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ABSTRACT 

For an integer i, a graph is called an L,-graph if, for each triple of vertices u, u ,  w with 
d(u, U )  = 2 and w E N(u) n N ( u ) ,  d(u) + d(u) 2 IN(u) u N(u) U N(w)l - i. Asratian 
and Khachatrian proved that connected Lo-graphs of order a t  least 3 are hamiltonian, 
thus improving Ore's Theorem. All K1,3-free graphs are L1-graphs, whence recognizing 
hamiltonian L1-graphs is an NP-complete problem. The following results about L1- 
graphs, unifying known results of Ore-type and - known results on Kl,3-free graphs, 
are obtained. Set X = {GIKp,p+l C G C Kp v Kp+l for some p 2 2) (V denotes join). 
If G is a 2-connected L1-graph, then G is I-tough unless G E 5%. Furthermore, if G is 
a connected L1-graph of order at least 3 such that IN(u) f- N(u)l L 2 for every pair of 
vertices u, u with d(u, U )  = 2, then G is hamiltonian unless G E X, and every pair of 
vertices x, y with d(x, y) L 3 is connected by a Hamilton path. This result implies that 
of Asratian and Khachatrian. Finally, if G is a connected L1-graph of even order, then 
G has a perfect matching. 0 1996 John Wiley & Sons, Inc. 

1. INTRODUCTION 

We use Bondy and Murty [6] for terminlogy and notation not defined here and consider finite 
simple graphs only. 

A classical result on hamiltonian graphs is the following. 

*On leave from Department of Mathematical Cybernetics, Yerevan State University, Yerevan, 
375049, Republic of Armenia. Supported by the Netherlands Organization for Scientific Research 
(N.W .O.) 
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Theorem 1 (Ore [ll]). 
pair of nonadjacent vertices u,  u ,  then G is hamiltonian. 

In Asratian’ and Khachatrian [7], Theorem 1 was improved to a result of local nature, 
Theorem 2 below. For an integer i, we call a graph an Li-graph (L for local) if, for each 
triple of vertices u,  u ,  w with d ( u , u )  = 2 and w E N ( u )  f l  N ( v ) ,  

If G is a graph of order n 2 3 such that d(u )  + d ( u )  iz n for each 

d(u)  + d ( u )  2 IN(u) u N ( u )  u N(w) l  - i ,  

or, equivalently (see [7]), 

Theorem 2 [7]. 

Clearly, Theorem 2 implies Theorem 1. 
Almost all of the many existing generalizations of Theorem 1 only apply to graphs G with 

large edge density (IE(G)I 2 constant .IV(G)12) and small diameter (o( lV(G)l)) .  An attractive 
feature of Theorem 2 is that it applies to infinite classes of graphs G with small edge density 
(A(G) 9 constant) and large diameter (2 constant . IV(C)l) as well. One such class is 
provided in [7]. For future reference also, we here present a similar class. For positive integers 
p ,  q ,  define the graph G,,q of order p 4  as follows: its vertex set is uI=l V,,  where V I ,  . . . , V4 
are pairwise disjoint sets of cardinality p ;  two vertices of Gp,q are adjacent if and only if 
they both belong to V ,  U V,+ 1 for some i E { 1 , .  . . , q - l}, or to V1 U V,. Considering a 
fixed integer p 2 2, we observe that G,?,, being an LZ-,,-graph, is hamiltonian by Theorem 2 
unless y = 2 and q = 1; furthermore, G p , 4  has maximum degree 3 p  - 1 for 4 2 3, and 
diameter 

If G is a connected Lo-graph of order at least 3, then G is hamiltonian. 

4 

1 
= 1% lV(G,,4)] for q 2 2. 

We define the family 3( of graphs by 

3c = { G I K p , p + ~  C G C Kp v Kp+l for some p L 2}, 

where V is the join operation. The class of extremal graphs for Theorem 1, i.e., nonhamiltonian 
graphs G such that d(u)  + d ( u )  2 IV(G)l - I 2 2 for each pair of nonadjacent vertices u ,  u ,  
is 3( U (K1 V (K,. + Kr)lr ,s  2 I} (see, e.g., Skupien [13]). We point out here that the class 
of extremal graphs for Theorem 2, i.e., nonhamiltonian L1-graphs of order at least 3, is far 
less restricted. If G and H are graphs, then G is called H-free if G has no induced subgraph 
isomorphic to H .  The following observation was first made in Asratian and Khachatrian [2]. 

Proposition 3 [2]. 

Let u, u ,  w be vertices of a KI,3-free graph G such that d(u ,u)  = 2 and w E 
N ( u )  f l  N ( u ) .  Then IN(w)\(N(u) U N ( u ) ) l  I 2 and IN(u) fl N ( u ) (  L 1, implying that G is 
an Ll-graph. I 
In Bertossi [4] it was shown that recognizing hamiltonian line graphs, and hence recognizing 
hamiltonian K I ,  3-free graphs is an NP-complete problem. Hence the same is true for recognizing 
hamiltonian 151-graphs, and there is little hope for a polynomial characterization of the extremal 
graphs for Theorem 2. 

Every KI,3-free graph is an LI-graph. 

Proof. 

‘In [7] the last name of the first author was transcribed as “Hasratian” 
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The study of LI-graphs in subsequent sections was motivated by the interesting fact that the 
class of LI-graphs contains all K1,3-free graphs as well as all graphs satisfying the hypothesis 
of Theorem 1 (even with n replaced by n - 1). The nature of the investigated properties of 
L1-graphs is reflected by the titles of Sections 2, 3, and 4. The proofs of the obtained results 
are postponed to Section 5. 

2. TOUGHNESS OF 151-GRAPHS 

Let w ( G )  denote the number of components of a graph G. A graph G is t-tough if IS1 2 
t . w(G - S) for every subset S of V ( G )  with w ( G  - S) > 1. Clearly, every hamiltonian 
graph is I-tough. Hence the following result implies Theorem 1 (for n 2 11). 

Theorem 4 (Jung [S]). If G is a 1-tough graph of order n 2 11 such that d(u )  + d ( u )  2 

n - 4 for each pair of nonadjacent vertices u ,  u ,  then G is hamiltonian. 

By analogy, one might expect that Theorem 2 could be strengthened to the assertion that 1- 
tough L4-graphs of sufficiently large order are hamiltonian. However, our first result shows 
that the problem of recognizing hamiltonian graphs remains NP-complete even within the class 
of 1-tough L1-graphs. (Recall that the problem is NP-complete for 151-graphs, and hence for 
2-connected L I -graphs.) 

Theorem 5. 

By Proposition 3, Theorem 5 extends the case k = 2 of the following result. 

Theorem 6 (Matthews and Sumner [lo]). 

In view of Theorem 6 we note that there exist 1-tough L1-graphs of arbitrary connectivity that 
are not (1 + &)-tough for any E > 0. For example, consider the graphs K,, , and K, V q, 
and the graphs obtained from Kp ,p  and K,, V K, by deleting a perfect matching ( p  2 3). 

If G is a 2-connected LI-graph, then either G is 1-tough or G E 3(. 

k Every k-connected Kl,s-free graph is ?-tough. 

3. HAMILTONIAN PROPERTIES OF LI-GRAPHS 

If u ,  u ,  w are vertices of an Lo-graph such that d ( u , u )  = 2 and w E N ( u )  n N ( u ) ,  then 
N(w)\ (N(u)  U N ( u ) )  2 {u,u} ,  and hence IN(u)  fl N ( u ) (  2 (N(w)\(N(u) U N(u) ) l  2 2. 
Thus our next result implies Theorem 2. 

Theorem 7. Let G be a connected Ll-graph of order at least 3 such that IN(u) fl N(u) l  2 2 
for every pair of vertices u ,  u with d ( u ,  u )  = 2. Then each of the following holds. 

(a) Either G is hamiltonian or G E LK. 
(b) Every pair of vertices x, y with d ( x , y )  2 3 is connected by a Hamilton path of G .  

An immediate consequence of Theorem 7 (a) is the following. 

Corollary 8 (Asratian, Ambartsumian, and Sarkisian [l]). Let G be a connected LI-graph 
such that IN(u)  n N ( u ) l  2 2 for every pair of vertices u ,  u with d(u, u )  = 2. Then G contains 
a Hamilton path. 

The lower bound 3 on d ( x ,  y )  in Theorem 7 (b) cannot be relaxed. For example, consider for 
p 2 2 the graphs K p , ,  and K ,  V G, and for p 2 4 the graphs obtained from K,,p and K,K, 
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by deleting a perfect matching. Each of these graphs satisfies the hypothesis of Theorem 7, 
but contains pairs of vertices at distance 1 or 2 that are not connected by a Hamilton path. 

By Proposition 3, Theorem 7 (a) has the following consequence also. 

Corollary 9 (see, e.g., Shi Ronghua 1121). Let G be a connected K1.3-free graph of order at 
least 3 such that IN(u) n N(u)l 2 2 for every pair of vertices u,  u with d(u ,  u )  = 2. Then 
G is hamiltonian. 

An example of a graph that is hamiltonian by Theorem 7, but not by Theorem 2 or Corollary 9, 
is the graph obtained from G3,q(q 2 3) by deleting the edges of a cycle of length q ,  containing 
exactly one vertex of Vi for i = 1,.  . . , q. 

Although Theorem 7 implies Theorem 2, in Section 5 we also present a direct proof of 
Theorem 2 as a simpler alternative for the algorithmic proof in Asratian and Khachatrian [7]. 

4. PERFECT MATCHINGS OF L1-GRAPHS 

Our last result is the following. 

Theorem 10. 

The graph K,,p+2(p 2 1) is a connected L2-graph of even order without a perfect matching. 
Thus Theorem 10 is, in a sense, best possible. 

Corollary 11 (Las Vergnas 191, Sumner 1141). If G is a connected K1,3-free graph of even 
order, then G has a perfect matching. 

Corollary 12 (see, e.g., Bondy and ChvAtal [5]). If G is a graph of even order rz 2 2 such 
that d ( u )  + d(u )  2 rz - 1 for each pair of nonadjacent vertices u , u ,  then G has a perfect 
matching. 

If G is a connected LI-graph of even order, then G has a perfect matching. 

5. PROOFS 

We successively present proofs of Theorems 5, 7, 2 and 10, but first introduce some additional 
notation. 

Let G be a graph. For S C V ( G ) ,  N G ( S ) ,  or just N ( S )  if no confusion can arise, denotes 
the set of all vertices adjacent to at least one vertex of S. For u E V ( G ) ,  we write N G ( u )  
instead of N G ( { u } ) .  

Let C be a cycle of G.  We denote by ? the cycle C with a given orientation, and by?  
the cycle C with the reverse orientation. If u ,  u E V ( C ) ,  then uCu denotes the consecutive 
vertices of C from u to u in the direction specified by e. The same vertices, in reverse order, are 
given by u t u .  We use u+ to denote the successor of u on 6 and u- to denote its predecessor. 

Analogous notation is used with respect to paths instead of cycles. 
In the proofs of Theorems 5 and 7 we will frequently use the following key lemma. 

Lemma 13. Let G be an LI-graph, u a vertex of G and W = {WI, . . . , wk} a subset of N ( u )  of 
cardinality k .  Assume C contains an independent set U = (u1, . . . , uk} of cardinality k such that 
U fl ( N ( u )  U { u } )  = 0 and, for i = 1,. . . , k ,  u i w i  E E(G)  and N ( u i )  n (N(u)\W) = 0. 
Then N(wi)\(N(u) U { u } )  C N ( u ; )  U U ( i  = 1,. . . , k ) .  
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ProoJ Under the hypothesis of the lemma, we have 

and since U is an independent set, 

Since G is an LI-graph, it follows that 

k k 

i = l  i=l  

(Note that both xf=, lN(u i )  f l  WI and xf=l IN(wi) n I/I represent the number of edges with 
one end in U and the other in W.) We conclude that equality holds throughout (2) and (3). In 
particular, (2) holds with equality, implying that 

and hence 

Proof of Theorem 5. Let G be a 2-connected L1-graph and assume G is not 1-tough. 
Let X be a subset of V ( G )  of minimum cardinality for which w(G - X) > 1x1. Since 
G is 2-connected, 1x1 2 2. Set 1 = 1x1 and m = w ( G  - X) - 1, so that m 2 1 2 2. Let 
Ha, H I , .  . . , H ,  be the components of G - X. 

In order to prove that G E LK, we first show that 

for every nonempty proper subset S of X, I{ilN(S) n V(Hi)  # (2511 2 IS1 + 2 .  (4) 

Suppose S C X, 0 # S # X and I{ i IN(S)  f’ V ( H i )  # 0}l 5 IS1 + 1. Set T = X\S. Then 
w(G - T )  2 m + 1 - IS1 2 1 + 1 - IS( = IT( + 1. This contradiction with the choice of 
X proves (4). 

We next show that 

if u @ X and N ( u )  n X # 0, then N ( v )  2 X. ( 5 )  

Suppose u @ X and N ( u )  n X # 0, but N ( u )  2 X. Set W = N ( u )  f l  X and k = IWI. Then 
1 5 k < 1. Let w1,. . . , wk be the vertices of W. By (4) and Hall’s Theorem (see Bondy 
and Murty [6, p. 72]), N(W)W contains a subset U = {u l ,  . . . , uk} of cardinality k such that 
no two vertices of U U { u }  are in the same component of G - X and ulw1,. . . , U k W k  E 
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E(G).  By Lemma 13, we have N(w,)\(N(u) U {u } )  N ( u , )  U U ( i  = I ,  ..., k ) .  But then 
I{ilN(W) fl V ( H , )  # 0}1 5 k + 1 = IWI + 1. This contradiction with (4) proves (5). 

Let x be a vertex in X and y ,  a vertex of H ,  with N (  y,) n X f 0 (i = 0, 1,. . . , m).  Set 
Y = { yo,y1,. . . ,ym}.  By (3, N ( y , )  2 X for all i, implying that N ( x )  2 Y .  Since G is an 
LI-graph, we obtain 

0 5 " y , )  n N(y,)l - I"x)\(N(yJ u N(Y,))I + 1 

= 1x1 - IN(x)\(N(y,) u N(y,))l + 1 (6) 
5 1x1 - IYI + I = I  - m 5 O ( i  # j ) .  

Thus equality holds throughout (6). Hence m = I and N(x)\(N( y l )  U N (  y,)) = Y whenever 
i # j .  Consider a vertex y h  in Y .  We have 1x1 2 2 and hence 1Y1 2 3, so there exist 
distinct vertices y,, y, with yh # y I ,  y5.  Since N(x)\(N( y, )  U N (  y,)) = Y ,  we obtain N ( x )  n 
V ( H h )  = { yh} .  Since C is 2-connected, it follows that V ( H , )  = { y I }  for all i, whence G E x. 
I 

Proof of Theorem 7. Let G satisfy the hypothesis of the theorem. Since IN(u) n N ( u ) (  3 

2 whenever d(u ,u)  = 2, 

G is 2-connected. (7) 

(a) Assuming G is nonhamiltonian, let ? be a longest cycle of G and u a vertex 
in V(C)\V(C) with N ( u )  n V ( C )  # 0. Set W = N ( u )  n V ( C )  and k = J W J .  Let 
wl,. . . , wk be the vertices of W ,  occurring on C in the order of their indices. Set 
u; = wi ( 1  = 1 , .  . . , k )  and U = ( ~ 1 , .  . ., u k } .  

The choice of C implies that U n ( N ( u )  U { u } )  = 0, U is an independent set, and 

+ .  

Hence by Lemma 13, 

N(Wj)\(N(U) u { u } )  c N(Ui)  u u (i = 1 , .  . . , k )  . (9) 

Noting that k 2 2 by (8) and the fact that IN(u1) n N ( u ) (  2 2, we now prove by 
contradiction that 

ui = w,Tl ( i  = 1 , .  . ., k ;  indices mod k )  . (10) 

Assume without loss of generality that u1 # wz-, whence w z  @ U .  Then by (9), 
w2- E N(u2). Since C is a longest cycle, wzw; @ E(G).  Hence u~ # w;. Repetition 
of this argument shows that ui # wLTl and uiwi E E(G)  for all i E (1,. . . , k } .  By 
assumption, N(u1) fl N ( u )  contains a vertex x # WI. By (8), x E V ( C ) ,  say that 
x = w,. But then the cycle wIuwiuI6wiui6w1 is longer than C.  This contradiction 
proves (10). 
Since C is a longest cycle, there exists no path joining two vertices of U U { u }  with 
all internal vertices in V(G)\V(C). Hence by (lo), w ( G  - W )  > IW(. By (7) and 
Theorem 5, it follows that G E 3(. 
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(b) Let x and y be vertices of G with d ( x , y )  2 3 and let P' be a longest ( x , y ) -  
path. Assuming P is not a Hamilton path, let u be a vertex in V(G)\V(P) with 
N ( v )  n V ( P )  # 0. Set W = N ( u )  f l  V ( P )  and k = ( W ( .  As in the proof of (a), we 
have k 2 2. Let wl, . . . , wk be the vertices of W, occurring on P in the order of their 
indices. Since d ( x , y )  2 3, w~ # x or wk # y .  Assume without loss of generality that 
w k  # y .  Set ui = wT( i  = 1 ,..., k )  and U = { u , , .  . . , u k } .  

+ 

Since P is a longest (x,y)-path, Lemma 13 can be applied to obtain 

N(wj)\(N(u) U { u } )  N ( u j )  U U (i = 1 , .  . . , k ) .  ( 1  1) 

We now establish the following claims. 

If i < j and u;wJ E E(G) ,  then uiw; G E(G)  . (12) 

Assuming the contrary, the path x P ' w i v w j u i P ' w ~ u j P ' y  contradicts the choice of P 

w1 = x .  (13) 

Assuming w~ # x, we have u lw;  E E ( G )  by (11). As in the proof of (lo), we 
obtain u ; w i  E E(G)  for all i E ( 1 , .  . . , k }  and uiw,; E E ( G )  for some j E (2,. . . , k } ,  
contradicting (1 2). 

Assuming the contrary, set r = min{i(u; # As in the proof of (lo), we 
obtain u i w i  E E ( G )  for all i E { r  + 1, .  . . , k } .  Hence by (12), u i w j  @ E(G)  when- 
ever i 5 r and j ? r + 1 .  By Lemma 13, it follows that N(wi) \ (N(u)  U {u} )  
N ( u i )  U { u l , .  . . , u,}( i  = I , .  . . , r ) .  Hence u , + ~ w ;  @ E ( G )  for i 5 r ,  implying that 
0 f (N(u,+l) n N(v))\{w,+l} C { w , + ~ ,  . . . , wk}, contradicting (12). 

For every longest (x, y)-path Q ,  V(G)\V(Q) is an independent set. (15) 

It suffices to show that N ( u )  C V ( P ) .  Suppose u has a neighbor ul E V(G)\V(P).  The 
choice of P implies N ( u l )  n ( U  U W )  = 0 = N ( u l )  n N ( w l )  n (V(G)\(V(P) U 
{u})) .  In particular, d ( u l , w l )  = 2 and hence IN(u1) f' N ( w l ) l  2 2. Using (14) and 
the assumption d(x,  y )  2 3, we conclude that u I and w1 have a common neighbor z on 
u:P'y--.  By ( l l ) ,  ulz  E E(G) .  Repeating the above arguments with P and u~ instead 
of P and u ,  we obtain u l y  E E ( G )  (since u ~ x  G E(G) ) ,  and u ~ z + +  E E(G) .  Now the 
path x u l z ~ w ~ u u 1 z + + 6 y  contradicts the choice of P.  

N ( u ; )  V ( P )  ( i  = I ,  ..., k - I ) .  (16) 
+ * 

Assuming N ( u i )  
dicts (15). 

V ( P )  for some i E (1,. . . , k - l}, the path xPwiuw,+lPy contra- 

The above observations justify the following conclusions. 

If some longest (x,y)-path does not contain the vertex z ,  then either 

zx E E ( G )  or z y  E E ( G ) .  (17) 
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If Q is any longest (x,y)-path, z 6Z V ( Q ) , q  E V ( Q )  and zq E E(G) ,  

then the vertices of xQq (if zx E E(G))  or q Q y  (if zy  E E(G))  
are alternately neighbors and nonneighbors of z . (18) 

Henceforth additionally assume P and u are chosen in such a way that 

d ( u )  is as large as possible. (19) 

If uix E E ( G )  for all i E { l , .  . . , k - I}, then, considering the path x6wiuwi+lPy ,  
(18) and (19) imply ui has no neighbor on ukPy( i  = 1, .  . ., k - 1). Together with 
(16) this implies w(G - W) > IWI. By (7) and Theorem 5 we conclude that C E 3(, 
contradicting the fact that G has diameter at least 3. Hence, for some i E (2,. . . , k - 1}, 
u,  is not adjacent to x. By (17), we obtain 

-. 
+ 

u;y  E E ( G )  for some i E (2,. . . , k - 1). (20) 

Let r = min{i E (2,. . ., k - l}luiy E E(G)}  and s = max{i E {l,.  . . , k - l}luix E 
E(C)}.  We first show 

r > s .  (21) 

Assuming the contrary, consider the vertex w,. Clearly, (18) implies u,w; E E(G) 
for all j E (1,. . . , s}. If j E (1,. . . , s} and u jx  E E(G),  then, considering the path 
xPw;u,Pw;+luw,+lPy and using (18) again, we obtain ujw, E E(G) .  Hence N ( x )  n 
U c N(w,).  Clearly, (18) implies N ( y )  fl {u,, . . . , u s - l }  C N(w,)  and u,w; E E ( G )  
for all j E {r  + 1 ,..., k} .  If j E {s ,..., k }  and u;y E E(G) ,  then, considering the 
path xFw,uwjl%,uf6y and using (18) again, we obtain u,w,+~ E E(C)  and hence 
ujw, E E(G). Hence N ( y )  f' U C N(w,) .  We conclude that U c N(w,).  Hence 
IN(W,~) \ (N(~ , )  U N(u ) ) l  2 k + 1, while IN(u,) f' N(u)l  f k - 1. This contradiction 
with the fact that G is an LI-graph completes the proof of (21). 

Let j E { r  , . . . ,  k}. By (17) and (21), u,y E E(G)  and by ( I @ ,  U , W ~  E E(G) .  
Suppose u j w ,  @ E(G).  Then, by (18), u jwi  fjZ E ( G )  for all i E (1,. . . , r}. Hence 
IN(u;) f' N(u) l  f k - r ,  while IN(wk)\(N(u,) U N(u)) l  2 k - r + 2, a contradic- 
tion. Thus 

+ c + 

u jw ,  E E ( G )  for all j E { r ,  . . . , k } .  (22) 

Now consider the path x ~ w r u w r + ~ 6 y ,  and let p = min{i E (2,. . . , r}lu,wi E E(G)},  
j E { p  - 1 ,..., r - l}. By (17) and (21), u,x E E(G)  and by (IS), ujw,  E E(G).  
Suppose u j w r  E E(G) .  Then, by (IS), ujwi fjZ E ( G )  for all i E { r , . .  . , k } .  Hence 
IN(u;) n N(u,)l 5 r - p ,  while IN(w,)\(N(u;) U N(u,))l  2 r - p + 3, a contra- 
diction. Thus 

u ; w , E E ( G )  f o r a l l j  E { p  - I ,  ..., r - I}. (23) 

By (22) and (23), IN(w,)\(N(u,) U N(u) ) l  2 k - p + 3, while IN(u,) f l  N(u) l  f 
k - p + 1, our final contradiction. I 
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An independent algorithmic proof of Theorem 7 (a), similar to the proof of Theorem 2 given 
in Asratian and Khachatrian [7], will appear in Asratian and Sarkisian [3]. 

We now use the arguments in the proof of Theorem 7 (a) to obtain a short direct proof of 
Theorem 2. as announced in Section 3. 

Proof of Theorem 2. Let G be a connected Lo-graph with IV(G)l 2 3. Assuming G is 
nonhamiltonian, define 6, u ,  W ,  k ,  w1,. . . , wk, 111,.  . . , uk, u as in the proof of Theorem 7 (a). 
By the choice of C ,  all conditions in Lemma 13 are satisfied. Hence (1) and (2) hold. Since 
G is an Lo-graph, we obtain, instead of (3), 

an immediate contradiction. I 

Proof of Theorem 10 (by induction). Let G be a connected L1-graph of even order. If 
IV(G)l = 2, then clearly G has a perfect matching. Now assume IV(G)l > 2 and every 
connected LI-graph of even order smaller than IV(G)l has a perfect matching. If G is a 
block, then by Theorem 5, the number of components, and hence certainly the number of odd 
components of G - S does not exceed ISI, and we are done by Tutte’s Theorem (see Bondy and 
Murty [6, p. 761). Now assume G contains a cut vertex w. Let GI  and G2 be distinct components 
of G - w. For i = 1, 2, let ui be a neighbor of w in Gi. Since IN(u1) f l  N(u2)I = 1 and 
G is an LI-graph, we have N(w)\(N(ul) U N(u2))  = { u l ,  uz}. In other words, every vertex in 
N(w)\{ul, uz} is adjacent to either u~ or u2. It follows that G I  and G2 are the only components 
of G - w and, since ui is an arbitrary neighbor of w in G;,  

G [ N ( w )  n V(Gi)]  is complete ( i  = 1,2).  (24) 

Since IV(G)l is even, exactly one of the graphs G I  and G z ,  G I  say, has odd order. Set 
H = G[V(Gl)  U {w}]. We now show that G2 and H are L1-graphs. 

Let x, y ,  and z be vertices of G2 such that d ~ , ( ~ , y )  = 2 and z E N G ~ ( x )  fl NG,(Y) .  By 
(24), w (2 N G ( x )  n N G (  y ) ,  implying that N G 2 ( x )  n N G 2 ( y )  = N G ( x )  f l  NG(  y).  Furthermore, 
N~~(z)\(Nc*(x) U NG*( y ) )  C NG(z)\(NG(x) U N G ( Y ) ) .  Since G is an Ll-graph, it follows that 
GZ is an L1-graph. 

A similar argument shows that H is an LI-graph. 
Since, moreover, the graphs Cz and H have even order smaller than IV(G)l, each of them 

has a perfect matching. The union of the two matchings is a perfect matching of G .  I 
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