2,004 research outputs found

    Multiple Media Interfaces for Music Therapy

    Get PDF
    This article describes interfaces (and the supporting technological infrastructure) to create audiovisual instruments for use in music therapy. In considering how the multidimensional nature of sound requires multidimensional input control, we propose a model to help designers manage the complex mapping between input devices and multiple media software. We also itemize a research agenda

    Music Maker – A Camera-based Music Making Tool for Physical Rehabilitation

    Full text link
    The therapeutic effects of playing music are being recognized increasingly in the field of rehabilitation medicine. People with physical disabilities, however, often do not have the motor dexterity needed to play an instrument. We developed a camera-based human-computer interface called "Music Maker" to provide such people with a means to make music by performing therapeutic exercises. Music Maker uses computer vision techniques to convert the movements of a patient's body part, for example, a finger, hand, or foot, into musical and visual feedback using the open software platform EyesWeb. It can be adjusted to a patient's particular therapeutic needs and provides quantitative tools for monitoring the recovery process and assessing therapeutic outcomes. We tested the potential of Music Maker as a rehabilitation tool with six subjects who responded to or created music in various movement exercises. In these proof-of-concept experiments, Music Maker has performed reliably and shown its promise as a therapeutic device.National Science Foundation (IIS-0308213, IIS-039009, IIS-0093367, P200A01031, EIA-0202067 to M.B.); National Institutes of Health (DC-03663 to E.S.); Boston University (Dudley Allen Sargent Research Fund (to A.L.)

    A Particle System for Musical Composition

    Get PDF
    This paper describes the development of a software particle system for musical composition. It employs a generator as described in William Reeves’ seminal 1983 paper on the subject, but one in which the particles are musical themes rather than images or points of light. This is distinct from an audio-level particle system such as might be employed effectively in conjunction with granular synthesis, because an audio-level process has no “musical intelligence” in the traditional sense as the term is used in discussing rhythm, melody, harmony or other traditional musical qualities. The particle system uses the author’s software, The Transformation Engine (Degazio 2003), as the musical engine for rendering particles. This allows the particle system to control relatively high-level musical parameters such as melodic contour, metrical placement and harmonic colour, in addition to fundamental parameters such as pitch and loudness. The musical theme corresponding to an individual particle can therefore evolve musically over the lifetime of the particle as these high-level parameters change

    A platform for low-latency continuous keyboard sensing and sound generation

    Get PDF
    On several acoustic and electromechanical keyboard instruments, the produced sound is not always strictly dependent exclusively on a discrete key velocity parameter, and minute gesture details can affect the final sonic result. By contrast, subtle variations in articulation have a relatively limited effect on the sound generation when the keyboard controller uses the MIDI standard, used in the vast majority of digital keyboards. In this paper we present an embedded platform that can generate sound in response to a controller capable of sensing the continuous position of keys on a keyboard. This platform enables the creation of keyboard-based DMIs which allow for a richer set of interaction gestures than would be possible through a MIDI keyboard, which we demonstrate through two example instruments. First, in a Hammond organ emulator, the sensing device allows to recreate the nuances of the interaction with the original instrument in a way a velocity-based MIDI controller could not. Second, a nonlinear waveguide flute synthesizer is shown as an example of the expressive capabilities that a continuous-keyboard controller opens up in the creation of new keyboard-based DMIs

    Validation and Reliability of a Novel Vagus Nerve Neurodynamic Test and Its Effects on Heart Rate in Healthy Subjects: Little Differences Between Sexes

    Get PDF
    BACKGROUND: The vagus nerve (VN), also called the pneumogastric nerve, connects the brainstem to organs contained in the chest and abdomen. Physiologically, VN stimulation can rapidly affect cardiac activity and heart rate (HR). VN neuropathy can increase the risk of arrhythmias and sudden death. Therefore, a selective test of VN function may be very useful. Since peripheral neurodynamic tests (NDT) are reliable for the assessment of neuropathies in somatic nerves, we aimed to validate a novel NDT to assess VN activity, namely, the VN-NTD. METHODS: In this cross-sectional double-blind, sex-balanced study, 30 participants (15 females) completed a checklist of autonomic dysfunction symptoms. During the VN-NDT administration, HR and symptoms (i.e., mechanical allodynia) were monitored in parallel to a real-time ultrasonography imaging (USI) and motion capture analysis of the neck. The VN-NDT impact on HR and its accuracy for autonomic symptoms reported in the last 7 days were tested. RESULTS: The VN-NDT induced a significant HR reduction of about 12 and 8 bpm in males and females [t(1, 119) = 2.425; p < 0.017; η(p)(2) = 0.047, 95% confidence interval (CI): 0.93–9.18], respectively. No adverse events were observed during VN-NDT. A substantial interexaminer agreement between the evaluators in symptoms induction by VN-NDT was detected [F(1, 119) = 0.540; p = 0.464; η(p)(2) = 0.005, low effect]. Notably, mechanical allodynia accuracy for gastrointestinal dysfunctions was excellent (p < 0.05; 95% CI: 0.52–0.73; p < 0.001; 95% CI: 0.81–0.96). CONCLUSIONS: The novel VN-NDT is a valid and accurate test capable of detecting VN activation with high sensitivity. Data provided are suitable for both sexes as a hallmark of HR variation due to VN normal response. The proposed VN-NDT may be reliable as daily routine neurological examination tests for the evaluation of neuropathic signs related to neuroinflammation of the VN. CLINICAL TRIAL REGISTRATION: www.ClinicalTrials.gov, identifier NCT04192877

    Palmitoylethanolamide Counteracts Enteric Inflammation and Bowel Motor Dysfunctions in a Mouse Model of Alzheimer’s Disease

    Get PDF
    Palmitoylethanolamide (PEA), an endogenous lipid mediator, is emerging as a promising pharmacological agent in multiple neurodegenerative disorders for its anti-inflammatory and neuroprotective properties. However, its effects on enteric inflammation and colonic dysmotility associated with Alzheimer’s disease (AD) are lacking. This study was designed to investigate the beneficial effect of PEA administration in counteracting the enteric inflammation and relieving the bowel motor dysfunctions in an AD mouse model, SAMP8 mice. In addition, the ability of PEA in modulating the activation of enteric glial cells (EGCs), pivotally involved in the pathophysiology of bowel dysfunctions associated with inflammatory conditions, has also been examined. SAMP8 mice at 4 months of age were treated orally with PEA (5&nbsp;mg/kg/day) for 2&nbsp;months. SAMR1 animals were employed as controls. At the end of treatment, parameters dealing with colonic motility, inflammation, barrier integrity and AD protein accumulation were evaluated. The effect of PEA on EGCs was tested in cultured cells treated with lipopolysaccharide (LPS) plus β-amyloid 1–42 (Aβ). SAMP8 treated with PEA displayed: 1) an improvement of in vitro colonic motor activity, citrate synthase activity and intestinal epithelial barrier integrity and 2) a decrease in colonic Aβ and α-synuclein (α-syn) accumulation, S100-β expression as well as enteric IL-1β and circulating LPS levels, as compared with untreated SAMP8 mice. In EGCs, treatment with PEA counteracted the increment of S100-β, TLR-4, NF-κB p65 and IL-1β release induced by LPS and Aβ. These results suggest that PEA, under a condition of cognitive decline, prevents the enteric glial hyperactivation, reduces AD protein accumulation and counteracts the onset and progression of colonic inflammatory condition, as well as relieves intestinal motor dysfunctions and improves the intestinal epithelial barrier integrity. Therefore, PEA represents a viable approach for the management of the enteric inflammation and motor contractile abnormalities associated with AD

    Dissecting the effect of Parkinson’s Disease related PINK1 mutations on kinase activity

    Get PDF
    Parkinson’s disease (PD), the second most common neurodegenerative movement disorder, affects approximately 2% of the population over 65. At present, there is only symptomatic but no causal cure for PD. Mitochondria are double membrane-bound organelles that are essential for energy production and cellular homeostasis in eukaryotic cells. Defects in this organelle are the underlying cause of several neurological disorders, namely PD. This mitochondrial connection has been furthered strengthened by the identification of mutations in the PINK1 gene that are linked to early-onset recessive PD. PINK1, a mitochondria targeted Ser/Thr kinase, regulates ATP production in healthy mitochondria by phosphorylating Complex I of the Electron Transport Chain. However, in damaged mitochondria PINK1 will phosphorylate Parkin and signal mitochondria for clearance via mitophagy. While understanding the regulation of PINK1 activity is pivotal to interpret how PINK1 executes its different functions in both healthy and damaged mitochondria it still remains unclear how PINK1 induced loss-of-function can affect the kinase activity and the overall (auto)phosphorylation status of PINK1. To scrutinize the impact that the PINK1 clinical mutation have on PINK1 function, we systematically analysed five PD-causing clinical mutations G309D, L347P, E417G, H271Q and W437X. In order access their ability to phosphorylate the known PINK1 substrate Parkin and to (auto)phosphorylate PINK1 an in vitro phosphorylation assay was implemented. To determine their effect towards Parkin recruitment and sequential induction of mitophagy an immunofluorescence techniques was used where staining against Parkin and a mitochondria reside protein was performed. Our results indicate that PINK1 is essential for Parkin recruitment, however the kinase activity is not required for this Parkin-mediated mitophagy pathway
    • …
    corecore