On graphs satisfying a local ore-type condition

Armen S. Asratian, H. J . Broersma, J . Van den Heuvel and H. J . Veldman

The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA):
http://urn.kb.se/ resolve?urn=urn:nbn:se:liu:diva-143771
N.B.: When citing this work, cite the original publication.

Asratian, A. S., Broersma, H. J., Van den Heuvel, J ., Veldman, H. J., (1996), On graphs satisfying a local ore-type condition, J ournal of Graph Theory, 21(1), 1-10. https:// doi.org/ 10.1002/ (SICI) 1097-0118(199601)21:1\&tt;1::AID-JGT1\>3.0.CO;2-W

Original publication available at: https:// doi.org/ 10.1002/ (SICI)1097-0118(199601)21:1\<1::AID-J GT1\>3.0.CO;2W

Copyright: Wiley (12 months)
http:// eu.wiley.com/WileyCDA/

On Graphs Satisfying a Local Ore-Type Condition

A. S. Asratian*
H. J. Broersma
J. van den Heuvel
H. J. Veldman
FACULTY OF APPLIED MATHEMATICS
UNIVERSITY OF TWENTE
P.O. BOX 217, 7500 AE ENSCHEDE,
THE NETHERLANDS

Abstract

For an integer i, a graph is called an L_{i}-graph if, for each triple of vertices u, v, w with $d(u, v)=2$ and $w \in N(u) \cap N(v), d(u)+d(v) \geq|N(u) \cup N(v) \cup N(w)|-i$. Asratian and Khachatrian proved that connected L_{0}-graphs of order at least 3 are hamiltonian, thus improving Ore's Theorem. All $K_{1,3}$-free graphs are L_{1}-graphs, whence recognizing hamiltonian L_{1}-graphs is an NP-complete problem. The following results about $L_{1^{-}}$ graphs, unifying known results of Ore-type and known results on $K_{1,3}$-free graphs, are obtained. Set $\mathcal{K}=\left\{G \mid K_{p, p+1} \subseteq G \subseteq K_{p} \vee \overline{K_{p+1}}\right.$ for some $\left.p \geq 2\right\}$ (\vee denotes join). If G is a 2 -connected L_{1}-graph, then G is 1 -tough unless $G \in \mathcal{K}$. Furthermore, if G is a connected L_{1}-graph of order at least 3 such that $|N(u) \cap N(v)| \geq 2$ for every pair of vertices u, v with $d(u, v)=2$, then G is hamiltonian unless $G \in \mathcal{K}$, and every pair of vertices x, y with $d(x, y) \geq 3$ is connected by a Hamilton path. This result implies that of Asratian and Khachatrian. Finally, if G is a connected L_{1}-graph of even order, then G has a perfect matching. © 1996 John Wiley \& Sons, Inc.

1. INTRODUCTION

We use Bondy and Murty [6] for terminlogy and notation not defined here and consider finite simple graphs only.

A classical result on hamiltonian graphs is the following.

[^0]
2

Theorem 1 (Ore [11]). If G is a graph of order $n \geq 3$ such that $d(u)+d(v) \geq n$ for each pair of nonadjacent vertices u, v, then G is hamiltonian.

In Asratian ${ }^{1}$ and Khachatrian [7], Theorem 1 was improved to a result of local nature, Theorem 2 below. For an integer i, we call a graph an L_{i}-graph (L for local) if, for each triple of vertices u, v, w with $d(u, v)=2$ and $w \in N(u) \cap N(v)$,

$$
d(u)+d(v) \geq|N(u) \cup N(v) \cup N(w)|-i,
$$

or, equivalently (see [7]),

$$
|N(u) \cap N(v)| \geq|N(w) \backslash(N(u) \cup N(v))|-i .
$$

Theorem 2 [7]. If G is a connected L_{0}-graph of order at least 3 , then G is hamiltonian.
Clearly, Theorem 2 implies Theorem 1.
Almost all of the many existing generalizations of Theorem 1 only apply to graphs G with large edge density $\left(|E(G)| \geq\right.$ constant $\left.\cdot|V(G)|^{2}\right)$ and small diameter $(o(|V(G)|))$. An attractive feature of Theorem 2 is that it applies to infinite classes of graphs G with small edge density $(\Delta(G) \leq$ constant) and large diameter (\geq constant $\cdot|V(G)|)$ as well. One such class is provided in [7]. For future reference also, we here present a similar class. For positive integers p, q, define the graph $G_{p, q}$ of order $p q$ as follows: its vertex set is $\bigcup_{i=1}^{q} V_{i}$, where V_{1}, \ldots, V_{q} are pairwise disjoint sets of cardinality p; two vertices of $G_{p, q}$ are adjacent if and only if they both belong to $V_{i} \cup V_{i+1}$ for some $i \in\{1, \ldots, q-1\}$, or to $V_{1} \cup V_{q}$. Considering a fixed integer $p \geq 2$, we observe that $G_{p, q}$, being an L_{2-p}-graph, is hamiltonian by Theorem 2 unless $p=2$ and $q=1$; furthermore, $G_{p, q}$ has maximum degree $3 p-1$ for $q \geq 3$, and diameter $\left\lfloor\frac{q}{2}\right\rfloor=\left\lfloor\left.\frac{1}{2 p} \right\rvert\, V\left(G_{p, q}\right)\right\rfloor$ for $q \geq 2$.

We define the family \mathcal{K} of graphs by

$$
\mathcal{K}=\left\{G \mid K_{p, p+1} \subseteq G \subseteq K_{p} \vee \overline{K_{p+1}} \text { for some } p \geq 2\right\},
$$

where V is the join operation. The class of extremal graphs for Theorem 1, i.e., nonhamiltonian graphs G such that $d(u)+d(v) \geq|V(G)|-1 \geq 2$ for each pair of nonadjacent vertices u, v, is $\mathcal{K} \cup\left\{K_{1} \vee\left(K_{r}+K_{s}\right) \mid r, s \geq 1\right\}$ (see, e.g., Skupien [13]). We point out here that the class of extremal graphs for Theorem 2, i.e., nonhamiltonian L_{1}-graphs of order at least 3 , is far less restricted. If G and H are graphs, then G is called H-free if G has no induced subgraph isomorphic to H. The following observation was first made in Asratian and Khachatrian [2].

Proposition 3 [2]. Every $K_{1,3}$-free graph is an L_{1}-graph.
Proof. Let u, v, w be vertices of a $K_{1,3}$-free graph G such that $d(u, v)=2$ and $w \in$ $N(u) \cap N(v)$. Then $|N(w) \backslash(N(u) \cup N(v))| \leq 2$ and $|N(u) \cap N(v)| \geq 1$, implying that G is an L_{1}-graph.
In Bertossi [4] it was shown that recognizing hamiltonian line graphs, and hence recognizing hamiltonian $K_{1,3}$-free graphs is an NP-complete problem. Hence the same is true for recognizing hamiltonian L_{1}-graphs, and there is little hope for a polynomial characterization of the extremal graphs for Theorem 2.
'In [7] the last name of the first author was transcribed as "Hasratian".

The study of L_{1}-graphs in subsequent sections was motivated by the interesting fact that the class of L_{1}-graphs contains all $K_{1,3}$-free graphs as well as all graphs satisfying the hypothesis of Theorem 1 (even with n replaced by $n-1$). The nature of the investigated properties of L_{1}-graphs is reflected by the titles of Sections 2,3 , and 4 . The proofs of the obtained results are postponed to Section 5.

2. TOUGHNESS OF L_{1}-GRAPHS

Let $\omega(G)$ denote the number of components of a graph G. A graph G is t-tough if $|S| \geq$ $t \cdot \omega(G-S)$ for every subset S of $V(G)$ with $\omega(G-S)>1$. Clearly, every hamiltonian graph is 1 -tough. Hence the following result implies Theorem 1 (for $n \geq 11$).

Theorem 4 (Jung [8]). If G is a 1 -tough graph of order $n \geq 11$ such that $d(u)+d(v) \geq$ $n-4$ for each pair of nonadjacent vertices u, v, then G is hamiltonian.

By analogy, one might expect that Theorem 2 could be strengthened to the assertion that 1tough L_{4}-graphs of sufficiently large order are hamiltonian. However, our first result shows that the problem of recognizing hamiltonian graphs remains NP-complete even within the class of 1-tough L_{1}-graphs. (Recall that the problem is NP-complete for L_{1}-graphs, and hence for 2 -connected L_{1}-graphs.)

Theorem 5. If G is a 2 -connected L_{1}-graph, then either G is 1 -tough or $G \in \mathcal{K}$.
By Proposition 3, Theorem 5 extends the case $k=2$ of the following result.
Theorem 6 (Matthews and Sumner [10]). Every k-connected $K_{1,3}$-free graph is $\frac{k}{2}$-tough.
In view of Theorem 6 we note that there exist 1-tough L_{1}-graphs of arbitrary connectivity that are not $(1+\varepsilon)$-tough for any $\varepsilon>0$. For example, consider the graphs $K_{p, p}$ and $K_{p} \vee \overline{K_{p}}$, and the graphs obtained from $K_{p, p}$ and $K_{p} \vee \overline{K_{p}}$ by deleting a perfect matching ($p \geq 3$).

3. HAMILTONIAN PROPERTIES OF L_{1}-GRAPHS

If u, v, w are vertices of an L_{0}-graph such that $d(u, v)=2$ and $w \in N(u) \cap N(v)$, then $N(w) \backslash(N(u) \cup N(v)) \supseteq\{u, v\}$, and hence $|N(u) \cap N(v)| \geq|N(w) \backslash(N(u) \cup N(v))| \geq 2$. Thus our next result implies Theorem 2.

Theorem 7. Let G be a connected L_{1}-graph of order at least 3 such that $|N(u) \cap N(v)| \geq 2$ for every pair of vertices u, v with $d(u, v)=2$. Then each of the following holds.
(a) Either G is hamiltonian or $G \in \mathcal{K}$.
(b) Every pair of vertices x, y with $d(x, y) \geq 3$ is connected by a Hamilton path of G.

An immediate consequence of Theorem 7 (a) is the following.
Corollary 8 (Asratian, Ambartsumian, and Sarkisian [1]). Let G be a connected L_{1}-graph such that $|N(u) \cap N(v)| \geq 2$ for every pair of vertices u, v with $d(u, v)=2$. Then G contains a Hamilton path.

The lower bound 3 on $d(x, y)$ in Theorem 7 (b) cannot be relaxed. For example, consider for $p \geq 2$ the graphs $K_{p, p}$ and $K_{p} \vee \overline{K_{p}}$, and for $p \geq 4$ the graphs obtained from $K_{p, p}$ and $K_{p} \bar{K}_{p}$
by deleting a perfect matching. Each of these graphs satisfies the hypothesis of Theorem 7, but contains pairs of vertices at distance 1 or 2 that are not connected by a Hamilton path.

By Proposition 3, Theorem 7 (a) has the following consequence also.
Corollary 9 (see, e.g., Shi Ronghua [12]). Let G be a connected $K_{1,3}$-free graph of order at least 3 such that $|N(u) \cap N(v)| \geq 2$ for every pair of vertices u, v with $d(u, v)=2$. Then G is hamiltonian.

An example of a graph that is hamiltonian by Theorem 7, but not by Theorem 2 or Corollary 9 , is the graph obtained from $G_{3, q}(q \geq 3)$ by deleting the edges of a cycle of length q, containing exactly one vertex of V_{i} for $i=1, \ldots, q$.

Although Theorem 7 implies Theorem 2, in Section 5 we also present a direct proof of Theorem 2 as a simpler alternative for the algorithmic proof in Asratian and Khachatrian [7].

4. PERFECT MATCHINGS OF L_{1}-GRAPHS

Our last result is the following.
Theorem 10. If G is a connected L_{1}-graph of even order, then G has a perfect matching.
The graph $K_{p, p+2}(p \geq 1)$ is a connected L_{2}-graph of even order without a perfect matching. Thus Theorem 10 is, in a sense, best possible.
Corollary 11 (Las Vergnas [9], Sumner [14]). If G is a connected $K_{1,3}$-free graph of even order, then G has a perfect matching.
Corollary 12 (see, e.g., Bondy and Chvátal [5]). If G is a graph of even order $n \geq 2$ such that $d(u)+d(v) \geq n-1$ for each pair of nonadjacent vertices u, v, then G has a perfect matching.

5. PROOFS

We successively present proofs of Theorems 5, 7, 2 and 10, but first introduce some additional notation.

Let G be a graph. For $S \subseteq V(G), N_{G}(S)$, or just $N(S)$ if no confusion can arise, denotes the set of all vertices adjacent to at least one vertex of S. For $v \in V(G)$, we write $N_{G}(v)$ instead of $N_{G}(\{v\})$.

Let C be a cycle of G. We denote by \vec{C} the cycle C with a given orientation, and by $\stackrel{\rightharpoonup}{C}$ the cycle C with the reverse orientation. If $u, v \in V(C)$, then $u \vec{C} v$ denotes the consecutive vertices of C from u to v in the direction specified by \vec{C}. The same vertices, in reverse order, are given by $v \stackrel{\rightharpoonup}{C} u$. We use u^{+}to denote the successor of u on \vec{C} and u^{-}to denote its predecessor.

Analogous notation is used with respect to paths instead of cycles.
In the proofs of Theorems 5 and 7 we will frequently use the following key lemma.
Lemma 13. Let G be an L_{1}-graph, \boldsymbol{v} a vertex of G and $W=\left\{w_{1}, \ldots, w_{k}\right\}$ a subset of $N(v)$ of cardinality k. Assume G contains an independent set $U=\left\{u_{1}, \ldots, u_{k}\right\}$ of cardinality k such that $U \cap(N(v) \cup\{v\})=\varnothing$ and, for $i=1, \ldots, k, u_{i} w_{i} \in E(G)$ and $N\left(u_{i}\right) \cap(N(v) \backslash W)=\varnothing$. Then $N\left(w_{i}\right) \backslash(N(v) \cup\{v\}) \subseteq N\left(u_{i}\right) \cup U(i=1, \ldots, k)$.

Proof. Under the hypothesis of the lemma, we have

$$
\begin{equation*}
N\left(u_{i}\right) \cap N(v)=N\left(u_{i}\right) \cap W \quad(i=1, \ldots, k), \tag{1}
\end{equation*}
$$

and since U is an independent set,

$$
\begin{equation*}
N\left(w_{i}\right) \backslash\left(N\left(u_{i}\right) \cup N(v)\right) \supseteq\left(N\left(w_{i}\right) \cap U\right) \cup\{\boldsymbol{v}\} \quad(i=1, \ldots, k) . \tag{2}
\end{equation*}
$$

Since G is an L_{1}-graph, it follows that

$$
\begin{align*}
0 & \leq \sum_{i=1}^{k}\left(\left|N\left(u_{i}\right) \cap N(v)\right|-\left|N\left(w_{i}\right) \backslash\left(N\left(u_{i}\right) \cup N(v)\right)\right|+1\right) \\
& =\sum_{i=1}^{k}\left|N\left(u_{i}\right) \cap N(v)\right|-\sum_{i=1}^{k}\left(\left|N\left(w_{i}\right) \backslash\left(N\left(u_{i}\right) \cup N(v)\right)\right|-1\right) \tag{3}\\
& \leq \sum_{i=1}^{k}\left|N\left(u_{i}\right) \cap W\right|-\sum_{i=1}^{k}\left|N\left(w_{i}\right) \cap U\right|=0 .
\end{align*}
$$

(Note that both $\sum_{i=1}^{k}\left|N\left(u_{i}\right) \cap W\right|$ and $\sum_{i=1}^{k}\left|N\left(w_{i}\right) \cap U\right|$ represent the number of edges with one end in U and the other in W.) We conclude that equality holds throughout (2) and (3). In particular, (2) holds with equality, implying that

$$
N\left(w_{i}\right) \backslash\left(N\left(u_{i}\right) \cup N(v) \cup\{v\}\right)=N\left(w_{i}\right) \cap U \subseteq U,
$$

and hence

$$
N\left(w_{i}\right) \backslash(N(\boldsymbol{v}) \cup\{\boldsymbol{v}\}) \subseteq N\left(u_{i}\right) \cup U \quad(i=1, \ldots, k)
$$

Proof of Theorem 5. Let G be a 2-connected L_{1}-graph and assume G is not 1-tough. Let X be a subset of $V(G)$ of minimum cardinality for which $\omega(G-X)>|X|$. Since G is 2 -connected, $|X| \geq 2$. Set $l=|X|$ and $m=\omega(G-X)-1$, so that $m \geq l \geq 2$. Let $H_{0}, H_{1}, \ldots, H_{m}$ be the components of $G-X$.

In order to prove that $G \in \mathcal{K}$, we first show that

$$
\begin{equation*}
\text { for every nonempty proper subset } S \text { of } X,\left|\left\{i \mid N(S) \cap V\left(H_{i}\right) \neq \varnothing\right\}\right| \geq|S|+2 \tag{4}
\end{equation*}
$$

Suppose $S \subseteq X, \varnothing \neq S \neq X$ and $\left|\left\{i \mid N(S) \cap V\left(H_{i}\right) \neq \varnothing\right\}\right| \leq|S|+1$. Set $T=X \backslash S$. Then $\omega(G-T) \geq m+1-|S| \geq l+1-|S|=|T|+1$. This contradiction with the choice of X proves (4).

We next show that

$$
\begin{equation*}
\text { if } v \notin X \text { and } N(v) \cap X \neq \varnothing, \quad \text { then } N(v) \supseteq X . \tag{5}
\end{equation*}
$$

Suppose $v \notin X$ and $N(v) \cap X \neq \varnothing$, but $N(\boldsymbol{v}) \nsupseteq X$. Set $W=N(v) \cap X$ and $k=|W|$. Then $1 \leq k<l$. Let w_{1}, \ldots, w_{k} be the vertices of W. By (4) and Hall's Theorem (see Bondy and Murty [6, p. 72]), $N(W) \backslash X$ contains a subset $U=\left\{u_{1}, \ldots, u_{k}\right\}$ of cardinality k such that no two vertices of $U \cup\{v\}$ are in the same component of $G-X$ and $u_{1} w_{1}, \ldots, u_{k} w_{k} \in$
$E(G)$. By Lemma 13, we have $N\left(w_{i}\right) \backslash(N(v) \cup\{\boldsymbol{v}\}) \subseteq N\left(u_{i}\right) \cup U(i=1, \ldots, k)$. But then $\left|\left\{i \mid N(W) \cap V\left(H_{i}\right) \neq \varnothing\right\}\right| \leq k+1=|W|+1$. This contradiction with (4) proves (5).

Let x be a vertex in X and y_{i} a vertex of H_{i} with $N\left(y_{i}\right) \cap X \neq \varnothing(i=0,1, \ldots, m)$. Set $Y=\left\{y_{0}, y_{1}, \ldots, y_{m}\right\}$. By (5), $N\left(y_{i}\right) \supseteq X$ for all i, implying that $N(x) \supseteq Y$. Since G is an L_{1}-graph, we obtain

$$
\begin{align*}
0 & \leq\left|N\left(y_{i}\right) \cap N\left(y_{j}\right)\right|-\left|N(x) \backslash\left(N\left(y_{i}\right) \cup N\left(y_{j}\right)\right)\right|+1 \\
& =|X|-\left|N(x) \backslash\left(N\left(y_{i}\right) \cup N\left(y_{j}\right)\right)\right|+1 \tag{6}\\
& \leq|X|-|Y|+1=l-m \leq 0 \quad(i \neq j)
\end{align*}
$$

Thus equality holds throughout (6). Hence $m=l$ and $N(x) \backslash\left(N\left(y_{i}\right) \cup N\left(y_{j}\right)\right)=Y$ whenever $i \neq j$. Consider a vertex y_{h} in Y. We have $|X| \geq 2$ and hence $|Y| \geq 3$, so there exist distinct vertices y_{i}, y_{j} with $y_{h} \neq y_{i}, y_{j}$. Since $N(x) \backslash\left(N\left(y_{i}\right) \cup N\left(y_{j}\right)\right)=Y$, we obtain $N(x) \cap$ $V\left(H_{h}\right)=\left\{y_{h}\right\}$. Since G is 2-connected, it follows that $V\left(H_{i}\right)=\left\{y_{i}\right\}$ for all i, whence $G \in \mathcal{K}$.

Proof of Theorem 7. Let G satisfy the hypothesis of the theorem. Since $|N(u) \cap N(v)| \geq$ 2 whenever $d(u, v)=2$,

$$
\begin{equation*}
G \text { is 2-connected. } \tag{7}
\end{equation*}
$$

(a) Assuming G is nonhamiltonian, let \vec{C} be a longest cycle of G and v a vertex in $V(G) \backslash V(C)$ with $N(v) \cap V(C) \neq \varnothing$. Set $W=N(v) \cap V(C)$ and $k=|W|$. Let w_{1}, \ldots, w_{k} be the vertices of W, occurring on \vec{C} in the order of their indices. Set $u_{i}=w_{i}^{+}(i=1, \ldots, k)$ and $U=\left\{u_{1}, \ldots, u_{k}\right\}$.
The choice of C implies that $U \cap(N(v) \cup\{v\})=\varnothing, U$ is an independent set, and

$$
\begin{align*}
N\left(u_{i}\right) \cap(N(v) \backslash W)= & N\left(u_{i}\right) \cap N(v) \cap(V(G) \backslash V(C))=\varnothing \\
& (i=1, \ldots, k) . \tag{8}
\end{align*}
$$

Hence by Lemma 13,

$$
\begin{equation*}
N\left(w_{i}\right) \backslash(N(v) \cup\{v\}) \subseteq N\left(u_{i}\right) \cup U \quad(i=1, \ldots, k) \tag{9}
\end{equation*}
$$

Noting that $k \geq 2$ by (8) and the fact that $\left|N\left(u_{1}\right) \cap N(v)\right| \geq 2$, we now prove by contradiction that

$$
\begin{equation*}
u_{i}=w_{i+1}^{-} \quad(i=1, \ldots, k ; \text { indices } \bmod k) \tag{10}
\end{equation*}
$$

Assume without loss of generality that $u_{1} \neq w_{2}^{-}$, whence $w_{2}^{-} \notin U$. Then by (9), $w_{2}^{-} \in N\left(u_{2}\right)$. Since C is a longest cycle, $w_{2}^{-} w_{3}^{-} \notin E(G)$. Hence $u_{2} \neq w_{3}^{-}$. Repetition of this argument shows that $u_{i} \neq w_{i+1}^{-}$and $u_{i} w_{i}^{-} \in E(G)$ for all $i \in\{1, \ldots, k\}$. By assumption, $N\left(u_{1}\right) \cap N(v)$ contains a vertex $x \neq w_{1}$. By (8), $x \in V(C)$, say that $x=w_{i}$. But then the cycle $w_{1} v w_{i} u_{1} \vec{C} w_{i}^{-} u_{i} \vec{C} w_{1}$ is longer than C. This contradiction proves (10).
Since C is a longest cycle, there exists no path joining two vertices of $U \cup\{v\}$ with all internal vertices in $V(G) \backslash V(C)$. Hence by (10), $\omega(G-W)>|W|$. By (7) and Theorem 5, it follows that $G \in \mathcal{K}$.
(b) Let x and y be vertices of G with $d(x, y) \geq 3$ and let \vec{P} be a longest (x, y) path. Assuming P is not a Hamilton path, let v be a vertex in $V(G) \backslash V(P)$ with $N(v) \cap V(P) \neq \varnothing$. Set $W=N(v) \cap V(P)$ and $k=|W|$. As in the proof of (a), we have $k \geqslant 2$. Let w_{1}, \ldots, w_{k} be the vertices of W, occurring on \vec{P} in the order of their indices. Since $d(x, y) \geq 3, w_{1} \neq x$ or $w_{k} \neq y$. Assume without loss of generality that $w_{k} \neq y$. Set $u_{i}=w_{i}^{+}(i=1, \ldots, k)$ and $U=\left\{u_{1}, \ldots, u_{k}\right\}$.

Since P is a longest (x, y)-path, Lemma 13 can be applied to obtain

$$
\begin{equation*}
N\left(w_{i}\right) \backslash(N(\boldsymbol{v}) \cup\{\boldsymbol{v}\}) \subseteq N\left(u_{i}\right) \cup U \quad(i=1, \ldots, k) \tag{11}
\end{equation*}
$$

We now establish the following claims.

$$
\begin{equation*}
\text { If } i<j \text { and } u_{j} w_{j}^{-} \in E(G) \text {, then } u_{i} w_{j} \notin E(G) \tag{12}
\end{equation*}
$$

Assuming the contrary, the path $x \vec{P} w_{i} v w_{j} u_{i} \vec{P} w_{j}^{-} u_{j} \vec{P} y$ contradicts the choice of P.

$$
\begin{equation*}
w_{1}=x . \tag{13}
\end{equation*}
$$

Assuming $w_{1} \neq x$, we have $u_{1} w_{1}^{-} \in E(G)$ by (11). As in the proof of (10), we obtain $u_{i} w_{i}^{-} \in E(G)$ for all $i \in\{1, \ldots, k\}$ and $u_{i} w_{j} \in E(G)$ for some $j \in\{2, \ldots, k\}$, contradicting (12).

$$
\begin{equation*}
u_{i}=w_{i+1}^{-} \quad(i=1, \ldots, k-1) \tag{14}
\end{equation*}
$$

Assuming the contrary, set $r=\min \left\{i \mid u_{i} \neq w_{i+1}^{-}\right\}$. As in the proof of (10), we obtain $u_{i} w_{i}^{-} \in E(G)$ for all $i \in\{r+1, \ldots, k\}$. Hence by (12), $u_{i} w_{j} \notin E(G)$ whenever $i \leq r$ and $j \geq r+1$. By Lemma 13, it follows that $N\left(w_{i}\right) \backslash(N(v) \cup\{v\}) \subseteq$ $N\left(u_{i}\right) \cup\left\{u_{1}, \ldots, u_{r}\right\}(i=1, \ldots, r)$. Hence $u_{r+1} w_{i} \notin E(G)$ for $i \leq r$, implying that $\varnothing \neq\left(N\left(u_{r+1}\right) \cap N(v)\right)\left\{\left\{w_{r+1}\right\} \subseteq\left\{w_{r+2}, \ldots, w_{k}\right\}\right.$, contradicting (12).

For every longest (x, y)-path $Q, V(G) \backslash V(Q)$ is an independent set.
It suffices to show that $N(v) \subseteq V(P)$. Suppose v has a neighbor $v_{1} \in V(G) \backslash V(P)$. The choice of P implies $N\left(v_{1}\right) \cap(U \cup W)=\varnothing=N\left(v_{1}\right) \cap N\left(w_{1}\right) \cap(V(G) \backslash(V(P) \cup$ $\{v\}$). In particular, $d\left(v_{1}, w_{1}\right)=2$ and hence $\left|N\left(v_{1}\right) \cap N\left(w_{1}\right)\right| \geq 2$. Using (14) and the assumption $d(x, y) \geq 3$, we conclude that v_{1} and w_{1} have a common neighbor z on $u_{k}^{+} \vec{P} y^{--}$. By (11), $u_{1} z \in E(G)$. Repeating the above arguments with P and v_{1} instead of P and v, we obtain $v_{1} y \in E(G)$ (since $v_{1} x \notin E(G)$), and $v_{1} z^{++} \in E(G)$. Now the path $x u_{1} z \stackrel{P}{P} w_{2} v v_{1} z^{++} \vec{P} y$ contradicts the choice of P.

$$
\begin{equation*}
N\left(u_{i}\right) \subseteq V(P) \quad(i=1, \ldots, k-1) \tag{16}
\end{equation*}
$$

Assuming $N\left(u_{i}\right) \nsubseteq V(P)$ for some $i \in\{1, \ldots, k-1\}$, the path $x \vec{P} w_{i} v w_{i+1} \vec{P} y$ contradicts (15).

The above observations justify the following conclusions.
If some longest (x, y)-path does not contain the vertex z, then either

$$
\begin{equation*}
z x \in E(G) \text { or } z y \in E(G) \tag{17}
\end{equation*}
$$

If \vec{Q} is any longest (x, y)-path, $z \notin V(Q), q \in V(Q)$ and $z q \in E(G)$, then the vertices of $x \vec{Q} q$ (if $z x \in E(G)$) or $q \vec{Q} y$ (if $z y \in E(G)$)

$$
\begin{equation*}
\text { are alternately neighbors and nonneighbors of } z \tag{18}
\end{equation*}
$$

Henceforth additionally assume P and v are chosen in such a way that

$$
\begin{equation*}
d(v) \text { is as large as possible. } \tag{19}
\end{equation*}
$$

If $u_{i} x \in E(G)$ for all $i \in\{1, \ldots, k-1\}$, then, considering the path $x \vec{P} w_{i} v w_{i+1} \vec{P} y$, (18) and (19) imply u_{i} has no neighbor on $u_{k} \vec{P} y(i=1, \ldots, k-1)$. Together with (16) this implies $\omega(G-W)>|W|$. By (7) and Theorem 5 we conclude that $G \in \mathcal{K}$, contradicting the fact that G has diameter at least 3 . Hence, for some $i \in\{2, \ldots, k-1\}$, u_{i} is not adjacent to x. By (17), we obtain

$$
\begin{equation*}
u_{i} y \in E(G) \text { for some } i \in\{2, \ldots, k-1\} \tag{20}
\end{equation*}
$$

Let $r=\min \left\{i \in\{2, \ldots, k-1\} \mid u_{i} y \in E(G)\right\}$ and $s=\max \left\{i \in\{1, \ldots, k-1\} \mid u_{i} x \in\right.$ $E(G)\}$. We first show

$$
\begin{equation*}
r>s \tag{21}
\end{equation*}
$$

Assuming the contrary, consider the vertex w_{s}. Clearly, (18) implies $u_{s} w_{j} \in E(G)$ for all $j \in\{1, \ldots, s\}$. If $j \in\{1, \ldots, s\}$ and $u_{j} x \in E(G)$, then, considering the path $x \vec{P} w_{j} u_{s} \stackrel{\leftarrow}{P} w_{j+1} v w_{s+1} \vec{P} y$ and using (18) again, we obtain $u_{j} w_{s} \in E(G)$. Hence $N(x) \cap$ $U \subseteq N\left(w_{s}\right)$. Clearly, (18) implies $N(y) \cap\left\{u_{r}, \ldots, u_{s-1}\right\} \subseteq N\left(w_{s}\right)$ and $u_{r} w_{j} \in E(G)$ for all $j \in\{r+1, \ldots, k\}$. If $j \in\{s, \ldots, k\}$ and $u_{j} y \in E(G)$, then, considering the path $x \vec{P} w_{r} v w_{j} \stackrel{\rightharpoonup}{P} u_{r} u_{j}^{+} \vec{P} y$ and using (18) again, we obtain $u_{j} w_{r+1} \in E(G)$ and hence $u_{j} w_{s} \in E(G)$. Hence $N(y) \cap U \subseteq N\left(w_{s}\right)$. We conclude that $U \subseteq N\left(w_{s}\right)$. Hence $\left|N\left(w_{s}\right) \backslash\left(N\left(u_{r}\right) \cup N(v)\right)\right| \geq k+1$, while $\left|N\left(u_{r}\right) \cap N(v)\right| \leq k-1$. This contradiction with the fact that G is an L_{1}-graph completes the proof of (21).

Let $j \in\{r, \ldots, k\}$. By (17) and (21), $u_{j} y \in E(G)$ and by (18), $u_{j} w_{k} \in E(G)$. Suppose $u_{j} w_{r} \notin E(G)$. Then, by (18), $u_{j} w_{i} \notin E(G)$ for all $i \in\{1, \ldots, r\}$. Hence $\left|N\left(u_{j}\right) \cap N(v)\right| \leq k-r$, while $\left|N\left(w_{k}\right) \backslash\left(N\left(u_{j}\right) \cup N(v)\right)\right| \geq k-r+2$, a contradiction. Thus

$$
\begin{equation*}
u_{j} w_{r} \in E(G) \text { for all } j \in\{r, \ldots, k\} \tag{22}
\end{equation*}
$$

Now consider the path $x \vec{P} w_{r} v w_{r+1} \vec{P} y$, and let $p=\min \left\{i \in\{2, \ldots, r\} \mid u_{r} w_{i} \in E(G)\right\}$, $j \in\{p-1, \ldots, r-1\}$. By (17) and (21), $u_{j} x \in E(G)$ and by (18), $u_{j} w_{p} \in E(G)$. Suppose $u_{j} w_{r} \notin E(G)$. Then, by (18), $u_{j} w_{i} \notin E(G)$ for all $i \in\{r, \ldots, k\}$. Hence $\left|N\left(u_{j}\right) \cap N\left(u_{r}\right)\right| \leq r-p$, while $\left|N\left(w_{p}\right) \backslash\left(N\left(u_{j}\right) \cup N\left(u_{r}\right)\right)\right| \geq r-p+3$, a contradiction. Thus

$$
\begin{equation*}
u_{j} w_{r} \in E(G) \quad \text { for all } j \in\{p-1, \ldots, r-1\} \tag{23}
\end{equation*}
$$

By (22) and (23), $\left|N\left(w_{r}\right) \backslash\left(N\left(u_{r}\right) \cup N(v)\right)\right| \geq k-p+3$, while $\left|N\left(u_{r}\right) \cap N(v)\right| \leq$ $k-p+1$, our final contradiction.

An independent algorithmic proof of Theorem 7 (a), similar to the proof of Theorem 2 given in Asratian and Khachatrian [7], will appear in Asratian and Sarkisian [3].

We now use the arguments in the proof of Theorem 7 (a) to obtain a short direct proof of Theorem 2, as announced in Section 3.

Proof of Theorem 2. Let G be a connected L_{0}-graph with $|V(G)| \geq 3$. Assuming G is nonhamiltonian, define $\vec{C}, v, W, k, w_{1}, \ldots, w_{k}, u_{1}, \ldots, u_{k}, U$ as in the proof of Theorem 7 (a). By the choice of C, all conditions in Lemma 13 are satisfied. Hence (1) and (2) hold. Since G is an L_{0}-graph, we obtain, instead of (3),

$$
\begin{aligned}
0 & \leq \sum_{i=1}^{k}\left(\left|N\left(u_{i}\right) \cap N(v)\right|-\left|N\left(w_{i}\right) \backslash\left(N\left(u_{i}\right) \cup N(v)\right)\right|\right) \\
& =\sum_{i=1}^{k}\left|N\left(u_{i}\right) \cap N(v)\right|-\sum_{i=1}^{k}\left|N\left(w_{i}\right) \backslash\left(N\left(u_{i}\right) \cup N(v)\right)\right| \\
& \leq \sum_{i=1}^{k}\left|N\left(u_{i}\right) \cap W\right|-\sum_{i=1}^{k}\left(\left|N\left(w_{i}\right) \cap U\right|+1\right)=-k<0,
\end{aligned}
$$

an immediate contradiction.
Proof of Theorem 10 (by induction). Let G be a connected L_{1}-graph of even order. If $|V(G)|=2$, then clearly G has a perfect matching. Now assume $|V(G)|>2$ and every connected L_{1}-graph of even order smaller than $|V(G)|$ has a perfect matching. If G is a block, then by Theorem 5 , the number of components, and hence certainly the number of odd components of $G-S$ does not exceed $|S|$, and we are done by Tutte's Theorem (see Bondy and Murty [6, p. 76]). Now assume G contains a cut vertex w. Let G_{1} and G_{2} be distinct components of $G-w$. For $i=1,2$, let u_{i} be a neighbor of w in G_{i}. Since $\left|N\left(u_{1}\right) \cap N\left(u_{2}\right)\right|=1$ and G is an L_{1}-graph, we have $N(w) \backslash\left(N\left(u_{1}\right) \cup N\left(u_{2}\right)\right)=\left\{u_{1}, u_{2}\right\}$. In other words, every vertex in $N(w) \backslash\left\{u_{1}, u_{2}\right\}$ is adjacent to either u_{1} or u_{2}. It follows that G_{1} and G_{2} are the only components of $G-w$ and, since u_{i} is an arbitrary neighbor of w in G_{i},

$$
\begin{equation*}
G\left[N(w) \cap V\left(G_{i}\right)\right] \text { is complete }(i=1,2) . \tag{24}
\end{equation*}
$$

Since $|V(G)|$ is even, exactly one of the graphs G_{1} and G_{2}, G_{1} say, has odd order. Set $H=G\left[V\left(G_{1}\right) \cup\{w\}\right]$. We now show that G_{2} and H are L_{1}-graphs.

Let x, y, and z be vertices of G_{2} such that $d_{G_{2}}(x, y)=2$ and $z \in N_{G_{2}}(x) \cap N_{G_{2}}(y)$. By (24), $w \notin N_{G}(x) \cap N_{G}(y)$, implying that $N_{G_{2}}(x) \cap N_{G_{2}}(y)=N_{G}(x) \cap N_{G}(y)$. Furthermore, $N_{G_{2}}(z) \backslash\left(N_{G_{2}}(x) \cup N_{G_{2}}(y)\right) \subseteq N_{G}(z) \backslash\left(N_{G}(x) \cup N_{G}(y)\right)$. Since G is an L_{1}-graph, it follows that G_{2} is an L_{1}-graph.

A similar argument shows that H is an L_{1}-graph.
Since, moreover, the graphs G_{2} and H have even order smaller than $|V(G)|$, each of them has a perfect matching. The union of the two matchings is a perfect matching of G.

References

[1] A.S. Asratian, O. A. Ambartsumian, and G. V. Sarkisian, Some local condition for the hamiltonicity and pancyclicity of a graph, Doclady Academ. Nauk Armenian SSR (Russian) 19 (1) (1990), 19-22.
[2] A.S. Asratian and N. K. Khachatrian, personal communication.
[3] A.S. Asratian and G.V. Sarkisian, Some hamiltonian properties of graphs with local Ore's type conditions, in preparation.
[4] A. A. Bertossi, The edge hamiltonian path problem is NP-complete, Information Processing Lett. 13 (1981), 157-159.
[5] J. A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976), 111-135.
[6] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York (1976).
[7] A.S. Hasratian and N.K. Khachatrian, Some localization theorems on hamiltonian circuits, J. Combinatorial Theory B 49 (1990), 287-294.
[8] H. A. Jung, On maximal circuits in finite graphs, Ann. Discrete Math. 3 (1978), 129-144.
[9] M. Las Vergnas, A note on matchings in graphs. Cahiers du Centre d'Etudes de Recherche Operationelle 17 (1975), 257-260.
[10] M. M. Matthews and D.P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, J. Graph Theory 8 (1984), 139-146.
[11] O. Ore, Note on hamiltonian circuits, Amer. Math. Monthly 67 (1960), 55.
[12] Shi Ronghua, 2-Neighborhoods and hamiltonian conditions, J. Graph Theory 16 (1992), 267-271.
[13] Z. Skupién, An improvement of Jung's condition for hamiltonicity, 30. Internationales Wissenschaftliches Kolloquium, TH Ilmenau (1985), Heft 5, 111-113.
[14] D. P. Sumner, Graphs with 1-factors, Proc. Amer. Math. Soc. 42 (1974), 8-12.

[^0]: *On leave from Department of Mathematical Cybernetics, Yerevan State University, Yerevan, 375049, Republic of Armenia. Supported by the Netherlands Organization for Scientific Research (N.W.O.)

