tested. Results from these simulations are shown below. 

I) Threat Metrics and Intervention Thresholds 

Control systems that intervened semi-autonomously according to the threat posed 

by front wheel sideslip (α) and objective function cost (J) were shown to successfully 

satisfy safety constraints while allowing significant driver control. In the rest of this 

chapter’s figures, Фα indicates simulations conducted using front wheel slip to assess 

threat and regulate controller intervention, while ФJ indicates simulations that used 

modified objective function cost. Such tests are also referred to as Фα-regulated and ФJ-
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regulated maneuvers. Figures 4.5—4.8 show the results of semi-autonomous double lane 

change (or “multiple hazard avoidance”) simulations with driver steer input δdr=0. Figure 

4.5 compares the results of one such scenario when each metric is used to estimate threat 

and regulate controller intervention. For both maneuvers, Фeng = 0 and Фaut = 3. 

 
Figure 4.5: Comparison of controller intervention based on threat metrics Фα and 

ФJ when driver steer δdr = 0 

Notice in Figure 4.5 that Фα- and ФJ-regulated controllers perform similarly when 

the vehicle trajectory operates far away from constraints. Near constraints, the two 

diverge, as the additional cost terms in ФJ  (0.5 Rδ δ2 + 0.5 RΔδ Δδ2 + 0.5 ρSI ε2) cause 

higher peaks in K = f(ФJ) than those seen for K = f(Фα).  

Intervention laws with varying threat thresholds for controller engagement (Φeng) 

and full autonomy (Φaut) were also shown to satisfy lane constraints while honoring 

driver inputs whenever possible. Sideslip thresholds Φeng and Φaut (in units of degrees) 

are denoted in figure legends as [Φeng Φaut]. 
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(a) 

 
(b) 

Figure 4.6: Effect of intervention thresholds [Φeng Φaut] on Фα-regulated double lane 

change maneuvers with δdr = 0 

82  Chapter 4: Semi-Autonomous Control  



 

 
(a) 

 
(b) 

Figure 4.7: Effect of intervention thresholds [Φeng Φaut] on ФJ-regulated  double 

lane change maneuvers with δdr = 0 

As Figures 4.6 and 4.7 illustrate, increasing Фeng delays controller intervention K 

at the cost of more rapid increases and more frequent saturation of the control authority 

allotment. This late intervention, while allowing the human driver greater autonomy far 

from constraints/hazards, may ultimately require more control authority to regain control 

of the vehicle if the driver does not make the correction on his/her own. For example, 

increasing Фeng from 0 to 2 deg as shown in Figures 4.6 and 4.7 ultimately increases the 

average intervention metric K over the entire maneuver by 0.9 % for Фα-regulated 

intervention and 7.0 % for ФJ -regulated intervention. This tradeoff between early, small, 
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and persistent intervention (low Фeng) and late, large, and periodic intervention (high 

Фeng) and their effect on average K over the entire maneuver is plotted in Figure 4.8. 

  

(a) (b) 

Figure 4.8: Effect of intervention thresholds [Φeng Φaut] on average intervention K 

for double lane change maneuvers regulated by Фα (column a) and ФJ (column b) 

As Figure 4.8 (a) and (b) show, average controller intervention generally 

decreases with increasing Фaut until Фaut ≈ 4.5º. When the controller waits until threat Фα 

> 4.5 deg to take full control of the vehicle, the intervention required to keep the vehicle 

inside the navigable corridor increases rapidly. This comes as a result of the rapid 

increase in front wheel slip near the boundary of the linear tire force curve (2.11) and 

establishes a natural upper limit on Фaut.  

Also notice that, for this scenario, the engagement threshold (Фeng) may be tuned 

according to driver preference without significantly affecting average overall 
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intervention. Taken together, these results suggest that for some maneuvers and driver 

inputs, this framework tends to “average out” controller intervention for various Фeng and 

Фaut settings, allowing for considerable driver preference tuning without dramatically 

changing the average K. In this scenario, for example, the maximum change in K(Фα) 

across the entire range of Фeng and Фaut was 0.09. 

These results also suggest that similar bounds on Фeng and Фaut may be applied 

when modified objective function cost (JSI) is used to assess threat and regulate controller 

intervention. As shown in Figure 4.8 (b), basing controller intervention K on ФJ changes 

average K over the entire maneuver by only 0.8 percent when compared to the Фα- 

regulated configuration (from ( ) 430.0=ΦαK to ( ) 427.0=Φ JK ). This result follows 

from the abovementioned performance similarities between the ФJ- and Фα- regulated 

configurations. Far from constraints, the two configurations perform similarly. Near the 

constraints, the spikes in K(ФJ) tend to correct the vehicle trajectory, ultimately reducing 

the need for further intervention. 

II) Threat Assessment 

Semi-autonomous control changes the degree to which the MPC-based “best 

case” threat assessment matches true vehicle states. That is, when the MPC controller is 

not given full control authority, the vehicle trajectory it predicts based on those inputs 

does not necessarily match the trajectory actually followed by the vehicle. While this 

does not affect the accuracy of the controller’s “best case” or “autonomously-achievable” 

threat assessment, it does illustrate one key effect of input scaling on prediction accuracy 

as discussed below.  

For the autonomous case (i.e. when K = 1), the ratio of true-to-predicted front 

wheel sideslip was shown in 3.4.2 to be close to unity for both Фα- and ФJ-based threat 

assessment. In the semi-autonomous case, with Фeng = 0º and Фaut = 3º, this ratio 

decreases from unity in inverse proportion to the level of control authority K given to the 

MPC input calculation. Figure 4.9 shows the results of a hazard avoidance maneuver with 

δdr = 0 and using a)  and b) ( αΦ= fK ) ( )JfK Φ= . 



(a) (b) 
Figure 4.9: Hazard avoidance simulations showing the effect of intervention gains K 

on threat assessment accuracy 

Notice that, in contrast to the results obtained using K=0 (i.e. no active 

countermeasures) and K=1 (i.e. autonomous control) shown in 3.4.1 and 3.4.2 

respectively, the ratio of true-to-predicted threat for these semi-autonomous simulations 

increases with increasing K values. This differs from the uncontrolled and autonomously-

controlled tests for which this ratio remained near unity for all of the prediction horizons 

tested. The difference in the semi-autonomous case is a result of input scaling; 

multiplying the MPC input by K < 1 changes (and in the case of δdr < δMPC decreases) the 

steering input seen by the vehicle. This difference in incremental steering input Δu 

accumulates as a difference in u, causing the true vehicle trajectory to more closely 

follow the path implied by the driver’s inputs. As a result, the vehicle experiences less 

front wheel sideslip than the optimal trajectory predicts. When K approaches 1, as seen in 

the simulations with short prediction horizons, the predicted threat level converges to the 

true threat level. 

Figure 4.9 also shows that trajectory-planning and threat assessment in the semi-

autonomous framework is more influenced by prediction horizon than similar 

autonomously-controlled (K=1) scenarios. When K=1, the MPC input closely tracks the 
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predicted trajectory (and its corresponding threat states) as long as the linearized 

controller model closely matches the plant. For this range of prediction horizons 

 and this hazard avoidance scenario, the controller model closely matches 

the plant. As a consequence, the predicted threat level closely matches the true threat 

level. For semi-autonomous simulations on the other hand, K is threat-dependent. Since 

predicted threat decreases with increasing prediction horizons (which provide a longer 

effective lookahead distance over which to smooth the avoidance maneuver), K also 

decreases with increasing prediction horizon. As mentioned above, the further K gets 

from 1, the more the predicted threat level may overestimate (for δdr < δMPC) or 

underestimate (for δdr > δMPC) true threat level, depending on the maneuver.  

{( 6030L=p })

To summarize, the MPC-predicted trajectory/threat closely matches the true 

MPC-controlled vehicle trajectory for maneuvers in which the controller model closely 

matches the plant. When MPC inputs are blended with driver inputs in proportion to 

predicted threat, the true vehicle trajectory begins to diverge from the “best case” 

prediction. This does not diminish the utility of using the MPC prediction for threat 

assessment; the best case maneuver at any instant remains the best case maneuver 

whether the human driver follows it or not. What it does show – albeit empirically – is 

that for high-threat maneuvers that require K=1, the MPC controller is able to closely 

track the optimal avoidance trajectory. This guarantees that as long as Φeng and Φaut are 

set to appropriately low values (i.e. within the range for which the MPC model closely 

approximates the plant), and the prediction horizon is long enough that the controller has 

sufficient time to plan avoidance trajectories around hazards, the semi-autonomous 

controller can prevent departure from the navigable road corridor and guide the vehicle to 

safety. 

III) Intervention Laws – K and Kaug 

Semi-autonomous simulations based on the augmented intervention law Kaug (4.4) 

were also shown to satisfy safety and stability requirements for various maneuvers and 

driver steering inputs. Figure 4.10 compares a semi-autonomous simulation that does not 

consider the driver-controller steering difference (K) to one that does (Kaug). Note that the 

large peak values of Kaug combined with small input differences (recall that δdriver = 0 for 



both simulations) leads to only slight differences in controller intervention for this 

maneuver. In these particular simulations, Φ = Φα and [Фeng  Фaut] = [0 3] deg. 

 
Figure 4.10: Comparison of semi-autonomous multiple hazard avoidance 

simulations based on intervention laws K and Kaug 

Figure 4.10 shows that for certain maneuvers, driver inputs, and intervention 

thresholds Фeng and Фaut, augmenting K does not necessarily increase the average 

controller intervention. In these particular simulations, the opposite is observed. This is 

due to the slightly increased intervention early in the maneuver by the augmented 

controller, which reduced its subsequent intervention at x ≈ 75m. Figure 4.11 shows how 

augmenting K according to variation between driver and controller steer affects average 

overall intervention for this maneuver. 
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(a) (b) 

Figure 4.11: Effect of varying intervention thresholds [Φeng Φaut] on average 

intervention K (column a) and Kaug (column b) for double lane change 

As Figure 4.11 shows, the driver-input-aware intervention law Kaug often leads to 

a similar average intervention as that calculated by the driver-input-unaware K. Also 

notice that for this maneuver, intervention governed by Kaug is less affected by changes in 

Φaut than K due to the extra term ( )( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝
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−Φ− Δ

−−

max11 u
uu drMPC

ef .  Notice that even for large 

values of Φaut – which for the unaugmented configuration led to delayed intervention and 

precipitous increases in K – the augmented controller was able to maintain relatively low 

average intervention over the entire maneuver.  

To summarize, augmenting the intervention law via (4.4) maintains similar 

average controller intervention to the unaugmented controller while allowing for higher 
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Φaut settings. As noted in 4.2.2 I) above (pg. 80), the ability of these threat metrics (Φα 

and ΦJ) and intervention laws (K and Kaug) to allow for a wide range of thresholds and 

intervention characteristics without significantly changing average controller intervention 

or maneuver feasibility allows for considerable driver-preference-based tuning. This 

provides a significant advantage in a consumer market which strongly emphasizes 

configurability and personalization. 

IV) Closed-Loop Drivers and Trajectory Stabilization 

In addition to ensuring that the vehicle remains within a navigable road corridor, 

the semi-autonomous control framework presented in this thesis also exhibits 

performance advantages similar to those of yaw and roll stability controllers. That is, not 

only does the controller intervene to arrest corridor departure, but it also maintains 

stability-critical states (such as front wheel sideslip) below a given threshold while doing 

so. Appropriate threshold settings place an effective limit on the sideslip allowed before 

the controller takes full control of the vehicle and attempts to stabilize the vehicle. This 

soft limit ensures that as soon as the vehicle trajectory required to remain within the safe 

corridor becomes sever enough to require high levels of slip, the controller has been 

given full control authority and may – barring the unanticipated effects of unmodeled 

disturbances – safely stabilize the vehicle. 

In the presence of a closed-loop “pure-pursuit” driver control, the moderating 

effect of semi-autonomous intervention on both the vehicle trajectory and driver input 

becomes apparent. Figure 4.12 shows one such simulation in which the semi-autonomous 

controller improved the driver’s ability to track a desired path. In this simulation, the pure 

pursuit driver model was designed with a short lookahead (L = 10 m). At Vhost=20 m/s, 

this corresponds to an effective lookahead horizon of 0.5 seconds, which for the pure 

pursuit controller lead to large steering gains and consequent difficulty in tracking the 

desired trajectory without loosing control of the vehicle.  
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Figure 4.12: Effect of semi-autonomous intervention on a closed-loop “pure-

pursuit” driver and vehicle trajectory 

In this scenario, including the semi-autonomous controller in the control loop 

reduces the magnitude of the driver’s inputs. Whereas a short lookahead distance and its 

attendant high steering gains (4.5) caused the unassisted driver to oversteer and loose 

control of the vehicle, the assisted driver was more moderate in its steer commands and 

thus maintained control of the vehicle. Moreover, allocating less than 50% of the 

available control authority to the MPC controller was sufficient to keep the vehicle inside 

the corridor and within 0.4 meters of the desired trajectory. The combined effect of both 

inputs (driver and controller) is a vehicle trajectory that more closely tracks the driver’s 

desired trajectory than either the pure pursuit controller or corridor-based MPC controller 

would have done on its own. Figure 4.13 compares the evolution of stability-critical 
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states including sideslip (β), yaw rate (ψ& ), roll angle (φ), and lateral acceleration ( ) 

resulting from driver-only (a) and semi-autonomous (b) control. Notice that under driver-

only control, the vehicle spins around completely at x≈100 m. 

y&&

 
(a) (b) 

Figure 4.13: Comparison of vehicle paths, steering inputs, and state evolution for 

assisted (b) and unassisted (a) closed-loop drivers 

It is important to note that improved path tracking is not entirely the result of the 

MPC controller’s actions; the controller seeks only to keep the vehicle within a navigable 

corridor, while the intervention law only allows it the required control authority in 

proportion to stability-related threat. Were the MPC controller to navigate the vehicle 

autonomously, the resulting trajectory would look similar to those shown in Figure 2.11 

(which minimize front wheel sideslip). The “assisted” (i.e. semi-autonomous) trajectory 

shown in Figure 4.12 tracks the desired trajectory specifically due to a control authority 

allocation that allows the driver significant freedom to track a desired path while 

allowing the MPC controller just enough control authority to stabilize and keep the 

vehicle within a navigable corridor. 

Finally, Figure 4.14 shows how predicted threat Φα compares to true front wheel 

sideslip in the semi-autonomous maneuver shown above (Figure 4.13 b). As discussed in 

4.2.2 II) above, this threat assessment temporarily leads and slightly overestimates true 

front wheel slip. 
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Figure 4.14: Predicted vs. true threat for a semi-autonomous simulation with a pure 

pursuit driver model in the loop 

Similar favorable results were obtained for various scenarios with a pure-pursuit 

driver in the loop. Figure 4.15 shows the effect of semi-autonomous control on a driver 

attempting to track a step in reference trajectory. This maneuver attempts to emulate the 

behavior of a driver who, upon noticing a hazard, performs a sudden (panicked) lane-

change maneuver to avoid it.  
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Figure 4.15: Effect of semi-autonomous intervention on the inputs of a “startled” 

closed-loop driver 

Notice again that even in the presence of steering rate constraints (seen active in 

the linear segments of the steer command), the semi-autonomous controller successfully 

stabilizes the vehicle, allowing the emulated driver to closely track the intended path 

without leaving the navigable roadway. 

Figure 4.16 demonstrates similar advantages when the driver attempts to swerve 

within a lane. 

94  Chapter 4: Semi-Autonomous Control  



 

 
Figure 4.16: Effect of semi-autonomous intervention on the inputs of a driver 

swerving in a lane 

As in other scenarios, this simulation shows that the controller is able to 

effectively assist the driver while taking less than 35% of the available control authority. 

Similar lane-keeping results were obtained the experiments presented in section 4.3.2. 

V) Moving Hazards 

In simulation studies, the semi-autonomous controller proved capable of avoiding 

moving hazards. One scenario is shown in Figure 4.17 below. Note that in the plots, the 

vehicle’s center of gravity lies at the leftmost edge of the predicted trajectory. The 

trajectory prediction is color-coded according to predicted front wheel sideslip and 

marked a sequence of bullets, with the exception of the step with the highest predicted 

sideslip – which is marked by a circle. 
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T1 = 1.05 sec 

T2 = 4.25 sec 

T3 = 5.95 sec 

T4 = 6.15 sec 

T5 = 7.80 sec 

 

 

 

 
Figure 4.17: Semi-autonomous control with moving hazards 
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In this scenario, the host vehicle initially trails obstacle 1 while both travel at 20 

m/s. At T1, obstacle 1 begins to decelerate, prompting the host vehicle to begin a passing 

maneuver at T2. At T3, the host clears the first obstacle and “sees” an accelerating 

obstacle 2 in the oncoming lane at T4. Adjusting quickly in response to the heightened 

threat, the semi-autonomous controller takes complete control of the vehicle and 

successfully guides it safely past the hazard. Note that by using the first-order-hold 

obstacle state estimation approach described by (2.35) and (2.37), the predicted collision 

time and location does not explicitly account for the acceleration of each hazard. Instead, 

it adjusts its estimate at each sampling instant according to the current velocity of each 

hazard. This adjustment is apparent in Figure 4.17 as a shift in the corridor boundaries as 

the hazards accelerate. 

4.3 Experimental Studies 

Experimental testing* was performed using a human-driver-operated test vehicle 

at Ford’s Dearborn Development Center on dry asphalt (μ ≈ 1) as described in Section 

2.4.1. An inertial and GPS navigation system was used to measure vehicle position, 

sideslip, yaw angle, and yaw rate while a 1 GHz dSPACE processor ran controller code 

and interfaced with steering actuators. As in simulations, lane data was assumed to have 

been derived from forward-looking sensors and therefore predefined virtually.  

Finally, while this setup’s AFS mechanism transmits a slight (and undesirable) 

torque feedthrough from the controller to the driver, exceptional results were obtained in 

semi-autonomous tests. Future implementations, however, may benefit from the use of 

active steering mechanisms that reduce this torque feedthrough such as Electronic Power 

Assist Steering (EPAS) or pure steer-by-wire. 

4.3.1 Experimental Setup 

Three common scenarios were used to analyze system performance. In each 

scenario, obstacles, hazards, and driver targets were represented to the driver by cones 

                                                 

* Experimental studies were carried out in collaboration with Steven Peters 



and lane markings and to the controller by a constrained corridor (with onboard sensing 

and constraint mapping assumed to have been performed previously by “virtual sensors” 

and high-level planners, respectively). Lane-keeping tests required a swerving driver to 

navigate a straight lane of constant width. Single hazard avoidance tests required that the 

vehicle avoid a roadway-restricting hazard on a straight roadway. Finally, multiple 

hazard avoidance tests required that the vehicle navigate around two hazards with a 

double lane change maneuver. These scenarios are described below. 

I) Scenarios 

Lane keeping experiments tested the threat assessment and intervention 

characteristics of the controller when the driver maneuvered inside and outside of a given 

lane. Six pairs of cones were set up along ~200 meters of a 3.35-meter-wide lane to guide 

the driver’s intended path and thus improve experimental repeatability. As shown in 

Figure 4.18 (not to scale), the second- and third sets of cones required the driver to steer 

the vehicle to the edge of the navigable lane while the final two targets required that he 

attempt to depart the lane. Lane boundaries illustrated below by dashed lines were 

enforced via lateral position constraints yy
min/max in the controller. 

 
Figure 4.18: Lane keeping test setup showing circles where cones were placed to 

guide the human driver’s inputs. Lane boundaries delineated by dashed lines were 

represented as constraints yy
min and yy

max to the semi-autonomous controller 

In each of these tests, the driver attempted to maneuver through the cones. For 

maneuvers that remained inside the lane, little controller intervention was desirable. 

When the driver’s path came close to departing the lane, the controller intervened to keep 

the vehicle inside it. Of interest in this scenario were the inherent tradeoffs between 

tracking the human driver’s desired trajectory and remaining within the lane. 
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The setup for hazard avoidance and multiple hazard avoidance experiments was 

similar to that described in Section 2.4.1. Hazard avoidance tests required that the vehicle 

avoid an obstacle in the current lane of travel. In these tests, the vehicle was driven at a 

constant velocity in the center of a lane with the driver holding the steering wheel at δ = 

0, as if asleep or inattentive. A row of cones blocked the vehicle’s lane of travel, 

requiring the controller to: 1) plan a safe lane change maneuver around them, 2) assess 

the threat posed by that maneuver, and 3) intervene as necessary to avoid the hazard. 

Figure 4.19 illustrates this test setup. 

 
Figure 4.19: Hazard avoidance test setup showing hazard cone placement (large 

circles) and lane boundaries (dashed) enforced by the controller 

Multiple hazard avoidance experiments tested the controller’s ability to navigate 

more complex road/hazard setups that required maneuvers with appreciable load transfer. 

In these tests (illustrated in Figure 4.20), both lanes of travel were blocked at different 

locations, forcing the vehicle to change lanes to avoid the first hazard, then change lanes 

again to avoid the second, as in a double lane change maneuver. 

 
Figure 4.20: Multiple hazard avoidance test setup showing hazard cone placement 

(circles) and lane boundaries (dashed) 

These tests were conducted using two different types of driver inputs. Drowsy or 

otherwise inattentive drivers were emulated by a constant driver steer input of zero 
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degrees. In these tests, the unassisted driver’s path formed a straight line that intersected 

with the obstacle(s). To represent an alert driver’s steering inputs, drivers were asked in 

separate tests to steer around stationary obstacles. The urgency of these driver steer 

events was varied – sometimes avoiding the obstacle(s) with a smooth input, others 

steering at the last minute, and still others, turning the wrong way into an obstacle. Of 

particular interest in such interactions were the controller’s intervention characteristics 

and the interaction between the controller and the driver. Experiments were conducted at 

vehicle velocities of 5, 10, and 14 meters per second. 

II) Controller Configuration 

The best-case path calculated by the MPC controller is influenced by the MPC 

objective function, constraint setup, and prediction and control horizons. Vehicle and 

controller parameters used in experiments were the same as those used in simulation 

(shown in (2.26) – (2.29) and Table 2.2, respectively). Various threat metrics (Φα and 

ΦJ), intervention thresholds (Φeng and Φaut), and intervention laws (K(Φ) and Kaug(Φ)) 

were tested in order to understand their effects on controller performance. Because 

prediction (p) and control (n) horizons strongly affect path planning, threat assessment, 

and controller intervention, these were also varied to assess their impact on overall 

system performance. In general, longer prediction horizons led to smoother optimal 

vehicle trajectory predictions and, consequently, lower threat assessments. Real time 

computation limits constrained the feasible prediction and control horizons used in field 

tests to 40- and 20- sampling periods, respectively, when 50 ms sampling periods were 

used. For consistency, only experiments using p = 40 and n = 20 are shown below.  

III) Intervention Law Configuration 

Front wheel sideslip α and modified objective function cost JSI were each used to 

assess threat. Threat metrics based on both of these predictors (Φα and ΦJ) were 

calculated using the motion plan generated by the MPC algorithm as described by Table 

3.1 and (3.3). Various threat thresholds (Фeng and Фaut) and both intervention laws (K(Φ) 

and Kaug(Φ)) were also tested to understand their effect on vehicle performance and driver 

experience.  
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4.3.2 Experimental Results 

The semi-autonomous framework proved capable of keeping the vehicle within 

the safe region of travel for each of the scenarios tested, with three different human 

drivers, and using multiple combinations of threat metrics, intervention thresholds, and 

intervention laws. Unless otherwise noted, the driver steer input was zero for each of the 

experiments (with the exception of lane-keeping experiments) shown below. 

I) Threat Metrics and Intervention Thresholds 

Figure 4.21 shows the results of three Φα-regulated lane-keeping tests with 

varying intervention thresholds [Φeng Φaut]. Recall that in these tests, the driver was 

instructed to attempt to track the path traced here by a black dashed line. 

 
Figure 4.21: Results of lane keeping tests with no controller action (dashed), and 

semi-autonomous controller intervention (dotted, solid, and dash-dot) 

The dashed black line in Figure 4.21 represents the vehicle trajectory under 

complete driver control (K = 0), and is shown here and in subsequent plots as a reference 

for the trajectory the driver would have followed had the semi-autonomous controller not 

engaged. For various intervention thresholds, the semi-autonomous controller 

successfully kept the driver within the safe corridor while allowing him significant 

Chapter 4: Semi-Autonomous Control 101 



control authority while inside this corridor (x≈-20m to x≈70m). Only when the vehicle 

was about to depart from the corridor did the controller intervene to prevent departure. 

Note that at x≈10m and x≈50m, the threat assessment increased slightly due to the 

increased level of sideslip required to remain within the lane. This led to a corresponding 

increase in K for the configuration with Φeng = 0º. When the driver corrected the vehicle 

heading, K returned to approximately zero. By increasing Φeng as in ([1º 3º] and [2º 4º]), 

much of this low-threat intervention was eliminated. 

Good experimental results were obtained using both front wheel slip Фα and 

objective function cost ФJ as threat metrics. Figure 4.22 compares two such experiments, 

both of which use Фeng = 0º and Фaut = 3º, to tests with zero intervention (dashed) and 

autonomous control (solid). 

 
Figure 4.22: Results of multiple hazard avoidance tests comparing intervention 

based on Φα and ΦJ to autonomous control 

Figure 4.23 compares controller performance in a hazard avoidance scenario 

when Φα and ΦJ are used to regulate controller intervention.  
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Figure 4.23: Results of hazard avoidance tests with no controller action (dashed), 

autonomous control (solid), Φα-regulated intervention (dash-dot), and ΦJ-regulated 

intervention (dotted) 

Similar to the multiple hazard avoidance experiments, controller intervention in 

hazard avoidance experiments allowed the driver significant freedom to follow a desired 

trajectory while that trajectory remained both stable and safely within the navigable road 

corridor. When the controller intervened near the corridor boundary, it allocated enough 

control authority to the controller to avert departure or loss of control. Note that the 

trajectory oscillation observed in the Φα-regulated experiment was a result of an 

overcorrection on the part of the controller at x≈65m. The vehicle trajectory proceeded to 

rebound from yy
max because the driver’s input remained at zero. Were the driver more 

attentive as a result of the first intervention incident, the low levels of K directly 

following the initial rebound would have allowed him significant control authority to 

correct and straighten out the vehicle.    

Figure 4.23 also shows the results of an autonomous experiment in which the 

controller was given full control authority (K=1). Notice that for the given driver input 

(δdriver = 0), the vehicle path under semi-autonomous control closely resembles the “best 

case” (i.e. autonomously-achieved) path while exerting an average intervention gain (K) 
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of only 0.40 and 0.28 for Φα- and ΦJ - regulated intervention, respectively. This is 

significant as it shows that for similar (small) driver inputs, the controller effectively 

follows a near-optimal trajectory while conceding significant control authority to the 

human driver. 

Finally, notice that the noise exhibited at x ≈ 70 m in Figure 4.23 is a result of the 

vehicle’s skirting closely along yy
min. Because controller inputs are very small in this 

region, the driver felt little of this noise. However, and as noted above, such noise may be 

reduced by increasing Φeng as shown in Figure 4.24.  

 
Figure 4.24: Results of hazard avoidance tests showing the effect of setting Φeng > 0 

As Figure 4.21 shows, both semi-autonomous trajectories closely resemble the 

objective-function-optimal path taken by the autonomous controller. Notice that using 

threshold settings Φα = [1 3]º, the semi-autonomous controller delays intervention slightly 

compared to the experiment without a low-threat intervention deadband (Φα = [0 3]º). 

While both controllers experience a spike in the intervention level at x≈70m, the [1 3]º 

threshold settings delay the intervention spike until the MPC-calculated inputs have 

subsided.  This avoids the slight oversteer experienced in the [0 3]º test. Overall, 

however, both sets of intervention thresholds proved effective in semi-autonomous 

control. 
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II) Intervention Laws – K and Kaug 

Intervention laws considering driver input via (4.4) were also shown to effectively 

allocate control authority based on both the predicted maneuver threat and the current 

driver input. Figure 4.25 shows how augmenting intervention gains  and ( αΦK ) ( )JK Φ  

according to (4.4) affected the performance of the semi-autonomous controller. 

 

 
Figure 4.25: Multiple hazard avoidance maneuver showing the effect of augmenting 

Фα and ФJ to account for differences between driver and controller steer 

Note from Figure 4.25 that in this particular scenario, the effect of controller 

augmentation on controller intervention and vehicle performance appears more 

pronounced than the effect of using different threat assessments (Фα vs. ФJ). This is 

consistent with the observation that for less demanding maneuvers (i.e. those which can 

be accomplished without violating lane constraints), the objective function cost is almost 

exclusively a function of front wheel slip and performs similarly to the front-slip-

modulated configuration. When these configurations are augmented via (4.4), initial 

intervention increases, allowing a subsequently smoother trajectory which ultimately 

requires less controller intervention (average K) altogether. Generally, augmenting K in 



proportion to driver-controller input discrepancy resulted in smoother controller 

intervention that was more acceptable to the human driver. That is, controller intervention 

based on the augmented threat metric Φα,aug or ΦJ,aug was generally more gradual and less 

startling to the driver. 

III) Closed-Loop Drivers 

The results above (Figures 4.21—4.25) show scenarios in which the driver input 

remained at zero. Experiments were also conducted in which the driver swerved at the 

last minute to avoid hazards. Two such scenarios are shown in Figure 4.26. 

 

 
Figure 4.26: Multiple hazard avoidance maneuvers showing the controller’s 

moderating effect on the inputs of the human driver 

Notice that in both semi-autonomous cases, controller intervention slightly 

preceded a late driver reaction. The combined effect of both inputs was sufficient to 

avoid both road hazards. Once again, this intervention appears similar to the optimal 

trajectory followed by the autonomous controller. 
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It should be noted that in each of the experimental results presented in this chapter 

and in all of the other simulated and experimental results conducted to date, the semi-

autonomous controller behaves as a stable closed-loop system. A rigorous stability proof, 

however, is a topic of current investigation and is therefore not presented here. 

IV) Driver Experience 

While all three human drivers were generally satisfied with the controller’s 

performance, their feedback on each of this study’s approximately 180 experiments 

provided some insight into desirable intervention configurations and how these may vary 

from driver to driver. A very preliminary assessment of how different threat metrics and 

intervention laws interacted with the human driver is presented here. This is not, 

however, intended as a general treatment of human factors involved in semi-autonomous 

vehicle control; such a treatment is the subject of future work. 

Following each experiment, the driver was asked how comfortable he felt with the 

(semi-autonomously-controlled) vehicle’s response to his inputs. This qualitative 

feedback was recorded and correlated with the data from each maneuver. Though this 

correlation did not turn up a single dominant performance metric, it did show that in 

general, test drivers generally felt more comfortable during maneuvers with relatively-

low average and peak controller intervention (K) and very low average and peak lateral 

acceleration (ÿ). When controller intervention remained low, the drivers felt a greater 

sense of control. At low levels of lateral acceleration, they tended to mention better ride 

comfort. 

Figure 4.27 averages the maximum and mean values of K and ÿ over all 

maneuvers and drivers in order to compare threat metrics Φα and ΦJ to the autonomous 

controller. As seen in various simulation and experimental results presented in this 

chapter, semi-autonomous control based on either of these threat metrics tends to result in 

similar K and ÿ values. The aggregate statistics shown in Figure 4.27 also suggest that the 

semi-autonomous controller achieves similar vehicle stability and ride comfort (both of 

which are closely tied to ÿ) to the optimal (i.e. autonomous) trajectory while taking on 

average less than 30% of the available control from the driver. This result confirms what 

was suggested by simulation results in Section 4.2.2: the proposed framework robustly 

Chapter 4: Semi-Autonomous Control 107 



allows for significant changes in its intervention law while maintaining many of the 

performance advantages offered by an optimal autonomous controller. 

 
Figure 4.27: Performance metrics averaged across all experiments and drivers 

Figure 4.28 shows how threat metrics Φα and ΦJ and intervention laws K and Kaug 

affect performance metrics over the maneuver. Notice here that while these intervention 

laws and threat metrics are of similar magnitude, they do exhibit one definite trend; 

augmenting controller intervention according to the difference between driver and 

controller steer (Kaug) generally leads (in an averaged sense) to higher average K and 

subsequently lower peak lateral accelerations. This was also inferred from the scenario-

specific results shown in this chapter and justifies the utility of this augmented 

intervention law as a means of improving vehicle performance and ride comfort. 

108  Chapter 4: Semi-Autonomous Control  



 

 
Figure 4.28: Effect of threat metrics and intervention laws on the average 

performance of all three drivers 

The trends explained above also roughly hold for each driver individually. That is, 

while each driver’s performance and consequent controller activity differed slightly, the 

relative merits of each controller configuration discussed above tended on average to 

affect all three drivers similarly (i.e. lower maximum lateral acceleration using the 

augmented controller, etc). Appendix C breaks down performance metrics as a function 

of threat metrics and intervention laws for each driver. 

4.4 Summary and Conclusions 

This chapter has described the integration of MPC-based path planning, threat 

assessment, and semi-autonomous control into a unified framework for hazard avoidance 

and stability control. This framework provides an elegant and effective means of semi-

autonomously avoiding road hazards while conceding significant control authority to a 

human driver. Simulation and experimental results have shown this controller’s 

performance to be robust to (driver-preference-based) changes in its intervention law and 

thresholds. They have also demonstrated its utility as a stability controller capable of 

satisfying position, input, and plant dynamic constraints in the presence of system-

inherent time delays. Additionally, this framework has been shown to successfully 
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circumnavigate both static and dynamic road hazards given multiple scenarios, various 

driver inputs, and diverse threat metrics and intervention laws. 

Finally, while human factors have not been studied in depth here, it is expected 

that with additional investigation, a best case, or average driver-preferred intervention 

law may be described and intervention settings tuned accordingly. 
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AA  
AAPPPPEENNDDIIXX  AA::  AADDAAMMSS  PPLLAANNTT  PPAARRAAMMEETTEERRSS  

Figure A.1 shows the ADAMS Car® model used to represent the vehicle plant in 

simulation. This model represents a generic high-centered light truck with a double 

wishbone suspension, and rack and pinion steering. 

 

 
Figure A.1: ADAMS Car® plant model used in simulation 

Table A.1 describes the parameters of the ADAMS plant. 
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Table A.1: Plant model parameters for ADAMS vehicle model 

Parameter Value [units] 

Total mass 2450 [kg]

Body mass 2210 [kg] 

Unsprung mass 240 [kg] 

Wheel mass 60 [kg] 

Body roll inertia 1240 [kg·m2] 

Body gyroscopic inertia 0 [kg·m2] 

Wheel gyroscopic inertia 0.2 [kg·m2] 

Measurements  

Wheelbase 2.85 [m] 

Track width 1.62 [m] 

C.G. height 0.76 [m] 

C.G. longitudinal distance from front wheels 1.07 [m] 

Wheel diameter 0.79 [m] 

Tire full width 0.24 [m] 

Suspension and tire stiffness  

Suspension spring stiffness 40,000 [N/m] 

Suspension roll stiffness 3700 [N·m/deg] 

Suspension damping 5,300 [N·s/m] 

Tire vertical stiffness 250,000 N/m 

Tire cornering stiffness 1200 N/deg (Fz = 6000 N) 

Steering wheel ratio 35 deg/deg 
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BB  
AAPPPPEENNDDIIXX  BB::  TTHHRREEAATT  AASSSSEESSSSMMEENNTT  CCOOMMPPAARRIISSOONN  

In Chapter 2, threat assessment accuracy was defined as the degree to which 

predicted threat at a given location matches the true threat at that location when the 

vehicle is controlled autonomously by the MPC controller. The results presented in 

Chapter 2 were obtained using an objective function of the form 
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This objective function setup penalizes front wheel sideslip (rather than lateral 

acceleration), leaving some question as to whether such a weighting actually minimizes 

lateral vehicle acceleration or whether minimizing lateral acceleration requires that αv  

and Rαα in (B.1) be replaced by y&&v and Rÿÿ to form 
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The results discussed in Section 2.3.2 (see Figures 2.9—2.11) suggest that in the 

context of MPC-based corridor navigation, various vehicle states may be penalized in the 

objective function with relatively similar corridor tracking performance. Extending this 

result to threat assessment suggests that either lateral acceleration or front wheel sideslip 

may be penalized in the MPC objective function without significantly affecting the threat 

assessed by various metrics (Φα, ΦJ, or Φÿ) and/or threat calculations (∞-, 2-, or “0”-

norms defined in Table 3.1). The columns of Table B.1 compare the accuracy of Φÿ-

based threat assessments (their nearness to true values of lateral vehicle acceleration) 

when lateral acceleration “ay” is penalized in the objective function (“Jÿ”) to the same 

assessment when front wheel sideslip “α” is penalized (“Jα”). 



 

Table B.1: Comparison of threat assessments for autonomous controllers penalizing 

lateral acceleration and front wheel slip 
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Table B.1 confirms the assumption that weighting either of the dynamically-

coupled states ay or α in the MPC objective function leads to similar vehicle trajectories 

and threat assessments. Notice, however, that while these trajectories and corresponding 

threat assessments are similar and lead to a consistent predicted/true threat ratio, this ratio 

is slightly different for each and in both cases is greater than unity. This discrepancy is 

caused by model mismatch between the controller (using Model B) and the plant (using 

Plant B). This model mismatch arises due to some uncertainty in true plant parameters 

such as mass, inertia, and tire cornering stiffness. As model parameters more closely 

approximate true plant parameters, this ratio of true-to-predicted threat in autonomous 

controller operation grows closer to unity. 

Comparing the columns of Table B.1 also shows that in this maneuver, penalizing 

front wheel sideslip in the objective function actually leads to lower lateral acceleration 

than penalizing lateral acceleration itself. This likely follows from the dependence of 

front wheel sideslip on yaw rate and steering input (as minimizing front slip minimizes a 

combination of yaw rate and steering input, both of which are dynamically related to 

lateral acceleration). The result of this analysis suggests that penalizing front wheel 

sideslip in the objective function leads to a similar threat assessment and slightly lower 

lateral vehicle acceleration in autonomous avoidance maneuvers. 

Table B.2 compares threat assessments based on lateral acceleration (Фÿ), front 

wheel sideslip (Фα), and objective function cost (ФJ) when the controller uses cost 

functions (B.1) and (B.2). Comparing each metric’s assessment to true values of lateral 

acceleration, front wheel sideslip, or objective function cost shows that using the 

objective function weighting (B.2) while assessing threat based on Фα
∞ or ФJ

∞ leads to 

generally lower (more stable) states and better (closer to unity) threat assessments than 

using (B.1) or Фÿ
∞. This results support the choice of these threat metrics (Фα and ФJ), 

the ∞-norm, and the Jα objective function weighting used in this thesis’s simulations and 

experiments. 
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Table B.2: Comparison of objective function weighting variables and threat metrics 

Jÿ Jα 

Фÿ 

  

Фα 

  

ФJ 
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CC  
AAPPPPEENNDDIIXX  CC::  DDRRIIVVEERR--SSPPEECCIIFFIICC  PPEERRFFOORRMMAANNCCEE  MMEETTRRIICCSS  

Figures C.1—C.3 show how different intervention laws affected individual test 

drivers. This data is presented to support the overall (averaged over all drivers) results 

presented 4.3.2 IV) and substantiates the observation that the four principal intervention 

laws studied in these experiments ( ) ( ) ( ) ( )( )JaugJaug KKKK ΦΦΦΦ  and , , , αα  similarly 

affect key performance metrics of multiple drivers. For example, nearly all of these semi-

autonomous controller setups successfully assisted the human driver to avoid hazards (in 

a combination of lane-keeping, hazard avoidance, and multiple hazard avoidance 

experiments) while using less than 50% of the available control authority. These driver-

specific results also corroborate the conclusion that augmenting controller intervention 

according to the difference between driver and controller steer (Kaug) generally leads to 

higher average K and subsequently lower peak lateral accelerations. 



 

 
Figure C.1: Driver 1 threat metric and intervention law interactions 

 
Figure C.2: Driver 2 threat metric and intervention law interactions 
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Figure C.3: Driver 3 threat metric and intervention law interactions 
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