21 research outputs found

    Parameterized Edge Hamiltonicity

    Full text link
    We study the parameterized complexity of the classical Edge Hamiltonian Path problem and give several fixed-parameter tractability results. First, we settle an open question of Demaine et al. by showing that Edge Hamiltonian Path is FPT parameterized by vertex cover, and that it also admits a cubic kernel. We then show fixed-parameter tractability even for a generalization of the problem to arbitrary hypergraphs, parameterized by the size of a (supplied) hitting set. We also consider the problem parameterized by treewidth or clique-width. Surprisingly, we show that the problem is FPT for both of these standard parameters, in contrast to its vertex version, which is W-hard for clique-width. Our technique, which may be of independent interest, relies on a structural characterization of clique-width in terms of treewidth and complete bipartite subgraphs due to Gurski and Wanke

    On some intriguing problems in Hamiltonian graph theory -- A survey

    Get PDF
    We survey results and open problems in Hamiltonian graph theory centred around three themes: regular graphs, tt-tough graphs, and claw-free graphs

    On Directed Covering and Domination Problems

    Get PDF
    In this paper, we study covering and domination problems on directed graphs. Although undirected Vertex Cover and Edge Dominating Set are well-studied classical graph problems, the directed versions have not been studied much due to the lack of clear definitions. We give natural definitions for Directed r-In (Out) Vertex Cover and Directed (p,q)-Edge Dominating Set as directed generations of Vertex Cover and Edge Dominating Set. For these problems, we show that (1) Directed r-In (Out) Vertex Cover and Directed (p,q)-Edge Dominating Set are NP-complete on planar directed acyclic graphs except when r=1 or (p,q)=(0,0), (2) if r>=2, Directed r-In (Out) Vertex Cover is W[2]-hard and (c*ln k)-inapproximable on directed acyclic graphs, (3) if either p or q is greater than 1, Directed (p,q)-Edge Dominating Set is W[2]-hard and (c*ln k)-inapproximable on directed acyclic graphs, (4) all problems can be solved in polynomial time on trees, and (5) Directed (0,1),(1,0),(1,1)-Edge Dominating Set are fixed-parameter tractable in general graphs. The first result implies that (directed) r-Dominating Set on directed line graphs is NP-complete even if r=1

    How tough is toughness?

    Get PDF
    The concept of toughness was introduced by Chvátal [34] more than forty years ago. Toughness resembles vertex connectivity, but is different in the sense that it takes into account what the effect of deleting a vertex cut is on the number of resulting components. As we will see, this difference has major consequences in terms of computational complexity and on the implications with respect to cycle structure, in particular the existence of Hamilton cycles and k-factors

    Contracting to a Longest Path in H-Free Graphs

    Get PDF
    The Path Contraction problem has as input a graph G and an integer k and is to decide if G can be modified to the k-vertex path P_k by a sequence of edge contractions. A graph G is H-free for some graph H if G does not contain H as an induced subgraph. The Path Contraction problem restricted to H-free graphs is known to be NP-complete if H = claw or H = P? and polynomial-time solvable if H = P?. We first settle the complexity of Path Contraction on H-free graphs for every H by developing a common technique. We then compare our classification with a (new) classification of the complexity of the problem Long Induced Path, which is to decide for a given integer k, if a given graph can be modified to P_k by a sequence of vertex deletions. Finally, we prove that the complexity classifications of Path Contraction and Cycle Contraction for H-free graphs do not coincide. The latter problem, which has not been fully classified for H-free graphs yet, is to decide if for some given integer k, a given graph contains the k-vertex cycle C_k as a contraction
    corecore