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1 Introduction

Over the last decades four-dimensional (4d) supersymmetric effective theories arising in

string compactifications have been studied intensively. Minimally supersymmetric theories

are considered as providing interesting physics beyond the Standard Model. Therefore it

has been a crucial long-standing task to embed supersymmetric extensions of the Standard

Model or Grand Unified Theories into string theory as reviewed, for example, in [1–5]. The

established approach is to consider compactifications of string theory on manifolds with

special holonomy, such that some of the underlying ten-dimensional (10d) supersymme-

tries are preserved in four dimensions and allow a supersymmetric effective theory to be

determined. Precisely these supersymmetry-preserving geometries are also mathematically
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best studied and many powerful tools have been developed exploiting the interplay of ge-

ometry and low-energy physics. In this work we will examine whether one can find a rich

set of string compactifications with non-supersymmetric 4d effective theories, and possibly

interesting phenomenological properties, while still allowing the virtues of the remarkable

mathematical tools developed for special holonomy manifolds to be used.

Our considerations are based on the study of F-theory compactifications to four di-

mensions. Recall that F-theory vacua describe the geometry of Type IIB string compact-

ifications with varying complexified string coupling constant. This change of coupling is

encoded by the complex structure of an auxiliary two-torus, which varies over the ten-

dimensional space-time of the Type IIB theory. Vacua of F-theory are thus torus fibrations

over some base space that provides the hidden compact dimensions of Type IIB string the-

ory. This implies that F-theory compactifications to four space-time dimensions require an

eight-dimensional compact and torus-fibered geometry to be specified. Furthermore, singu-

larities of this fibration indicate the presence of space-time filling seven-branes. Therefore,

this setup geometrizes many aspects of open string physics and hence allows the construc-

tion of many interesting phenomenological models.

Minimal supersymmetry, for which the 4d effective theory has four real supercharges,

is preserved by the geometry if the compact eight-dimensional space has SU(4) holonomy,

i.e. is a Calabi-Yau fourfold [6, 7]. However, on eight-dimensional manifolds the classifica-

tion by Berger [8] shows that SU(4) is not the maximal possible special holonomy group

within the local Lorentz group SO(8). This maximal special holonomy group is instead

given by Spin(7). In what follows we will refer to these manifolds with Spin(7) holonomy

as simply Spin(7) manifolds. For these geometries one therefore is led to ask:

(1) Is there a controlled construction of Spin(7) manifolds that can serve as backgrounds

for F-theory?

(2) What are the characteristics of the 4d non-supersymmetric effective theories arising

from F-theory compactifications on such Spin(7) manifolds?

(3) What is the weak coupling Type IIB string interpretation of these theories?

In this work we will attempt to systematically address these questions. It should be noted

that the consideration of F-theory on Spin(7) manifolds was already mentioned in the orig-

inal paper by Vafa [6], in connection with the proposals of Witten [9, 10]. However, this

link has not be concretized since then. With the recent progress on deriving the 4d super-

symmetric effective action of F-theory on Calabi-Yau fourfolds [11], we are now endowed

with the necessary advances to suggest a concrete F-theory and string theory construction.

Before even entering any analysis of the effective action, we have to answer the question

of whether or not there are suitable Spin(7) manifolds that can be used for F-theory. In

particular, it will be crucial to single out geometries that have an appropriate torus fibration

structure to identify the F-theory compactification as a Type IIB string background. In

building these manifolds we will be motivated by the constructions described by Joyce [12].

These constructions begin by considering a Calabi-Yau fourfold which is then quotiented

in such a way that a Spin(7) manifold is generated. Here we will investigate whether this
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process, carried out for elliptically fibered Calabi-Yau fourfolds, may generate appropriate

Spin(7) manifolds for use in these F-theory compactifications. It should be stressed that

one expects that there exist many more examples of Spin(7) geometries that are not based

on any Calabi-Yau fourfold. Definite statements about these more general cases turn out

to be hard to extract, nevertheless various results of our analysis may well extend beyond

the context that we consider. Importantly, these constructions based upon Calabi-Yau

quotients give us control over the setup and allow our intuition about Calabi-Yau fourfold

compactifications of F-theory to be used. Other explicit constructions of Spin(7) geometries

appeared in [13, 14].

To derive effective physics of these F-theory compactifications it will be necessary to

take a detour via M-theory. This can be traced back to the fact that there is no fun-

damental low-energy effective action of F-theory. M-theory has eleven-dimensional (11d)

supergravity as a low-energy effective action [15] and hence provides a well-defined setup

to study compactifications on smooth compact geometries. In fact, if one considers M-

theory on a Spin(7) geometry one obtains a three-dimensional (3d) effective theory with

minimal supersymmetry, i.e. two supercharges [16].1 We determine the 3d effective action

of M-theory on a general Spin(7) manifold with probe fluxes extending and applying earlier

works [17–22] and determine the couplings in terms of the geometric data of the Spin(7)

geometry. To take the F-theory limit of this 3d theory to four space-time dimensions we

propose the following duality:

M-theory on Spin(7) manifold ∼= F-theory on

{
Spin(7) manifold

(with vanishing fiber)
× Interval

}
. (1.1)

In the context of this work we can only make this claim in cases where the Spin(7) manifold

is constructed from a Calabi-Yau fourfold as described in the previous paragraph. The

extension of this to more general geometries remains an intersting open problem.

To provide evidence for (1.1) we consider a certain non-supersymmetric 4d theory on

an interval. If the interval is small, we perform a Kaluza-Klein reduction to an effective 3d

theory. Specifying the definite boundary conditions for the various fields, we argue that the

3d effective theory of the zero modes is minimally supersymmetric and can be identified

with the effective theory arising from a compactification of M-theory on a Spin(7) manifold.

The original 4d theory should be recovered in the limit in which the interval length is sent

to infinity. This should correspond to sending the fiber volume of the Spin(7) manifold to

zero and provide a realization of the M-theory to F-theory limit. However, in this work we

will mostly consider a finite size interval either in the derivation of the 3d effective theory,

or in the 4d lift to an effectively non-supersymmetric theory due to boundary effects.

One difference to the M-theory to F-theory limit for Calabi-Yau fourfolds is the appear-

ance of an interval instead of a circle. This interval is crucial as the boundary conditions

that are imposed project out half of the zero mode degrees of freedom that would arise in

the circle reduction of a 4d fermion. This means that on the level of 3d zero modes only

1These compactifications are in fact on warped backgrounds, but we will not consider the impact of

warping in this work.

– 3 –



J
H
E
P
0
1
(
2
0
1
4
)
1
1
2

interval
Spin(7)
manifold

11d M-theory
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3d N = 1
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Figure 1. Summary of the effective actions considered in this work. The left column corresponds to

the M-theory side of the duality (1.1), while the right column corresponds to the F-theory side. The

comparison between the 3d N = 1 theories is performed in the case in which the Spin(7) manifold

arises as an anti-holomorphic quotient of an elliptically fibered Calabi-Yau fourfold. We consider

a fibration structure that yields a simple non-Abelian gauge group. The match of 3d actions is

carried out in the Coulomb branch at the level of zero modes.

a part of the 4d fermionic degrees of freedom have to be completed with bosonic counter-

parts. This allows a non-supersymmetric spectrum in four dimensions to be dimensionally

reduced to a minimally supersymmetric zero mode spectrum in three dimensions. The

appearance of an interval is also natural from the construction of Spin(7) manifolds that

we have mentioned above for which the quotient of the fourfold may be associated with

the quotient of the circle that gives rise to the interval. It is crucial in (1.1) that the core

features of the non-supersymmetric theory in four dimensions and the boundary conditions

for the interval are fixed by the Spin(7) geometry.

In this work we will provide evidence for (1.1) in the context of the above mentioned

quotiented Calabi-Yau geometries, and discuss important parts of the 3d and 4d effective

actions of M-theory and F-theory. A schematic picture of the effective actions considered

in the following sections can be found in figure 1. We also comment on supersymmetry

restoration, which is further studied in [23]. Let us stress that it would be interesting

to perform such an analysis for other classes of Spin(7) manifolds with an appropriate

fibration structure.

2 Geometries with Spin(7) holonomy for F-theory

To set the stage for the discussions that follow we first recall some facts about Spin(7)

manifolds and their construction. In subsection 2.1 we give a brief introduction to aspects

of the differential and algebraic geometry of Spin(7) manifolds. We also describe the

construction of Spin(7) manifolds as anti-holomorphic quotients of Calabi-Yau fourfolds.

This construction is applied to elliptically fibered Calabi-Yau fourfolds in subsection 2.2.

We discuss the fiber structures which arise and comment on seven-brane configurations

that can appear.
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2.1 Constructing Spin(7) manifolds from Calabi-Yau fourfolds

Let us briefly recall certain important features of the geometry of Spin(7) holonomy eight-

dimensional manifolds, which we will refer to as Spin(7) manifolds. To do this it is conve-

nient to begin by analyzing the set of independent covariantly constant spinors that may

exist on such a space Z8. All spinors on Z8 will transform as definite representations of

the holonomy group and so their properties may be studied by decomposing the repre-

sentations of SO(8) (the holonomy group of an orientable eight-dimensional Riemannian

manifold) under Spin(7). In doing this we find that the representations corresponding to

Majorana-Weyl spinors decompose as

8+ → 1⊕ 7 , and 8− → 8 . (2.1)

The singlets present in this decomposition determine the covariantly constant spinors of

Z8 so a given Spin(7) manifold may have only one independent covariantly constant spinor

which we will call η. From this spinor we may construct the covariantly constant nowhere-

vanishing p-forms of Z8 by taking contractions with the gamma matrices in the usual way.

However as η is Majorana-Weyl with positive chirality the only non trivial p-form that may

be constructed is a self-dual four-form

Φmnrs = η̄ γmnrs η , where
1

V̂

∫
Z8

Φ ∧ Φ = ||Φ||2 =
1

4!
ΦmnrsΦ

mnrs , (2.2)

and where V̂ is the volume of Z8. This four-form then gives the Cayley calibration of Z8.

We note here that by using Fierz identities one may show that Φ satisfies the useful identity

ΦmnptΦqrst =
3

7
||Φ||2δm[q δnr δ

p
s] −

9√
14
||Φ||δ[q

[mΦrs]
np] . (2.3)

In a similar way one may analyze the cohomology of the Spin(7) manifold by decomposing

the various cohomology groups under Spin(7). This then gives [24]

H0(Z8,R) = R , H1(Z8,R) = 0 , H2(Z8,R) = H2
21(Z8,R) , (2.4)

H3(Z8,R) = H3
48(Z8,R) , H4(Z8,R) = H4

1S(Z8,R)⊕H4
27S(Z8,R)⊕H4

35A(Z8,R) ,

where S and A indicate the self-duality and anti-self-duality of the four-forms respectively.

The only in-equivalent representative of H4
1S(Z8,R) is then given by Φ. The Betti numbers

bn(Z8) = dim(Hn(Z8,R)) satisfy one constraint,

b2(Z8)− b3(Z8)− b4S(Z8) + 2b4A(Z8) + 25 = 0 . (2.5)

This implies that there are three independent Betti numbers, for example, b2(Z8), b3(Z8)

and b4A(Z8).

By contrast a Calabi-Yau fourfold Y4 has both a covariantly constant (1, 1) Kähler

form J and a holomorphic (4, 0) form Ω. In [12] these are related to a self-dual four-form

Φ by considering an anti-holomorphic and isometric involution σ : Y4 → Y4, i.e. σ satisfies

σ2 = 1l ,

{
isometric σ∗(g) = g ,

anti-holomorphic σ∗(I) = −I , (2.6)
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where g and I are the metric and complex structure on Y4, respectively. These conditions

translate to the forms J and Ω as

σ∗J = −J , σ∗Ω = e2iθΩ̄ , (2.7)

where θ is some constant phase factor. The forms J and Ω then naturally define a Spin(7)-

structure on Y4 with Φ given by

Φ =
1

V2

(
1

||Ω||Re(e−iθΩ) +
1

8
J ∧ J

)
, where V =

1

4!

∫
Y4

J4 , (2.8)

is the volume of Y4 and ||Ω|| is defined analogously to (2.2). The derivation of the precise

prefactors in front of Re(e−iθΩ) and J ∧ J will be presented in section 3.2. The four-form

Φ is invariant under the involution σ and an associated Spin(7) manifold may then be

constructed by quotienting Y4 by σ and resolving the singularities in a Spin(7) compatible

way [12]. In this way Y4 represents the double cover of Z8 which relates the volumes

as V = 2V̂.

In preparation for the application to F-theory let us comment further on the involved

geometries. We note that when considering F-theory on a Calabi-Yau space Y s
4 , the space

can be chosen to be singular. The singularities arise, for example, when the 4d theory has

to have a non-Abelian gauge group. These non-Abelian singularities can be resolved in a

way that is compatible with the Calabi-Yau condition to yield a manifold Y4. We denote

the anti-holomorphic involution on the singular space Y s
4 by σs and on the resolved space

by σ. The respective quotient spaces are denoted by Zs8 = Y s
4 /σ

s and Z8 = Y4/σ. The

Spin(7) resolution of Z8 will be denoted by Ẑ8. By analogy with the standard M-theory/F-

theory duality we thus expect that the duality (1.1) relates F-theory compactified on Zs8
with M-theory compactified on Ẑ8. It should be stressed that finding a resolution of Z8

admitting a Spin(7) structure is a hard task and involves constructing local real Spin(7)

ALE geometries that can be used to resolve possible orbifold singularities [12]. The Betti

numbers of the resolved space can be computed as described in [12]. A stringy computation

of the Betti numbers on the quotient geometry Z8 can be found in [25]. In this work we

will not be concerned with this real resolution Ẑ8, and mostly work with Z8 neglecting

possible singularities. We will refer to the Spin(7) manifold Z8 constructed in this way

as a quotient torus fibration. Our goal is, however, to formulate the results in a general

Spin(7) language such that they can be equally applied to the resolved geometries Ẑ8. We

summarize the relevant geometries in figure 2.

The construction that is carried out in [12] assumes certain additional properties of the

orbifold singularities that are required for the Spin(7) ALE resolutions which are considered

there to be applied. One such condition is that the singularities introduced by quotient-

ing with respect to σ must be isolated points in Z8 which lie at points that are already

holomorphic orbifold singularities of Y4. However it is anticipated that these resolution

methods are by no means the only possibility. Therefore, in what follows, we will not limit

ourselves to considering only the sorts of singularities which are required in [12], but will

bear in mind these additional constraints. The analysis of the more general resolutions

that would then be required and the physics associated with their structure will not be

discussed here and therefore represents an important topic for consideration in future work.
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Figure 2. Construction of Spin(7) manifolds by using Calabi-Yau fourfolds with anti-holomorphic

involutions.

2.2 Spin(7) manifolds from Calabi-Yau elliptic fibrations

In order that the Spin(7) manifold Z8 can be used as a background of F-theory we require

that the Calabi-Yau fourfold Y4 is an elliptic fibration with Kähler base B3. The elliptic

fiber Cp at a point p on B3 can always be described by a Weierstrass equation2

Cp : y2 = x3 + f x z4 + g z6 , (2.9)

where x, y, z are projective coordinates in P2
2,3,1 and f, g depend on the location p. Away

from singular points on the base, f(u), g(u) are holomorphic in the complex base coordi-

nates u. When the elliptic curve becomes singular, the discriminant given by

∆ = 4f3 + 27g2 (2.10)

vanishes. The vanishing of this function describes complex co-dimension one space in B3

and determines the location of the space-time filling seven-branes on B3.

Recall that F-theory on an elliptically fibered Calabi-Yau fourfold yields minimally

supersymmetric theory in four space-time dimensions.3 After quotienting by the involution

σ and carrying out the resolution supersymmetry will be broken by the geometry.

The involutive symmetry σ on the elliptic fibration is demanded to have a definite

action on B3, i.e. σ is compatible with the fibration and induces a well-defined action on

the base that we also denote by σ for simplicity. In a given local patch U on B3 described

by the coordinates (z1, z2, z3) this action can be of different types with differing dimension

of the fixed space Lσ(U) ⊂ U . For example, one has

(z1, z2, z3)→ (z̄1, z̄2, z̄3) , ⇒ Lσ(U) is a real three-dimensional subspace of U ,

(z1, z2, z3)→ (z̄2,−z̄1, z̄3) , ⇒ Lσ(U) is a real one-dimensional subspace of U ,

(z1, z2, z3)→
(
z̄2

z̄3
,− z̄1

z̄3
,− 1

z̄3

)
, ⇒ Lσ(U) is empty and σ is freely acting on U . (2.11)

2The precise statement is that every elliptic curve is bi-rationally equivalent to such a Weierstrass

equation.
3In fact, one could study the theory on the space Y4 obtained by resolving the orbifold singularities of

Y s
4 in a way compatible with the Calabi-Yau condition and the elliptic fibration.
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Cp Cσ(p)

p σ(p)

Figure 3. Generic torus fibers exchanged by the anti-holomorphic involution.

After taking the quotient the fixed space on Y4 will represent an orbifold singularity of

Z8 which must be resolved when moving to Ẑ8. If Lσ(B3) is one dimensional then σ

is only an involution if B3 already has an identification under the holomorphic orbifold

action generated by σ2. This will have a real two-dimensional fixed space that will be

associated with an additional orbifold singularity over the base that must also be resolved

after the quotient.

The fixed space of Y4, which we will call Lσ(Y4), can have components that are either

0, 2 or 4 real dimensional or σ can be freely acting. To investigate the action of σ on Y4

further we must analyze several cases which are distinguished by the location of the point

p on B3:

(1) p /∈ Lσ(B3): for each point p on B3 that is not a fixed point of σ the corresponding

elliptic curve Cp is mapped onto another elliptic curve Cσ(p) over the image point

σ(p). However, since σ is anti-holomorphic the orientations of Cσ(p) and σ(Cp) will

differ. In this case σ will be freely acting on all points of Y4 that project to p or σ(p),

see figure 3.

(2) p ∈ Lσ(B3) and ∆(p) 6= 0: if a point p on B3 is a fixed point of σ the elliptic curve

over this point will be mapped to itself. In particular, this implies that if p is not on

a seven-brane that a smooth two-torus is mapped onto itself. Recall that the fixed

point set of an anti-holomorphic involution on a smooth complex two-torus either

consists of up to two real lines or is empty.

(2.1) If the torus is fixed point free this implies that each point on Y4 that projects to

p is actually not fixed by σ and hence does not give rise to a singularity of Z8.

This means that σ will be freely acting on all points of Y4 that project to p. If

Lσ(B3) is one-dimensional then the additional singularities associated with the

σ2 identification can be resolved in the standard toric way. Interestingly, if σ is

fixed point free on the torus but not on the base then the quotient fiber at such

p is a Klein bottle, see figure 4.

(2.2) If the torus has a fixed line on it then the dimension of Lσ(Y4) may be up to

one greater than the dimension of Lσ(B3), depending on the dimension of the

subspace of Lσ(B3) over which the fixed space on the torus is a line. Since Lσ(Y4)

– 8 –
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Figure 4. Fiber modded by anti-holomorphic

involution to Klein bottle fibers.

Cp Cp/σ

p

Figure 5. Nodal fiber at

fixed point p. Involution fixes

pinch-point.

Cp

p

must then have even dimensions greater than one, it must have dimension of

either 2 or 4. The quotient of the elliptic curve by σ then gives rise to a cylinder.4

(3) p ∈ Lσ(B3) and ∆(p) = 0: the most interesting case is if a point p on B3 is both

a fixed point of σ and lies on a seven-brane. In this case Cp is actually a singular

curve. There are various possibilities for such singular curves and a systematic study

should investigate all possible anti-holomorphic involutions and their fixed points.

Here, let us only consider the simplest case where Cp is a nodal curve (I1 type), as

schematically depicted in figure 5. In this case there can exist an involution σ that

has one fixed point exactly at the node of the elliptic curve. One can think of this

nodal point as arising by shrinking the real one-dimensional fixed point set of an

anti-holomorphic involution on a smooth elliptic curve. In this case the dimension

of Lσ(Y4) may be an even integer less than the dimension of Lσ(B3), so it can be

either 0 or 2.

From this we see that if the action of σ on Y4 is to be fixed point free then it can have

only points for which situations (1) or (2.1) apply. Alternatively if we restrict the fixed

space to consist only of isolated fixed points, which is imposed in [12], then we find that

situation (3) must apply in which the torus is pinched at these points. In addition to this

if we also wish to consider fixed points which are already holomorphic orbifold singularities

of Y4, as is also imposed in [12], then we find that Lσ(B3) must be one-dimensional. An

example of a space which has singularities of this sort is shown in appendix B.2.

Let us now analyze the action of the anti-holomorphic involution σ on the elliptic fiber.

To this end, we consider the case in which the elliptic fibration is presented in Weierstrass

form (2.9) and we let the anti-holomorphic involution σ act anti-linearly on the projective

coordinates of P2
2,3,1. Any σ action of this type may then be brought into the form

σ : (x, y, z)→ (x̄, ȳ, z̄) (2.12)

4We note that in certain cases an anti-holomorphic involution of a smooth torus with a one-dimensional

fixed space can also yield a Möbius band.
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by an appropriate coordinate redefinition. Comparison between (2.9) and (2.12) reveals

that, in order for the anti-holomorphic involution to be well-defined on the Calabi-Yau

fourfold Y4, the sections f and g have to satisfy

fσ(p) = fp , gσ(p) = gp , (2.13)

for every p on the base B3. Recall that the modular parameter τ of the elliptic fiber is

given by

j(τ) =
4 · (24f)3

∆
, (2.14)

where the discriminant was defined in (2.10). We conclude that for any point p on the

base B3

j(τσ(p)) = j(τp) = j(− τp) . (2.15)

In the last step we have made use of the fact that the j-function admits a Laurent series

in the variable q = e2πiτ with integer coefficients. In summary, we can infer that

τσ(p) = − τp up to SL(2,Z) transformations. (2.16)

Note that this condition is perfectly compatible with a non-trivial holomorphic dependence

of the modular parameter on the base coordinates. In particular, it can be satisfied for τ

profiles with non-trivial monodromies associated to the presence of seven-branes. Only in

the special case in which τ is constant over the base, as in the weak coupling limit away

from orientifold planes, (2.16) enforces a reality condition on τ , which has to be purely

imaginary. We will comment on this further in section 5.

3 M-theory on Spin(7) spaces and Calabi-Yau quotients

Having discussed the geometry of the Spin(7) holonomy manifolds that we wish to consider,

we will now describe the effective theories which arise in the reduction of M-theory on these

spaces. In subsection 3.1 we will begin this analysis by considering the reduction on general

Spin(7) manifolds. Then in subsection 3.2 we will analyze how this may be related to the

quotient of the effective theories that arise from compactification on Calabi-Yau fourfolds.

In subsection 3.3 we will then restrict to the case where these Calabi-Yau manifolds are

elliptically fibered and study the redefinitions that must be made in order to move into a

frame that can be lifted to the 4d F-theory dual.

3.1 Effective action of M-theory on Spin(7) manifolds

The compactification of M-theory on a Spin(7) manifold Ẑ8 yields a 3d effective theory

with minimal N = 1 supersymmetry. The action, to quadratic order in the fermions, for a

general 3d theory with N = 1 supersymmetry can always be written in the form [26, 27]

S
(3)
N=1 =

∫
d3x e

[
1

2
R− 1

4
ΘIJε

µνρAIµ

(
∂νA

J
ρ +

1

3
fKL

JAKν A
L
ρ

)
− 1

2
gΛΣDµφΛDµφΣ − V (φ)

− 1

2
ψ̄µγ

µνρDνψr −
1

2
gΣΛχ̄

ΣγµDµχΛ +
1

2
gΣΛχ̄

ΣγµγνψµDνφΛ (3.1)

− 1

2
Fψ̄µγ

µνψν + ∂ΛFψ̄µγ
µχΛ +

1

2
(gΣΛF − 2DΣ∂ΛF + 2XI

ΣX
J
ΛΘIJ)χ̄ΣχΛ

]
,
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with covariant derivatives and scalar potential given by

DµφΛ = ∂µφ
Λ + ΘIJX

IΛAIµ , V (φ) = 2gΛΣ∂ΛF∂ΣF − 4F 2 . (3.2)

Here XIΛ is the Killing vector of the target space symmetry that is gauged via (3.2). The

action (3.1) contains the φΛ-dependent metric gΛΣ(φ) that is non-degenerate and positive

definite. The coefficient ΘIJ of the Chern-Simons term is symmetric in I, J , and constant

which ensures the gauge invariance of the action. This represents the embedding tensor

for the 3d gauged supergravity theory. The real function F (φ) depends on the scalars φΛ

and is required to satisfy ΘIJX
IΛ∂ΛF = 0 for gauge invariance.

For smooth Spin(7) geometries Ẑ8 the N = 1 vacua where studied in [16, 17, 28, 29].

The 3d effective theory can be derived by reducing the action for 11d supergravity [15],

the bosonic part of which at lowest order in derivatives is given by

S(11) =

∫
1

2
R ∗ 1− 1

4
G4 ∧ ∗G4 −

1

12
C3 ∧G4 ∧G4 , (3.3)

as discussed in [17, 18, 20, 22]. In the full reduction one must also take into account the

higher derivative terms along with the tadpole cancellation condition which for backgrounds

without M2-branes becomes

χ(Ẑ8)

24
=

1

2

∫
Ẑ8

G4 ∧G4 . (3.4)

We will describe this reduction in the following and reconsider some aspects of the deriva-

tion presented in [22]. We stress that this reduction is actually a warped compactification,

and we will neglect this back-reaction in the following leading order analysis.

We carry out the reduction by decomposing the metric and three-form of 11d super-

gravity as

ds2 = gµνdx
µdxν + gmndy

mdyn , C3 = AI ∧ ωI , (3.5)

where gmn is the metric on Ẑ8 and ωI form a basis for H2(Ẑ8,R) with I = 1, . . . , b2(Ẑ8).

We will restrict to the case of b3(Ẑ8) = 0 for simplicity. The 3d theory will then admit

U(1) gauge symmetries associated with the vectors AI .

In performing the Kaluza-Klein reduction one has to allow the metric of the internal

geometry Ẑ8 to vary without leaving the class of Spin(7) geometries. To find the permitted

deformations one constructs the Lichnerowicz operator on Ẑ8 and shows that its zero

modes are in one-to-one correspondence with the set of anti-self-dual four-forms ξA, A =

1, . . . , b4A(Ẑ8), along with one additional zero mode that corresponds to a rescaling of the

overall volume. This implies that there will be b4A(Ẑ8) + 1 real scalar fields ϕA and V̂
parameterizing the deformations of the Spin(7) structure. The under a variation of the

scalars V̂ and ϕA the Cayley calibration Φ and the metric are deformed as

δΦ = KV̂Φ δV̂ + (KAΦ + ξA) δϕA , δgmn =
1

4V̂
gmnδV̂ +

7

6||Φ||2 (ξA)mpqrΦn
pqr δϕA , (3.6)
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where the factors in δgmn are chosen in accord with (2.3). As a result of the anti-self-duality

of ξA, the variation of the metric with respect to ϕA is symmetric and trace-free [30]. The

real coefficients in (3.6) given by KV̂ and KA are in general functions of V̂ and ϕA and

depend on the normalization of Φ.

Upon performing the dimensional reduction, followed by a Weyl rescaling of the 3d

metric to move into the Einstein frame, the bosonic part of the effective action is given by

S
(3)

Ẑ8
=

∫
1

2
R∗1− 1

2
hIJF

I∧∗F J− 1

4
ΘIJA

I∧F J− 1

2
gV̂V̂dV̂∧∗dV̂−

1

2
gABdϕ

A∧∗dϕB−V (ϕ)∗1 ,
(3.7)

where

gV̂V̂ =
9

8
V̂−2 , gAB = −7

2

∫
Ẑ8
ξA ∧ ξB∫

Ẑ8
Φ ∧ Φ

, hIJ =
1

2V̂

∫
Ẑ8

ωI ∧ ∗ωJ , (3.8)

and the scalar potential V (ϕ) is of the form (3.2). This action is less general then (3.1).

Firstly, we have only included Abelian vectors. More importantly, we did not dualize all

dynamical vector degrees of freedom into scalar degrees of freedom as it is always possible

in three dimensions. Therefore the kinetic terms of the vectors with ϕA-dependent metric

hIJ still appears in (3.7). Dualizing all vector degrees of freedom yields new scalars ζI with

metric hIJ , the inverse of hIJ . The presence of a Chern-Simons term in (3.7) implies that

the ζI are in general gauged with covariant derivative

DζI = dζI + ΘIJA
J . (3.9)

Hence, the action (3.7) allows us to determine all couplings in (3.1): φΛ = (V̂, ϕA, ζI),
gΛΣ = ( 9

8V̂2
, gAB, h

IJ), and XI
J = δIJ , X

IA = 0.

So far we have not discussed the scalar potential V and the Chern-Simons coupling

ΘIJ . In fact, in a compactification without fluxes both vanish identically. They are,

however, induced if one allows for a non-trivial flux background of the field strength dC3.

Let us denote the background flux on Ẑ8 by G4. A direct reduction of 11d supergravity

then implies that a flux-induced Chern-Simons term takes the form

ΘIJ =

∫
Ẑ8

G4 ∧ ωI ∧ ωJ . (3.10)

More involved is the derivation of the flux-induced scalar potential from a real function F .

After dimensional reduction of the full action including the higher curvature term, one uses

the tadpole cancellation condition (3.4) to show that the scalar potential takes the form

V =
1

4V̂3

(∫
Ẑ8

G4 ∧ ∗G4 −
∫
Ẑ8

G4 ∧G4

)
= − 1

2V̂3

∫
Ẑ8

GA4 ∧GA4 , (3.11)

where GA4 is the anti-self-dual part of the background flux G4. To generally derive F let

us first note that it was argued in [22] that F should be proportional to
∫
Ẑ8
G4 ∧ Φ. The

factor in front of this flux integral can, however, be field-dependent. In fact the correct

form of F is given by

F =

√
7

4
√

2||Φ||V̂2

∫
Ẑ8

G4 ∧ Φ , (3.12)
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The derivatives of F then satisfy

∂F

∂ϕA
=

√
7

4
√

2||Φ||V̂2

∫
Ẑ8

G4 ∧ ξA ,
∂F

∂V̂
= − 3

2V̂
F , (3.13)

which are independent of the precise form of KV̂ and KA in (3.6) as these cancel when

taking the derivative.5 Inserting (3.13), (3.12) and the inverse metrics gAB, gV̂V̂ obtained

from (3.8) into the general form of the N = 1 scalar potential (3.2) one readily shows

match with (3.11).

We conclude this section by performing a rearrangement of the Spin(7) moduli that

will be useful in the comparison to the Calabi-Yau reduction of section 3.2. To begin with,

we divide the Spin(7) moduli ϕA into two subsets, ϕA = (ϕK, ϕĨ−). This notation is chosen

to make contact to section 3.2. Note that this partition of the Spin(7) moduli is supposed

to be such that the associated anti-self-dual four-forms satisfy the orthogonality condition∫
Ẑ8

ξK ∧ ξĨ− = 0 . (3.15)

Next we extend the range of the index Ĩ− by defining a new index I− that includes one

additional entry and define φI− = (φ̂, φ̂ϕĨ−). This definition is such that that the variation

of Φ in (3.6) is now given by

δΦ = KV̂Φ δV̂ + (KI−Φ + ηI−)δφI− + (KKΦ + ξK)δϕK , (3.16)

where

KI− =

(
−
ϕJ̃−KJ̃−

φ̂
,
KĨ−

φ̂

)
, ηI− =

(
−
ϕJ̃−ξJ̃−

φ̂
,
ξĨ−

φ̂

)
. (3.17)

These definitions then imply the constraints

φI−KI− = 0 , φI− ηI− = 0 , (3.18)

which means that the action (3.7) develops a new local symmetry under under which

φI− → λφI− , Φ→ λΦ . (3.19)

As anticipated above, this constrained formulation will be helpful in section 3.2. It might

also be useful, however, in finding generalizations of the F-theory construction to Spin(7)

manifolds that are not obtained as Calabi-Yau quotients.

5One can also show that given a general Cayley calibration Φ, which varies as (3.6), it is possible to

define an alternatively normalized self-dual four-form Φ̂ which is also a singlet of Spin(7) and satisfies

Φ̂ =
1

||Φ||V̂2
Φ , K̂V̂ = −3

2
V̂−1 , K̂A = 0 . (3.14)

This corresponds to the normalization for Φ chosen in (2.8).
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3.2 Effective action of M-theory on Spin(7) manifolds from Calabi-Yau quo-

tients

In the following we would like to introduce Spin(7) geometries whose effective theories can

be up-lifted to four dimensions via the M-theory to F-theory limit. It is an outstanding

question to characterize such geometries generally. In order to approach this problem

we therefore restrict our analysis to Spin(7) geometries arsing from elliptically fibered

Calabi-Yau fourfolds as introduced in section 2.2. Our aim is to first show, that the 3d

N = 2 theories arising in Calabi-Yau fourfold compactifications of M-theory are truncated

to N = 1 when performing the anti-holomorphic quotient Y4/σ, with an involution σ as

in (2.7). We note that the following steps bear many similarities to the construction of 4d

Type IIA Calabi-Yau orientifold actions [31]. However, here we are truncating 3d N = 2

supersymmetry to N = 1 supersymmetry.6 Truncations of N = 2 Chern-Simons theories

to N = 1 induced by an anti-holomorphic involution have been also considered in [33].

Let us first recall the general form of a 3d N = 2 action. The bosonic part of this can

always be brought to the form

S
(3)
N=2 =

∫
1

2
R∗1−1

4
ΘIJA

I∧
(
dAJ +

2

3
fKL

JAK ∧AL
)
−gAB̄DMA∧∗DM̄B−Ṽ ∗1 , (3.20)

where gAB̄ = ∂A∂B̄K is a Kähler metric and Ṽ (M,M̄) is the scalar potential. This scalar

potential is generally of the form

Ṽ = eK
(
KAB̄DAWDBW − 4|W |2

)
+
(
KAB̄∂AT ∂BT − T 2

)
, (3.21)

where W (M) is a holomorphic superpotential and T is a real potential. One may also note

that in the N = 2 case the presence of a non-vanishing T is linked to the gaugings DMA.

The 3d N = 2 effective action for a Calabi-Yau fourfold compactification of 11d su-

pergravity was derived in [34, 35]. For the case b3(Y4) = 0 it takes a particularly simple

form. The reduction yields h3,1(Y4) complex structure moduli zK, which are complex fields

and parametrize the changes of the (4, 0)-form Ω(z). In addition there are h1,1(Y4) real

Kähler structure deformations vI arising in the expansion of the Kähler form J = vIωI .

The expansion of the M-theory three-form C3 = AI ∧ωI yields h1,1(Y4) 3d vectors AI . The

vectors AI together with vI form the bosonic components of 3d N = 2 vector multiplets.

After dualizing all dynamical vector degrees of freedom into scalars ζI , the kinetic terms

of the 3d N = 2 supergravity theory are encoded by a Kähler potential

K(z, T ) = − log

∫
Y4

Ω ∧ Ω̄− 3 logV , (3.22)

which is evaluated as a function of the h3,1(Y4) + h1,1(Y4) complex coordinates zK and

TI =
1

3!

∫
Y4

ωI ∧ J3 + iζI . (3.23)

6A systematic study of spontaneous N = 2 to N = 1 breaking in three dimensions can be found in [32].
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In the presence of background fluxes G4 a non-trivial Chern-Simons term with ΘIJ exactly

as in (3.10) is induced. As above in (3.9) this also implies the presence of gaugings DTI =

dTI + iΘIJA
J . Furthermore, a scalar potential arises from the functions

T =
1

4V2

∫
Y4

G4 ∧ J2 , W =

∫
Y4

G4 ∧ Ω , (3.24)

where T is in accord with the gauged shift symmetries.

In order to implement the N = 1 truncation we first note that the relevant forms have

to transform under σ∗ as

σ∗J = −J , σ∗(CΩ) = CΩ , σ∗C3 = C3 , (3.25)

where the first two conditions already appeared in (2.7) when inserting the definition

C = e−iθeK/2 , (3.26)

with K as defined in (3.22). To perform the reduction one thus has to split the cohomology

of Y4 into parity-even and parity-odd eigenspaces as

Hn(Y4,R) = Hn
+(Y4,R)⊕Hn

−(Y4,R) . (3.27)

The surviving vectors in the expansion of C3 only arise from elements of H2
+(Y4), while the

surviving Kähler structure scalars arise from elements of H2
−(Y4). Thus, one has

C3 = AI+ ∧ ωI+ , I+ = 1, . . . , h1,1
+ (Y4) , J = vI−ωI− , I− = 1, . . . , h1,1

− (Y4) . (3.28)

Applying this to the dual complex scalars TI introduced in (3.23) one finds the split

TI = (TI+ , TI−) = (−iImTI+ ,ReTI−) , ImTI− = ReTI+ = 0 . (3.29)

In other words, out of the h1,1(Y4) complex coordinates TI only h1,1(Y4) real coordinates

survive in the quotient theory. Similarly, the h3,1(Y4) complex fields zK encoding complex

structure deformations are reduced to h3,1(Y4) real complex structure deformations ϕK.

This can be inferred by considering all complex structure deformations of Ω preserving the

condition (3.25). One can chose local coordinates such that ϕK = Re zK. In summary, the

involution truncates the N = 2 Kähler manifold spanned by TI and zK to a real Lagrangian

submanifold Lσ parametrized by ζI+ , ReTI− and ϕK.

To compare these degrees of freedom which survive the quotient with those described

in the Spin(7) reduction of subsection 3.1 it is necessary to redefine the fields. The vectors

AI+ and the volume V are simply identified with the vectors AI and the volume V in (3.7),

while the b4A(Z8) scalar fields ϕA in (3.7) parametrize the independent degrees of freedom

of the constrained fields

φÂ = (ϕK, φI−) , where Â = 1, . . . , 1 + b4A(Z8) , φI− = V− 1
4 vI− . (3.30)

They satisfy the constraint

N ≡ 1

4!
KI−J−K−L−φI−φJ−φK−φL− = 1 , (3.31)
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as a result of the definition (3.30). This condition can be viewed as a gauge fixing of the

additional symmetry introduced in (3.19). In terms of these fields the bosonic part of the

effective theory describing the projected Calabi-Yau reduction is given by

S
(3)
Y4/σ

=

∫
1

2
R ∗ 1− 1

2
hI+J+F

I+ ∧ ∗F J+ − 1

4
ΘI+J+A

I+ ∧ dAJ+ − 1

2
gVVdV ∧ ∗dV

− 1

2
g̃I−J−dφ

I− ∧ ∗dφJ− − 1

2
g̃KIdϕ

K ∧ ∗dϕI − V ∗ 1 , (3.32)

where the scalar metrics may be written as

gVV =
9

8
V−2 , hI+J+ =

1

2V

∫
Y4

ωI+ ∧ ∗ωJ+ ,

g̃I−J− = −4V3

∫
Y4

ηI− ∧ ηJ− , g̃KL = −4V3

∫
Y4

ξK ∧ ξL , (3.33)

and where

ηI− =
1

4
V− 3

2PI−
J−ωJ− ∧ Jφ , PI−

J− = δI−
J− − 1

4!
KI−K−L−M−φK−φL−φM−φJ− ,

ξK = Re(CχK) , KI−J−K−L− =

∫
Y4

ωI− ∧ ωJ− ∧ ωK− ∧ ωL− . (3.34)

We have used the definition Jφ = φI−ωI− . Note that the constraint (3.31) is responsible

for the projection matrices PI−
J− that appear in the definition of the scalar metric. The

Chern-Simons terms in (3.32) are induced by G4 fluxes as in (3.10) and read

ΘI+J+ =
1

2

∫
Y4

ωI+ ∧ ωJ+ ∧G4 . (3.35)

By considering the potential of the truncated theory and matching this with (3.2) we

see that

F = eK/2ReW +
1

2
T =

∫
Y4

G4 ∧
(

Re(CΩ) +
1

8
V−2J ∧ J

)
. (3.36)

By comparing this with (3.12) we may then read off Φ =
(
Re(CΩ) + 1

8V−2J ∧ J
)

up to

a choice of normalization. This is the expression for Φ that we already quoted in (2.8).

In the remainder of this subsection we discuss the structure of the resulting Spin(7) field

space in more detail.

To investigate the metric on the Spin(7) field space we need to determine its varia-

tions with respect to the coordinates introduced in (3.30). This again requires the con-

straint (3.31) to be consistently implemented. One way to achieve this is to first express Φ

in terms of V and N before taking derivatives and later impose (3.31). Concretely, one has

Φ =
1

V3/2

 Re(e−iθΩ)( ∫
Y4

Ω ∧ Ω̄
)1/2 +

1

8

Jφ ∧ Jφ
N1/2

 . (3.37)

Then taking the variations of this with respect to V, φI− , and ϕK we find

δΦ|N=1 = −3

2
V−1 Φ δV + ηI− δφ

I− + ξK δϕ
K , (3.38)
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and in addition find that the normalization of Φ is such that∫
Ẑ8

Φ ∧ Φ =
7

16
V−3 . (3.39)

Then by comparing the variation (3.38) with (3.6) we may identify the forms ξK and

ηI− with the Spin(7) forms ξA. More precisely, note that the constraint (3.31) implies

φI− ηI− = 0. We thus identify the coordinates φI− and forms ηI− with the quantities

constructed after (3.15). Moreover, we find that the projected Y4 moduli metric (3.33)

matches the Spin(7) moduli metric (3.8). As expected from the general Spin(7) analysis,

ηI− and ξK also form a basis for the complete set of anti-self-dual four-forms of Y4 which

are invariant under σ .7

3.3 Effective action of M-theory on Spin(7) quotients of elliptically fibered

Calabi-Yau fourfolds

In order to derive the 4d effective action of F-theory on a Spin(7) holonomy manifold, we

must now restrict our M-theory reduction of section 3.2 to be based on elliptically fibered

Calabi-Yau fourfolds. In doing this we will denote the base of the elliptically fibered

Calabi-Yau Y4 by B3. Recall that for an elliptic fibration we find in cohomology

12c1(B3) = [∆]B3 , (3.40)

where [∆]B3 is the Poincaré-dual two-form to the discriminant locus (2.10) in the base B3.

We note that both c1(B3) and [∆]B3 have to transform with a negative sign under the

anti-holomorphic and isometric involution σ. This requirement also ensures that ∆ has a

finite volume, i.e.
∫

∆ J ∧ J does not vanish.

The two-form associated to the zero section of the elliptic fibration is denoted by ω0.

In this work we will be only dealing with Calabi-Yau fourfold geometries with holomorphic

zero sections. Note that ω0 must transform with a negative sign under σ∗. In fact, as we

discussed in section 2.2 the homology class of the torus fiber is negative under σ, since σ

reverses the orientation of the two-torus. This property can also be seen by noting that the

base intersects the fiber exactly once. As we will discuss later, this allows us to perform

the uplift by sending the coefficient φ0 in the expansion of J to zero.

As the involution σ also descends to the base, the cohomology ofB3 may be decomposed

under the action of σ as Hp(B3) = Hp
+(B3)⊕Hp

−(B3). This means that one can write

(ωα) = (ωα+ , ωα−) , α± = 1, . . . , h1,1
± (B3) , (3.41)

where ωα± are obtained by pulling back elements of H2
±(B3) to H2

±(Y4).

We will also allow for resolved singularities of the elliptic fibration of Y4 that correspond

to simple non-Abelian gauge groups G in the dual F-theory compactification on Y4. The

location of these non-Abelian singularities defines a divisor S in B3. In the simple analysis

that follows we will assume that there is only one stack of seven-branes on B3 that describe

7In fact the basis formed by ηI− and ξK is complete but also degenerate as a result of the projection

matrix PI−
J− which appears in the definition of ηI− .
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a non-Abelian gauge group and so S has only one connected component. This significant

simplification by no means represents the most general setup which we will not address

here. As a result the actions that follow will not represent the most general possibilities.

The Poincaré dual two form [S]B3 lifted to Y4, admits the expansion b
α−
S ωα− defining

constant coefficients b
α−
S . As noted above, [∆]B3 and hence [S]B3 have negative parity under

σ so only the ωα− appear in the expansion. The non-Abelian singularities are resolved by

introducing new two-forms ωi, i = 1, . . . , rank(G). Assuming the absence of Abelian gauge

factors one has rank(G) = h1,1(Y4) − h1,1(B3) − 1. Let us note that all rank(G) forms ωi
are in fact negative under σ∗. To infer this we stress that each exceptional divisor is a P1-

fibration over the seven-brane locus in the base B3. Within B3 the seven-brane divisor S

and its volume form are positive under σ by Poincaré duality.8 Since the anti-holomorphic

σ reverses the sign of the volume form of the P1-fiber, we conclude that the exceptional

divisors and their Poincaré dual two-forms ωi are negative under σ. In summary, we find

that the two-forms representing H2(Y4) are split according to

(ωI+) = (ωα+) , (ωI−) = (ω0, ωα− , ωi) . (3.42)

This implies that the truncated spectrum of the 3d N = 1 theory is given by h1,1
+ (B3)

vectors Aα+ , and h1,1(Y4)− h1,1
+ (B3) + h3,1(Y4) scalars vI− = (v0, vα− , vi) and ϕK.

One can now systematically study all intersection numbers that are not forbidden by

the σ-parity. Since the volume form on Y4 is positive under σ∗ the vanishing intersection

numbers KIJKL =
∫
Y4
ωI ∧ ωJ ∧ ωK ∧ ωL are

KI+J+K+L− = 0 , KI+J−K−L− = 0 . (3.43)

Combined with the intersection structure on elliptic fibrations one thus finds that for the

potential K̂ = K|Lσ the relevant non-vanishing intersections are

K0α−β−γ− ≡ κα−β−γ− , K0α−β+γ+ ≡ κα−β+γ+ , (3.44)

Kijα−β− = −Cijbγ−S κγ−α−β− , Kijα+β+ = −Cijbγ−S κγ−α+β+ ,

where κα−β−γ− and κα−β+γ+ are the triple intersections on B3. The matrix Cij is the

Cartan matrix of the non-Abelian gauge group G. Let us stress that there are numerous

other intersection numbers that are in general non-zero on Y4/σ. In particular, intersection

numbers involving (ω0)n, n > 0 will play a crucial role when matching the F-theory and

M-theory reduction at the one-loop level [36–38].9 Crucially, this requires a redefinition of

the coordinates

φ̂α− = φα− +
1

2
Kα−φ0, (3.45)

where −Kα− are the coefficients of c1(B3) in the basis ωα− [39].

The splitting of the vI− coordinates then induces a splitting of the constrained Spin(7)

moduli φI− defined in (3.30). After performing the redefinition (3.45) we may then move

8Recall that formally σ(B3) = −B3, since σ reverses the orientation of B3.
9They can be reduced by repeatedly using (ω0)2 = −c1(B3) ∧ ω0.
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into a set of redefined coordinates that are appropriate for performing the F-Theory lift.

Firstly, φ0 is mapped the length of the interval and we set

1

r2
= φ0V− 3

4 , (3.46)

where r is the circumference of the circle in S1/Z2. Hence, φ0 captures degrees of freedom

of the 4d metric. The φ̂α− become 4d scalars, while the φi are the scalar part of 4d vectors

with index along the interval φib = Ai3. It is convenient to set

φ
α−
b = (φ0)

1
3 φ̂α− − 1

2
(φ0)−

2
3 bαCijφ

iφj , Vb = (φ0)
1
2V 9

8 , φib = (φ0)−1φi . (3.47)

These redefinitions can be motivated by the fact that, when taking the F-theory limit with

large r, the constraint (3.31) only depends on φ
α−
b , while r and φib are unconstrained. In

addition, following [11] the vectors Aα+ will become 4d scalars with a real shift symmetry.

We will consider the lift more explicitly in section 4.2.

Let us finally also consider the flux-induced Chern-Simons couplings ΘI+J+ and po-

tential F , given in (3.35) and (3.36). From the split (3.42) we infer that the Chern-Simons

coupling Θα+β+ only involves vectors that become 4d scalars and therefore, by the consid-

erations of [39], have to be absent

Θα+β+ = 0 . (3.48)

The real potential F can be expressed in terms of ΘI−IJ as

F =

∫
Y4

G4 ∧ Re(CΩ) +
1

8
V−1ΘI−J−φ

I−φJ− . (3.49)

Again using (3.42) and following [39] one has to additionally impose

Θ00 = 0 , Θ0α− = 0 , Θ0i = 0 , Θα−β− = 0 , Θiβ− = 0 . (3.50)

This choice of fluxes allows that a 4d theory might exist, no fluxes are included in reduction

from four to three dimensions, and the gauge-group G is un-broken in four dimensions.10

The resulting potential F will contain a term that is classical on the F-theory side and a

one-loop contribution as we will discuss at the end of the next section.

4 F-theory on Spin(7) manifolds

In the previous section we studied M-theory on Spin(7) manifolds and later focused on

examples constructed as quotients of elliptically fibered Calabi-Yau fourfolds by an anti-

holomorphic involution. As a next step we discuss in subsection 4.1 the dual interval

reduction of a 4d theory. Concretely, we will identify the boundary conditions on various

4d fields on an interval that have to be imposed in order to make a duality of the form (1.1)

possible. Aspects of the non-supersymmetric 4d effective theories are discussed in subsec-

tion 4.2. We particularly focus on the couplings of the uncharged scalar fields that are real

both in three and four dimensions and satisfy Neumann boundary conditions at the ends

of the interval.
10These conditions will be modified in the presence of U(1) gauge factors [36–38].
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4.1 Dimensional reduction of the 4d theory on an interval

One of the crucial ingredients of the new kind of M-theory/F-theory duality claimed in (1.1)

is the use of an interval in the dimensional reduction from four to three dimensions on

the F-theory side of the duality. In this subsection we discuss some general features of

dimensional reduction on an interval and consider candidate 4d parent actions.

Due to the presence of an interval I = S1/Z2 in (1.1) the up-lift of a 3d theory onM3 to

a 4d theory onM4 =M3× I is further complicated, since boundary conditions have to be

given for each field. These have to be appropriately specified in order that the duality sug-

gested in (1.1) holds. In the following we will discuss vectors, fermions, and scalars in turn.

Let us first consider a 4d Abelian vector Am. Since its components satisfy a second-

order equation of motion we can choose Dirichlet or Neumann conditions. This choice,

however, has to be such that each component of the field strength Fmn has a definite

parity under the Z2 action. In particular, inspection of the the mixed component

Fµ3 = ∂µA3 − ∂3Aµ (4.1)

reveals that if Aµ satisfies Dirichlet boundary conditions A3 has to satisfy Neumann bound-

ary conditions, and vice versa. This gives the two choices

(A) D : Aµ |∂M4
= 0 and N : ∂3A3 |∂M4

= 0 , (4.2)

(B) D : A3 |∂M4
= 0 and N : ∂3Aµ |∂M4

= 0 ,

that may be made without over constraining the equation of motion. When carrying out

the interval reduction the Dirichlet boundary conditions will remove the would-be zero

mode of the corresponding 4d field. So fields with Dirichlet boundary conditions will not

be seen in the 3d effective theory. This implies that reduction of Am can yield either one

massless scalar or one massless vector in the 3d effective action, but not both. This fact can

be extended to non-Abelian gauge fields for a 4d gauge group G. To do this let us denote

the generators of the algebra of G by (Ti, TI), with Ti labeling the Cartan generators. Then

for each vector Aim, A
I
m one can choose different boundary conditions.

To conform with the theory arising in the Spin(7) reduction it turns out that one

needs to chose option (A) in (4.2) for the Cartan vectors to keep 3d scalars φib = Ai3
and option (B) for the non-Cartan vectors in order to keep 3d vectors AIµ.11 In this case

one notes that the non-Cartan 3d vectors AIµ acquire a mass term for which the mass is

determined by the vacuum expectation value of the 3d massless scalars φib. This mass

term arises in the effective theory from the reduction of the gauge kinetic term. This

analysis is consistent with the fact that the 3d theory arising in the reduction described in

section 3.3 is a Wilsonian effective action with no non-Cartan vectors and only the scalars

φi, i = 1, . . . , rank(G). Let us stress, however, that we are still able to extract the classical

couplings using the Spin(7) reduction by uplifting the couplings of the scalars φib. The

Lorentz transformations and gauge transformations of the 4d vector mix all components

11These boundary conditions imply that the gauge coupling constant should be effectively assigned odd

parity under the Z2 action.

– 20 –



J
H
E
P
0
1
(
2
0
1
4
)
1
1
2

of Aim, A
I
m and thus allow to recover the couplings of the 4d vectors from the couplings of

φib, for a large interval on which these symmetries are restored.

Let us next consider a 4d fermion given by a Majorana spinor χ. Since its equations

of motion are first-order, we can only impose a Dirichlet boundary condition of the form

1

2
(1± γ3)χ

∣∣∣∣
∂M4

= 0 (4.3)

without over constraining the dynamics. The sign is related to the intrinsic parity of the

spinor under the Z2 action on the interval. For both choices, reduction of χ furnishes

a massless Majorana spinor in the 3d effective action. This implies that when focusing

on zero modes, the degrees of freedom of the fermions are halved. However, there is no

ambiguity when uplifting a fermion from three to four dimensions. 4d Lorentz invariance

implies that the 3d dynamics of the spinor encodes its 4d couplings. A similar argument

applies to the gravitino.

The comparison can, however, be more involved if the 4d fermion is charged under the

gauge group G. In an interval reduction the Coulomb branch scalars can give dimensionally

reduced fermions a mass proportional to φib if the coupling to φib is non-vanishing. This

implies that these fermions are not part of the low-energy effective theory and have to be

integrated out. As with the vectors we find that the Cartan fermions remain dynamical

in the 3d low-energy effective theory. These then comprise the 3d, N = 1 supersymmetric

partners of φib moduli.

Finally, we turn to the reduction of a 4d scalar field φ with standard two-derivative

action yielding a second-order equation of motion. As a result, we can impose Dirichlet or

Neumann boundary conditions

φ |∂M4
= 0 or ∂3 φ |∂M4

= 0 (4.4)

without over constraining the equation of motion. As a result the degree of freedom of

a 4d scalar might be entirely lost (for Dirichlet b.c.) or kept (for Neumann b.c.) when

considering only the zero mode in the 3d effective theory. This is in contrast to the vectors

and fermions discussed above. In other words, one can add an arbitrary number of Dirichlet

scalars to a candidate 4d action without changing the 3d effective theory on a small interval.

These features of interval reductions lead us to first specify a minimal 4d Lorentz

invariant ansatz for the 4d action containing only those couplings that can be uniquely

fixed by comparison with the 3d N = 1 zero mode action. This non-supersymmetric

theory is given to quadratic order in the fermions by

S
(4)
Min =

∫
d4x e

[
− 1

2
R− 1

2
GAB ∂mϕA∂mϕB −

1

4
f Tr(FmnF

mn)− V (4)

− 1

2
ψ̄mγ

mnrDnψr −
1

2
GABχ̄AγmDmχ

B − 1

2
f Tr(λ̄γmDmλ) +

1

4
f ψ̄mγ

rsγmTr(λFrs)

+
1

2
√

2
GABψ̄mγnγmχADnϕ

B +
1

2
A1ψ̄mγ

mnψn +
1√
2
A2
Aψ̄mγ

mχA

− 1

2
A3
ABχ̄

AχB +
1

4
√

2
A4
ATr(Fmnλ̄)γmnχA − 1

2
GABA4

AA
2
BTr(λ̄λ)

]
, (4.5)
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where the covariant derivatives of the Majorana fermions are given by

Dmψn = ∂mψn +
1

4
ωmrsγ

rsψn , Dmλ = ∂mλ+
1

4
ωmrsγ

rsλ+ [Am, λ] ,

Dmχ
A = ∂mχ

A +
1

4
ωmrsγ

rsχA +Dmφ
BΓBC

AχC . (4.6)

In this action GAB is a real metric for the scalar target space and V (4), f are real functions

of the scalars ϕA. In addition to this A1, A2
A, A3

AB and A4
A are further functions of ϕA

that will later be determined by comparing the reduction of this action with the 3d result.

As this action is not supersymmetric we could in principle have made a much more general

proposal for the couplings that appear. However, it will turn out that (4.5) is sufficiently

general to allow for a matching with the 3d theory to be performed. For convenience we

note here that performing this calculation one finds that the potential is given in terms of

a real function F by

V (4) = 2GAB∂AF∂BF − 3F2 , (4.7)

and that the A functions are given in terms of F and f by

A1 = F , A2
A = ∂AF , A3

AB = DA∂BF −
1

2
GABF . A4

A = ∂Af . (4.8)

The action S
(4)
Min given in (4.5) should be used with caution. It was constructed as the

minimal functional consistent with 4d Lorentz invariance that yields the 3d action upon

interval reduction. Note that this construction does not ensure conservation of the currents

coupling to gravitini and gauge fields. This is needed in a consistent theory [40] and can

be achieved by a suitable extension including supersymmetry [41]. Furthermore, we point

out that the interpretation of (4.5) as a Wilsonian effective action is questionable, since

it might not capture the dynamics of all light degrees of freedom. All scalars satisfying

Dirichlet boundary conditions have only massive excitations for a finite interval lenght and

are dropped from the action (4.5). For finite interval length these fields are strictly speaking

not moduli even in the absence of fluxes. We will comment further on these Dirichlet scalars

below, but will not discuss their impact in detail. They might, however, restore 4d, N = 1

supersymmetry in the 4d bulk if the size of the interval is taken to infinity.12

A possible 4d Wilsonian effective action S
(4)
W completing S

(4)
Min on a large interval could

be given by a N = 1 Lagrangian L(4)
N=1 for F-theory on the original Calabi-Yau space

Y4 supplemented by the boundary conditions or a boundary action L(3). Hence, it takes

the form

S
(4)
W =

∫
M4

L(4)
N=1 +

∫
∂M4

L(3) . (4.9)

The restauration of the Calabi-Yau moduli space from the moduli space of the Spin(7)

manifold in the large interval limit would be very non-trivial. In a follow-up paper we will

explore this treatment further [23].

12We are grateful to Eran Palti and Ralph Blumenhagen for useful discussions on this point.
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Let us stress that the action (4.5) neglects the couplings of charged matter that will

be present in a general F-theory compactification. Furthermore, we have not displayed the

terms of higher order in the fermions. These can be added by making an Ansatz for these

couplings and reducing them to three dimensions with the boundary conditions described

above. The coefficients are then determined by comparing the zero mode result to a general

3d, N = 1 theory in which the higher fermionic couplings are known in terms of the 3d

N = 1 characteristic functions determined by the reduction of the terms in (4.5).

As stressed above the minimal action (4.5) could be modified by adding an arbitrary

number of scalars satisfing Dirichlet boundary conditions without modifying the classical

3d low-energy effective action for the zero modes. The question of determining the true

4d Wilsonian action can thus be not resolved from a purely supergravity perspective. A

similar problem occurs for the ambiguities encountered in the up-lift of 3d N = 2 scalars

on a circle in the standard M-theory F-theory duality. In such an up-lift a 3d scalar can

either be part of a 4d N = 1 vector or chiral multiplet. The decisive information in

determining this ambiguity arises form the M-theory to F-theory limit and the geometry

of the Calabi-Yau fourfold. We will discuss this point further in what follows.

4.2 Effective action of F-theory on Spin(7) manifolds

Having described the 3d effective theory obtained for the quotient torus fibered Spin(7) ge-

ometry in subsections 3.2 and 3.3 and the details on the interval reduction in subsection 4.1

we are now in the position to perform the reduction and read off the couplings of the 4d

theory (4.5). Clearly, proposing that the coupling functions take the same form in the 4d

theory is a speculative part of the analysis. It amounts on the one hand to sending the size

of the interval I to infinity, and on the other hand shrinking the fiber volume. This means

that one has to be performing the M-theory to F-theory limit. In supersymmetric F-theory

compactifications it has become clear over the last years [11, 36, 42] that many couplings in

the 3d theory obtained from M-theory appear to also have an F-theory interpretation. Mo-

tivated by these advances we perform a similar oxidation for the Spin(7) compactification.

However, it should be stressed that we will only talk about zero modes in the following

and many of the subtleties are, in fact, hidden in the treatment of massive modes.

The first step is to implement the F-theory limit explicitly. Note that not all couplings

arising in the M-theory reduction are classical from the F-theory perspective on a small

compact space. Various couplings can be induced at loop level when integrating out massive

Coulomb branch and Kaluza-Klein modes. To extract the classical terms only, one can

assert scalings to the various fields as suggested in [11]. The correct scalings are [42]

v0 → εv0 , vα− → ε−1/2vα− , vi → ε1/4vi , r → ε−3/4r . (4.10)

They ensure precisely that the couplings with intersection numbers (3.44), i.e. K0α−β−,γ− ,

K0α−β+,γ+ and Kijα−β− ,Kijα+β+ are surviving the ε→ 0 limit. Translated into the coordi-

nates φI− one thus finds

φ0 → ε9/8φ0 , φα− → ε−3/8φα− , φi → ε3/8φi , V → ε−1/2V . (4.11)
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Combining these scalings with the coordinate redefinitions (3.47) one extracts the leading

terms of all fields. We first introduce the φ
α−
b defined as the leading term in (3.47). In the

limit the normalization constraint (3.31) translates to the condition

Nb ≡
1

3!
κα−β−γ−φ

α−
b φ

β−
b φ

γ−
b = 1 . (4.12)

This implies that only h1,1
− (B3)−1 coordinates φ

α−
b are independent. The missing degree of

freedom is encoded by the base volume Vb arising as leading term in the definition (3.47).

After the ε → 0 limit the resulting 3d action can be matched with a the reduction of

a 4d theory reduced on an interval of length r with boundary conditions introduced in

subsection 4.1. This allows us to read off the data of the 4d theory from the 3d action.

We first note that all couplings containing 3d vectors or fermions are formally lifted

from 3d to 4d in a Lorentz compatible way. For example, the kinetic terms in (3.1) for

the 3d fermions χα− , which are in the same 3d, N = 1 multiplets as the scalars φ
α−
b , are

given by
1

2
g̃α−β−χ̄

α− /Dχβ− . (4.13)

These are lifted by completing the χα− into 4d fermions and matching g̃α−β− with the

reduction of the equivalent 4d terms after performing the reduction and Weyl rescaling as

well as implementing the ε→ 0 limit with (4.11). In this way we can read off

Gα−β− = (g̃α−β−)ε=0 = 4V3
b

∫
B3

ξb
α− ∧ ∗ξb

β− , (4.14)

where the four-forms ξb
α− are given by

ξb
α− =

1

4
V−

4
3

b Pα−
γ−ωγ− ∧ ωβ−φ

β−
b , Pα−

β− = δα−
β− − 1

3!
κα−γ−δ−φ

γ−
b φ

δ−
b φ

β−
b . (4.15)

The other components of the 4d scalar metric GAB appearing in (4.5) may then be de-

duced in a similar way by expanding ϕA = (Vb, φα− , ϕK, ζα+) and making the comparison

with (3.1) and (3.32). This gives GVbVb = 4
6V−2

b and

GKL = (g̃KL)ε=0 = 4V3
b

∫
B3

ξb
K ∧ ∗ξb

L , Gα+β+ = (hα+β+)−1
ε=0 =

(
1

2Vb

∫
B3

ωα+ ∧ ∗ωβ+
)−1

,

(4.16)

Next we can consider the comparison of the kinetic terms for the scalars φi with the

reduction of the 4d vector kinetic terms. In this way we find that the coupling function f

is given by

fCij = (r2gij)ε=0 = V2/3
b Cijb

α−
S κα−β−γ−φ

β−
b φ

γ−
b . (4.17)

Similarly the reduction of the potential for the 4d theory may be compared with the general

3d, N = 1 result (3.2) from which we find (4.7) where the function F is related to the

function F , which determines the potential of the quotiented Calabi-Yau reduction, by

F = (rF )ε=0 =
(
eK

F/2

∫
Y4

Re(Ω) ∧G4

)
Lσ

. (4.18)
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where KF = −2 logVb − log
∫
Y4

Ω ∧ Ω̄. Finally we note that by comparing the fermionic

couplings in the reduction of (4.5) with (3.1) we find (4.8).

We stress that in contrast to a supersymmetric effective theory the couplings of the

bosons are less restricted and holomorphicity does neither protect the generating poten-

tial (4.18) nor the gauge coupling (4.17). It would be desirable to check if 3d, N = 1

supersymmetry helps to nevertheless ensures additional control over the corrections to

these couplings on a finite size interval.

In the preceding analysis we did not include charged matter. Clearly, in a general F-

theory compactification with fluxes chiral matter will be part of the 4d massless spectrum.

This matter can become massive when dimensionally reduced on an interval if the scalars

φib get a vacuum expectation value. This implies that these have to be integrated out in the

3d low-energy effective theory. In contrast to the 3d, N = 2 theories arising in Calabi-Yau

fourfold compactifications [36–38] there is no one-loop contribution of chiral matter to 3d

Chern-Simons terms in our 3d, N = 1 setup. However, part of the 3d potential F will

admit a one-loop term

F ⊃ F class + F 1−loop . (4.19)

This classical term will lift to the 4d superpotential (4.18) in our simple configurations with

only one unbroken non-Abelian gauge group. The one-loop term can be obtained by consid-

ering the general Spin(7) potential F with (3.36), imposing that up-lift conditions (3.50),

and keeping the term that vanish in the limit ε→ 0. This leads to the identification

F 1−loop ?
=

1

8
V−2

∫
Z4

J ∧ J ∧G4 =
1

8
V−1Θijφ

iφj . (4.20)

It would be very interesting to check this match for an explicit example by computing

both the general one-loop contribution in field theory and the flux intersection Θij of the

form (3.10).

Let us close with a brief comment on the Kaluza-Klein modes in the interval reduc-

tion. In the M-theory to F-theory duality on elliptically fibered Calabi-Yau manifolds the

Kaluza-Klein modes map to M2-branes that wrap also the elliptic fiber. This implies that

these states are charged under the Kaluza-Klein vector. In quotient torus fibered Spin(7)

manifolds it is therefore crucial to investigate M2-brane states wrapping the fiber. Since,

in the generic case of figure 3, the torus is mapped to an orientation reversed image, such

M2-branes states appear in pairs. It remains to be checked which effects these have on the

supersymmetry of the 3d and 4d effective theories. It is an important task to investigate

these massive states to gain deeper insights into the correct choices of boundary conditions

on the interval and the Kaluza-Klein compactification from 4d to 3d.

5 Comments on weak coupling and charged matter

This section is devoted to the discussion of some aspects of the weak coupling limit for

F-theory on Spin(7) manifolds. In particular, we focus on the case in which the Spin(7)

manifold is a quotient torus fibration as described in section 2. We propose a Type IIB

realization of the setup and we briefly comment on the charged matter spectrum in this

string theory picture.
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5.1 Weak coupling interpretation

In what follows we describe a proposal for the Type IIB realization of the weak coupling

limit of F-theory on Spin(7) manifolds constructed as anti-holomorphic quotients of Calabi-

Yau fourfolds.

Before the anti-holomorphic involution is implemented we have F-theory on the fourfold

Y4 with base B3. In the weak coupling limit [43] this becomes a Type IIB orientifold on

a Calabi-Yau threefold Y3 acted upon by a holomorphic involution σhol in such a way

that B3 = Y3/σhol. After the implementation of the anti-holomorphic involution σ on

Y4 on the M-theory side it is natural to expect a further quotient of the Type IIB setup

under the associated involution σ acting on the base B3. In summary, we propose that

the weak coupling picture of the setup under examination is furnished by Type IIB on

the Calabi-Yau threefold Y3 quotiented both by a holomorphic involution and by an anti-

holomorphic involution.

To make this proposal more precise we need to determine the intrinsic parities of

Type IIB fields under the action of the anti-holomorphic involution. As in the standard

discussion of the M-theory/F-theory duality [7] it is convenient to start with the simple

case of M-theory on a product manifold M9 × T 2. The eleven-dimensional metric takes

the form

ds2
11 =

v

τ2

[
(dx+ τ1dy)2 + τ2

2 dy
2
]

+ ds2
9 , (5.1)

where x, y are coordinates one the torus, which has modular parameter τ = τ1 + iτ2. M-

theory is reduced on the circle parametrized by x to get Type IIA. The y-circle is the

T-duality circle. In this factorized case we consider an anti-holomorphic involution σ that

acts separately on M9 and T 2. More precisely, σ acts on a complex three-dimensional

submanifold B3 ofM9 as described in section 2.2. Equation (2.16) applied to the case of a

constant fibration shows that τ has to be purely imaginary in order to have compatibility

with the anti-holomorphic involution. As a result, the anti-holomorphic action z → z̄,

where z = x+ τy, is equivalent to x→ x, y → −y.

The above observation is useful in establishing the intrinsic parities of Type IIB fields

under the action of σ by means of the following heuristic argument. To begin with, we

associate negative intrinsic parity to the y coordinate and positive intrinsic parity to the x

coordinate. Next, we observe that all M-theory fields have positive parity under σ. Finally,

we use the standard chain of dualities to identify the M-theoretical origin of each Type IIB

field and deduce its parity.13 This step is summarized in table 1 together with our findings

for the intrinsic σ-parities.

In summary, we conjecture that the Type IIB weak coupling picture of the Spin(7)

compactifications we are studying is obtained by taking the quotient under the symmetry

group generated by the transformations

Ohol = (−)FL Ωp σhol , O = (−)FL P3 σ̂ . (5.2)

13Our application of Buscher’s rules is purely schematic and is intended only as a tool to read off the

σ-parities of Type IIB fields.
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IIB IIA M σ-parity

φ φ gxx +

gµν gµν gµν

gµy (B2)µy (C3)µyx +

gyy gyy gyy

(B2)µν (B2)µν (C3)µνx −
(B2)µy gµy gµy

C0 (C1)y gxy −
(C2)µν (C3)µνy (C3)µνy −
(C2)µy (C1)µ gµx

(C4)µνρy (C3)µνρ (C3)µνρ −

Table 1. Schematic summary of type IIB fields with Type IIA duals, M-theory origin, and intrinsic

σ-parity. Indices µ, ν, ρ refer to the nine-dimensional manifold M9, x refers to the direction of the

M-theory circle, y refers to the direction of the circle along which T-duality is performed.

The expression for Ohol is the familiar orientifold action, with left-moving space-time

fermion number FL and world-sheet parity Ωp. The expression for O deserves some com-

ments. Firstly, the inclusion of the factor (−)FL is motivated by the intrinsic σ-parities of

table 1. Secondly, we have decomposed the action of σ into two involutions σ̂ and P3. On

the one hand, the involution σ̂ is the anti-holomorphic involution on Y3 determined by the

action of σ on B3. On the other hand, the involution P3 is the reflection of one spatial

direction in R1,3,

P3 : (x0, x1, x2, x3)→ (x0, x1, x2,−x3) . (5.3)

Without the factor of P3 we would not have a symmetry of Type IIB. Indeed, the anti-

holomorphic involution σ̂ induces a Pin-odd transformation of ten-dimensional spinors,

which has to be counterbalanced by the Pin-odd action induced by P3 to ensure compati-

bility with the definite chirality of fermions in Type IIB supergravity. Note that the inclu-

sion of P3 is consistent with the interpretation of x3 as the coordinate that parametrizes

the interval that decompactifies in the F-theory limit. A more detailed study of the O
involution in the context of string theory on toroidal orientifolds is desirable and is left for

future investigation.14

We conclude this section by analyzing the up-lift of the 3d action for Kähler and

complex structure moduli. This will establish a match of the 3d Spin(7) moduli with the

Neumann scalars of a 4d theory. Let us start with the Kähler moduli. In Type IIB language

these are given by

Tα =
1

2!

∫
Y3

ωα ∧ J2
b + i

∫
Y3

ωα ∧ C4 , (5.4)

14Note that the action of O is reminiscent of non-standard orbifold actions recently considered in [44].
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where now ωα and Jb are understood as (1, 1)-forms on the double-cover Y3 of the base B3.

Recall the split introduced before (3.41) of H2(B3) that translates into a split of H2(Y3)

into positive and negative subspaces under the action of σ̂∗. Note also that an expression

of the form
∫
Y3
λ6 survives the σ̂-projection only if λ6 is negative under σ̂∗. Using table 1

one finds that C4 has negative parity under P3 σ̂. This implies that the 4d moduli after

the O quotient should transform under P3 as

P3-even : ReTα− , ImTα+ , P3-odd : ReTα+ , ImTα− , (5.5)

The P3-even scalars match exactly with the 3d moduli that survive the σ quotient on the

Calabi-Yau fourfold Y4 on the M-theory side.

Let us now turn to complex structure moduli. From a Type IIB perspective, those

correspond to complex structure moduli of the threefold Y3, D7-brane moduli, and the

axion-dilaton. The action of the anti-holomorphic involution σ̂ on Y3 is such that

σ̂∗Ω3,0 = e2iθ Ω3,0 . (5.6)

This is completely analogous to the corresponding σ-action on the fourfold Y4. Impos-

ing (5.6) one infers that the P3-even complex structure moduli span a real subspace of the

4d N = 1 moduli space. With similar arguments it is possible to check the correspon-

dence between 3d Spin(7) moduli and 4d P3-even moduli related to D7-branes and the

axion-dilaton.

It is important to highlight the generic presence of P3-odd scalars. Such scalar de-

grees of freedom cannot have a constant non-vanishing profile along the x3 direction, and

therefore do not correspond to moduli in the 4d theory. From a 4d perspective on a finite

interval such scalars arise only as massive excitations. In summary, we can state that

the orientifold picture suggests that the 4d moduli, which are P3-even, are in one-to-one

correspondence with the Spin(7) moduli in the 3d action (3.32). The interpretation of the

P3-odd scalars from an M-theory perspective requires a better understanding of M2-brane

states in our setup and seems not to be accessible within the context of 11d supergravity.

5.2 Aspects of charged matter

The effective action derived in the previous sections does not furnish an explicit descrip-

tion of the charged matter spectrum of F-theory on the class of Spin(7) manifolds under

consideration. Charged matter becomes massive after the gauge group is broken to the

Coulomb branch and is integrated out.

To get information about charged matter we can alternatively start looking at the

weak coupling limit of our F-theory setup, discussed in the previous section. It can contain

D7-branes that wrap holomorphic cycles in the threefold Y3 and have (1, 1)-type world-

volume flux to ensure the presence of 4d chiral fermions. As we have seen, the crucial new

ingredient is the anti-holomorphic involution σ̂ combined with the transformation P3 to

have a symmetry of Type IIB.

We can specialize further and consider a point in moduli space in which the Calabi-

Yau threefold Y3 is realized as a toroidal orbifold. In this toroidal setups the embedding
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of D7-branes is described by one linear holomorphic equation for the flat complex coordi-

nates of the torus. Information about the charged matter spectrum can be obtained by

first principles, by quantizing open strings stretching between D7-branes. We can make

some general remarks on the interplay between holomorphically embedded D7-branes and

the anti-holomorphic involution. First of all, the image branes are also holomorphically

embedded, if the anti-holomorphic action is linear in the flat coordinates of the torus. Sec-

ond of all, the world-volume flux of an image brane is still of (1, 1)-type, but its sign is

reversed compared to the original brane. These considerations imply that if we start with

a supersymmetric setup that contains only holomorphic branes with (1, 1) fluxes, these

features are not spoiled by the introduction of image branes under the anti-holomorphic

involution. Any intersection of any two branes or image branes possesses at least one com-

plex massless scalar. Of course, one has to take into account the projection onto invariant

states to determine if supersymmetry is actually present, or if different number of bosonic

and fermionic massless states is projected out.

It is possible to argue that the robust features of the charged matter spectrum are

insensitive to the details of the full compactification setup, and only depend on the local

geometry around the intersection of the two D7-branes. This can be effectively described

by looking at a non-compact model with flat D7-branes in R1,3 × C3. It captures the

neighborhood of a fixed locus on the base B3. Therefore the anti-holomorphic action σ in

local coordinates can be taken to be one of the maps given in (2.11). If σ̂ does not square

to the identity, its square is included as an additional holomorphic orbifold action, in such

a way that σ̂2 = 1l in the quotient space. We have performed explicitly the projection onto

invariant states for the two linear actions in (2.11), and we have compared the result with

the purely orientifold projection without the anti-holomorphic involution σ̂ and without

P3. We have found that in both cases the same number of bosonic and fermionic degrees of

freedom survives the projection. This signals that the charged matter spectrum is N = 1

supersymmetric also after the anti-holomorphic orbifold action is taken into account.

It can be checked that, irrespectively of the position of the D7-branes and their images

under the action of σ̂, no open string state can be invariant under the action of σ̂P3, but

rather that open string states are always swapped in pairs. This seems to prevent an

undemocratic truncation of the spectrum in such a way that the same number of bosonic

and fermionic degrees of freedom is obtained. This general feature can be related to a

mismatch between holomorphic embedding and anti-holomorphic involution. On the one

hand, charged matter is localized at the intersection of two D7-branes, which is a complex

one-dimensional holomorphic subspace of the internal six-torus. On the other hand, the

fixed locus of the anti-holomorphic involution is either a real one-dimensional subspace

(see the first action in (2.11)), or a real three-dimensional subspace incompatible with the

holomorphic structure (see the second action in (2.11)). It is therefore impossible to have

the intersection inside the fixed locus of the anti-holomorphic involution.

There are many other interesting open questions that can be addressed in toroidal

models. For instance, it might be possible to relate closed string twisted sectors of the

anti-holomorphic orbifold action to resolution modes of the Spin(7) geometry. We leave

these investigations for future research.
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6 Conclusions

In this paper we studied aspects of 4d effective theories arising from F-theory on Spin(7)

manifolds. To approach this problem we proposed the duality (1.1) between an M-theory

compactification on a certain fibered Spin(7) geometry and F-theory on a resolved version

of this geometry multiplied by an interval, in the shrinking fiber limit. This provides the

opportunity to study 4d theories from F-theory by using 3d minimally supersymmetric

theories. We argued that these Spin(7) compactifications of F-theory can be approached

via M-theory, when definite boundary conditions for the various 4d fields on the interval

are chosen. Our analysis focused on the comparison of the 3d, N = 1 zero mode actions on

the M-theory and F-theory side. Up-lifting to four dimensions is the most conjectural step.

However, making an appropriate minimal ansatz for the 4d theory (4.5) on a finite interval,

its couplings and general features can be determined compatible with the Spin(7) reduc-

tion of M-theory. In particular one identifies the 4d scalar potential (4.7) and fermionic

couplings (4.8). The study of the complete 4d Wilsonian effective action is complicated by

the fact that in the F-theory limit M2-brane states will become light and can introduce

new 4d degrees of freedom. These can be light in the limit of a large interval and might

help to restore 4d, N = 1 supersymmetry away from the interval boundaries. This would

be in the same spirit as [45].

To provide evidence for the M-theory to F-theory duality it was crucial to specify a

class of Spin(7) manifolds for which this duality can be analyzed. Concretely, we employed

Spin(7) manifolds that are obtained by quotienting an elliptically fibered Calabi-Yau four-

fold by an anti-holomorphic and isometric involution σ. We called the resulting manifolds

quotient torus fibered Spin(7) manifolds. Consequently, the 3d effective theories arising

when compactifying M-theory on these quotient torus fibrations respect only the minimal

number (N = 1) of supersymmetries. These can be obtained by truncating the N = 2

theory arising in the Calabi-Yau fourfold reduction of M-theory. More generally, we have

revisited the 3d, N = 1 effective theories arising in M-theory compactifications on smooth

Spin(7) manifolds with four-form fluxes. We determined the characteristic data of the

zero mode theories in terms of the internal geometry. The 3d theories obtained from the

quotiented Calabi-Yau spaces were shown to comprise a special class of such 3d, N = 1

theories. The same class of theories was then shown to arise from an interval reduction

of specific 4d non-supersymmetric theories if appropriate boundary conditions on the 4d

fields are imposed.

The spectrum and couplings of the 4d theories were constrained to yield a 3d zero

mode action that matches with the Spin(7) reduction. This imposes stringent constraints

on the allowed 4d theories. We have argued that 4d vectors can still be grouped with

fermions similar to 4d, N = 1 vector multiplets. The classical couplings of the vector fields

and their fermionic partners are determined by 3d couplings of the 3d, N = 1 Coulomb

branch scalars φi by Lorentz symmetry and gauge symmetry. These symmetries should

be restored in the interior of a very large interval. Similarly, one can proceed with the

couplings of the 4d metric and gravitino that are constrained by the 3d couplings and 4d

Lorentz symmetry. It should be stressed, however, that the 4d couplings are no longer
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supersymmetric in the minimal action (4.5) that can be unambiguously determined from

the 3d M-theory reduction. This is due to the fact that one of the two real scalars in a

4d N = 1 chiral multiplet would need to arise in the M-theory to F-theory limit from

M2-brane states. In fact, we argued that one can map the Spin(7) moduli to only one

of the real scalars in these multiplets. The kinetic terms of the real moduli scalars and

the form of the scalar potential were discussed in section 4.2. They are less constrained

than in 4d, N = 1 theories, but still inherit special properties from the class of Spin(7)

geometries used in our work. Since for our construction there is always an underlying

Calabi-Yau fourfold, 4d N = 1 supersymmetry might be locally present away from the

boundaries. To complete this picture it would be desirable to study Kaluza-Klein modes

arising in the interval compactification and obtaining a 3d action including the dynamics

of all such modes.15

In should be noted that the constructions of Spin(7) manifolds originally proposed

in [12] also included isolated orbifold points coinciding with the fixed points of σ. Showing

that these can be resolved in a Spin(7)-compatible fashion was a crucial task in [12]. We

have not included a study of these modes in this work, but it would be very interesting

to understand how they modify the 4d effective theory. In particular, we found that if

σ has only isolated fixed points on Y4 that the torus must be pinched over these points.

This suggests an interesting link between the gauge theory dynamics and the singularities

that need to be resolved in a Spin(7)-compatible way to obtain a smooth geometry. As for

ordinary non-Abelian gauge theory singularities of elliptically fibered Calabi-Yau fourfolds,

F-theory might be well-defined on the singular Spin(7) geometry if one can identify the

new light states arising near the singularities.

A complete understanding of the supersymmetry breaking in our proposed approach

will require a more detailed understanding of the 4d Wilsonian effective action. An im-

portant role in the supersymmetry breaking is played by the presence of the boundaries.

If one assumes a 4d Wilsonian action of the form (4.9) the scale at which the 4d N = 1

supersymmetry is broken is related to the size of the inteval.

A further interesting open problem is to understand which corrections the 4d action

of scalars in our reduction will admit. In particular, the scalar fields φαb and the volume

Vb of the base B3 are massless in the Spin(7) holonomy reductions presented here and it

would be interesting to see which effects render these fields massive as, similarly to Calabi-

Yau fourfold compactifications, G4 fluxes cannot stabilize all Kähler moduli. We should,

however, stress that we used fluxes only without including their back-reaction and it would

be interesting to consider reductions on the back-reacted backgrounds of [17, 28, 29].

Let us close by noting that many aspects of our proposal have only been addressed

very briefly despite their imminent importance. We have only briefly discussed the weak

coupling interpretation and the charged matter spectrum. The quantization of Type IIB

string theory on the constructed backgrounds is an interesting open task to which we hope

to return in the near future. This should also shed more light on the string interpretation

of the singularities induced in the Spin(7) construction and the presence of an interval.

15For actions of this type in a circle reduction, see, for example, [46, 47].
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The crucial observation has been that a simple circle reduction cannot connect the 4d and

3d effective theories of F-theory and M-theory. This might admit alternative realizations,

for example in Sherck-Schwarz reductions, which provide exciting further directions to

implement such dualities.
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A Conventions

For every space-time dimension d we choose the mostly plus signature for the metric gµν
and we adopt the following conventions for the Riemann tensor:

Γρµν =
1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) , (A.1)

Rλτµν = ∂µΓλντ − ∂νΓλµτ + ΓλµαΓαντ − ΓλναΓαµτ , Rµν = Rλµλν , R = Rµνg
µν .

The Levi-Civita tensor is denoted by εµ1...µd . In our conventions it satisfies

ε01...(d−1) =
√
−det gµν (A.2)

in any coordinate system (x0, x1, . . . , xd−1). Differential p-forms are expanded on the basis

of differential of the coordinates as

λ =
1

p!
λµ1...µp dx

µ1 ∧ · · · ∧ dxµp , (A.3)

so that the wedge product of a p- and a q-form satisfies

(α ∧ β)µ1...µp+q =
(p+ q)!

p!q!
α[µ1...µpβµp+1...µp+q ] . (A.4)

Exterior differentiation of a p-form is given by

(dα)µ0...µp = (p+ 1)∂[µ0αµ1...µp] . (A.5)

The Hodge dual of p-form in real coordinates and arbitrary space-time dimension d is

defined by the expression

(∗α)µ1...µd−p =
1

p!
αν1...νpεν1...νpµ1...µd−p , (A.6)

in such a way that

α ∧ ∗β =
1

p!
αµ1...µpβ

µ1...µp ∗ 1 (A.7)

holds for arbitrary p-forms α, β.
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vertices coords. Q1 Q2

ν1 = ( 1, 0, 0, 0, 0 ) x 8 2

ν2 = ( 0, 1, 0, 0, 0 ) y 12 3

ν3 = (−2, −3, 0, 0, 0 ) z 0 1

ν4 = (−2, −3, −1, −1, −1 ) u1 1 0

ν5 = (−2, −3, 1, 0, 0 ) u2 1 0

ν6 = (−2, −3, 0, 1, 0 ) u3 1 0

ν7 = (−2, −3, 0, 0, 1 ) u4 1 0

Table 2. Toric data for a reflexive polyhedron describing a P2,3,1 fibration of P1,1,1,1.

B Example Spin(7) holonomy manifolds

B.1 A hypersurface in a P2,3,1 fibration of P1,1,1,1

Let us consider a simple example of the construction described in section 2 in which the

Calabi-Yau fourfold Y4 is described by a polynomial in a toric ambient space constructed by

fibering the weighted projective space P2,3,1 over P1,1,1,1. In the language of toric geometry

this is described by a reflexive polyhedron with the set of rays given in table 2.

This gives a smooth ambient space in which the Calabi-Yau fourfold will be defined by

a homogeneous degree (24, 6) polynomial in the (Q1, Q2) identifications. This polynomial

may be brought into the Weierstrass form (2.9) where now the coefficients f and g are degree

16 and 24, homogeneous polynomials of the base coordinates u1, . . . , u4, respectively. A

sufficiently general set of coefficients for these polynomials will then give a smooth Calabi-

Yau fourfold. Next we impose a symmetry of this space under the action of the anti-

holomorphic involution σ where

σ(u1, u2, u3, u4, x, y, z) = (ū2,−ū1, ū4,−ū3, x̄, ȳ, z̄) . (B.1)

This restricts the coefficients of the polynomial. However these coefficients remain general

enough that a generic polynomial is still non-singular. The identification σ has no fixed

space on the base, as the would-be fixed space u1 = u2 = u3 = u4 = 0 is removed by the

Stanley-Reisner ideal. Every point of the base then represents an example of situation (1) as

described in section 2 and so the Spin(7) holonomy manifold16 produced upon quotienting

by σ is non-singular. This means that no additional resolutions need to be performed.

B.2 A complete intersection in a P1,1,1,1 fibration of P1,1,2,2

Next let us consider a second construction in which the ambient space is formed by fibering

P1,1,1,1 over P1,1,2,2. In this case the Calabi-Yau is given by a complete intersection of two

polynomials described the following nef-partition in table 3.

The two polynomials P1 and P2 are then associated with the partitions ∇1 and ∇2

respectively. These are both degree (4,2) under identifications (Q1, Q2).

16Note that strictly speaking the quotient manifold is expected to have SU(4)× Z2 holonomy.
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nef-part. vertices coords. Q1 Q2

∇1 ν1 = (−1, −1, 0, −1, −2, −2 ) y1 1 0

ν2 = ( 0, 0, 0, 1, 0, 0 ) y2 1 0

ν3 = ( 1, 0, 0, 0, 0, 0 ) x1 1 1

ν4 = ( 0, 1, 0, 0, 0, 0 ) x2 1 1

∇2 ν5 = ( 0, 0, 0, 0, 1, 0 ) v1 2 0

ν6 = ( 0, 0, 0, 0, 0, 1 ) v2 2 0

ν7 = (−1, −1, −1, 0, 0, 0 ) z1 0 1

ν8 = ( 0, 0, 1, 0, 0, 0 ) z2 0 1

Table 3. Toric data for a nef-partition describing a C.I. in a P1,1,1,1 fibration of P1,1,2,2.

In this case the base P1,1,2,2 has a complex one-dimensional holomorphic orbifold sin-

gularity at y1 = y2 = 0 before considering any anti-holomorphic quotient. This lifts to two

separate complex two-dimensional singular spaces in the total ambient space. One, which

is associated with the Q1 identification, lies at y1 = y2 = x1 = x2 = 0 and the other, which

is associated with the Q1 −Q2 identification, lies at y1 = y2 = z1 = z2 = 0.

Let us first consider the singular space which lies at y1 = y2 = x1 = x2 = 0. At this

locus the polynomials can be written as

P1 = a1z
2
1 + b1z1z2 + c1z

2
2 P2 = a2z

2
1 + b2z1z2 + c2z

2
2 (B.2)

where a1,2 b1,2 and c1,2 are homogeneous quadratics in v1 and v2. The singularities of the

ambient space will then intersect both polynomials at the places where one of the roots

of P1 sits on top of one of the roots of P2. At these points the resultant of the pair of

polynomials, given by

−a2b1b2c1 + a1b
2
2c1 + a2

2c
2
1 + a2b

2
1c2 − a1b1b2c2 − 2a1a2c1c2 + a2

1c
2
2 , (B.3)

will vanish. This resultant is a homogeneous octic in v1,2 so gives eight Z2 singular points

on the Calabi-Yau fourfold at which the pair of the polynomials hit the two-dimensional

space of singularities in the ambient space.

Next let us consider the singular space which lies at y1 = y2 = z1 = z2 = 0. As before

both polynomials will intersect the singularity of the ambient space when the resultant

vanishes. This second resultant is a homogeneous quartic in v1,2 so gives four Z2 singu-

lar points.

The Calabi-Yau fourfold may have extra singularities associated with the pinching of

the torus. To find out where this happens we may make use of the singularity classifi-

cation described in [48]. This shows that for a generic set of polynomial coefficients the

torus pinches with a Type I1 singularity over the intersection of a homogeneous degree

(72, 0) polynomial in the (Q1, Q2) identification, with the two polynomials that define the

Calabi-Yau. Furthermore we find that this space intersects each of the Z2 singular points

described above.
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We now impose a symmetry under the action of the anti-holomorphic involution σ

defined by,

σ(y1, y2, v1, v2, x1, x2, z1, z2) = (ȳ2,−ȳ1, v̄2, v̄1, x̄2,−x̄1, z̄2, z̄1) . (B.4)

As before this constrains the coefficients of the polynomials but does not alter the singu-

larity structure of the Calabi-Yau. We note also that in this case σ is not an involution on

its own but that the identification Q1 must be used to make σ2 = 1l.

The action of σ on the base gives a real one-dimensional fixed line which sits inside the

holomorphic orbifold singularity of P1,1,2,2. At most places over this fixed line the torus is

unpinched and has no fixed space. It represents an example of situation (2.1) described

in section 2. However when the torus pinches over the fixed line of the base the pinched

point on the torus becomes fixed under the action of σ and so represents an example of

situation (3). In additional, these fixed pinched points on the torus also lie at the eight

Z2 singular points at y1 = y2 = x1 = x2 = 0. By comparison the four Z2 singular points,

which lie at y1 = y2 = z1 = z2 = 0 are not fixed under σ but instead are mapped pairwise

into each other.

The quotient of this Calabi-Yau by σ then gives a singular Spin(7) manifold. The

presence of these singularities is not a problem in F-theory as this is defined on singular

spaces. However in order to use the M-theory duality we have described to find the effective

action these singularities must be resolved in an appropriate fashion. It is unclear how one

would carry out this resolution or even if such a resolution can be performed at all for this

particular Spin(7) manifold. For this reason it will be extremely important to investigate

these resolutions further in future work.
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