4,544 research outputs found

    Spatial boundary problem with the Dirichlet-Neumann condition for a singular elliptic equation

    Full text link
    The present work devoted to the finding explicit solution of a boundary problem with the Dirichlet-Neumann condition for elliptic equation with singular coefficients in a quarter of ball. For this aim the method of Green's function have been used. Since, found Green's function contains a hypergeometric function of Appell, we had to deal with decomposition formulas, formulas of differentiation and some adjacent relations for this hypergeometric function in order to get explicit solution of the formulated problem.Comment: 12 pages, 1 figur

    Multidomain Spectral Method for the Helically Reduced Wave Equation

    Get PDF
    We consider the 2+1 and 3+1 scalar wave equations reduced via a helical Killing field, respectively referred to as the 2-dimensional and 3-dimensional helically reduced wave equation (HRWE). The HRWE serves as the fundamental model for the mixed-type PDE arising in the periodic standing wave (PSW) approximation to binary inspiral. We present a method for solving the equation based on domain decomposition and spectral approximation. Beyond describing such a numerical method for solving strictly linear HRWE, we also present results for a nonlinear scalar model of binary inspiral. The PSW approximation has already been theoretically and numerically studied in the context of the post-Minkowskian gravitational field, with numerical simulations carried out via the "eigenspectral method." Despite its name, the eigenspectral technique does feature a finite-difference component, and is lower-order accurate. We intend to apply the numerical method described here to the theoretically well-developed post-Minkowski PSW formalism with the twin goals of spectral accuracy and the coordinate flexibility afforded by global spectral interpolation.Comment: 57 pages, 11 figures, uses elsart.cls. Final version includes revisions based on referee reports and has two extra figure

    Non-Supersymmetric F-Theory Compactifications on Spin(7) Manifolds

    Get PDF
    We propose a novel approach to obtain non-supersymmetric four-dimensional effective actions by considering F-theory on manifolds with special holonomy Spin(7). To perform such studies we suggest that a duality relating M-theory on a certain class of Spin(7) manifolds with F-theory on the same manifolds times an interval exists. The Spin(7) geometries under consideration are constructed as quotients of elliptically fibered Calabi-Yau fourfolds by an anti-holomorphic and isometric involution. The three-dimensional minimally supersymmetric effective action of M-theory on a general Spin(7) manifold with fluxes is determined and specialized to the aforementioned geometries. This effective theory is compared with an interval Kaluza-Klein reduction of a non-supersymmetric four-dimensional theory with definite boundary conditions for all fields. Using this strategy a minimal set of couplings of the four-dimensional low-energy effective actions is obtained in terms of the Spin(7) geometric data. We also discuss briefly the string interpretation in the Type IIB weak coupling limit.Comment: 39 pages, 4 figures, v2: improvements and clarifications on the 4d interpretation and weak coupling limit; typos correcte

    The Fourier Singular Complement Method for the Poisson problem. Part I: prismatic domains

    Get PDF
    This is the first part of a threefold article, aimed at solving numerically the Poisson problem in three-dimensional prismatic or axisymmetric domains. In this first part, the Fourier Singular Complement Method is introduced and analysed, in prismatic domains. In the second part, the FSCM is studied in axisymmetric domains with conical vertices, whereas, in the third part, implementation issues, numerical tests and comparisons with other methods are carried out. The method is based on a Fourier expansion in the direction parallel to the reentrant edges of the domain, and on an improved variant of the Singular Complement Method in the 2D section perpendicular to those edges. Neither refinements near the reentrant edges of the domain nor cut-off functions are required in the computations to achieve an optimal convergence order in terms of the mesh size and the number of Fourier modes used

    Analytic Regularity for Linear Elliptic Systems in Polygons and Polyhedra

    Full text link
    We prove weighted anisotropic analytic estimates for solutions of second order elliptic boundary value problems in polyhedra. The weighted analytic classes which we use are the same as those introduced by Guo in 1993 in view of establishing exponential convergence for hp finite element methods in polyhedra. We first give a simple proof of the known weighted analytic regularity in a polygon, relying on a new formulation of elliptic a priori estimates in smooth domains with analytic control of derivatives. The technique is based on dyadic partitions near the corners. This technique can successfully be extended to polyhedra, providing isotropic analytic regularity. This is not optimal, because it does not take advantage of the full regularity along the edges. We combine it with a nested open set technique to obtain the desired three-dimensional anisotropic analytic regularity result. Our proofs are global and do not require the analysis of singular functions.Comment: 54 page

    Splitting method for elliptic equations with line sources

    Full text link
    In this paper, we study the mathematical structure and numerical approximation of elliptic problems posed in a (3D) domain Ω\Omega when the right-hand side is a (1D) line source Λ\Lambda. The analysis and approximation of such problems is known to be non-standard as the line source causes the solution to be singular. Our main result is a splitting theorem for the solution; we show that the solution admits a split into an explicit, low regularity term capturing the singularity, and a high-regularity correction term ww being the solution of a suitable elliptic equation. The splitting theorem states the mathematical structure of the solution; in particular, we find that the solution has anisotropic regularity. More precisely, the solution fails to belong to H1H^1 in the neighbourhood of Λ\Lambda, but exhibits piecewise H2H^2-regularity parallel to Λ\Lambda. The splitting theorem can further be used to formulate a numerical method in which the solution is approximated via its correction function ww. This approach has several benefits. Firstly, it recasts the problem as a 3D elliptic problem with a 3D right-hand side belonging to L2L^2, a problem for which the discretizations and solvers are readily available. Secondly, it makes the numerical approximation independent of the discretization of Λ\Lambda; thirdly, it improves the approximation properties of the numerical method. We consider here the Galerkin finite element method, and show that the singularity subtraction then recovers optimal convergence rates on uniform meshes, i.e., without needing to refine the mesh around each line segment. The numerical method presented in this paper is therefore well-suited for applications involving a large number of line segments. We illustrate this by treating a dataset (consisting of 3000\sim 3000 line segments) describing the vascular system of the brain
    corecore