15 research outputs found

    Hybrid Synchronization of the Generalized Lotka-Volterra Three-Species Biological Systems via Adaptive Control

    Get PDF
    Abstract: Since the recent research has shown the importance of biological control in many biological systems appearing in nature, this research paper investigates research in the dynamic and chaotic analysis of the generalized Lotka-Volterra three-species biological system, which was studied b

    Hybrid Chaos Synchronization of 3-Cells Cellular Neural Network Attractors via Adaptive Control Method

    Get PDF
    Abstract: In this research work, we first discuss the properties of the 3-cells cellular neural network (CNN) attractor discovered b

    Adaptive Hybrid Projective Synchronization Of Hyper-chaotic Systems

    Get PDF
    In this paper, we design a procedure to investigate the hybrid projective synchronization (HPS) technique among two identical hyper-chaotic systems. An adaptive control method (ACM) is pro- posed which is based on Lyapunov stability theory (LST). The considered technique globally determines the asymptotical stability and establishes identification of parameter simultaneously via HPS approach. Additionally, numerical simulations are carried out for visualizing the effectiveness and feasibility of discussed scheme by using MATLAB

    Synchronization of complex dynamical networks with fractional order

    Get PDF
    Complex dynamical networks (CDN) can be applied to many areas in real world, from medicine, biology, Internet to sociology. Study on CDNs has drawn great attention in recent years. Nodes in a CDN can be modelled as systems represented by differential equations. Study has shown that fractional order differential equations (DF) can better represent some real world systems than integer-order DFs. This research work focuses on synchronization in fractional CDNs.  A literature review on CDNs with fractional order has summarized the latest works in this area.  Fractional chaotic systems are studied in our initial investigation.  Fractional calculus is introduced and the relevant fundamentals to model, describe and analyse dynamical networks are presented. It is shown that the structure and topological characteristics of a network can have a big impact on its synchronizability. Synchronizability and its various interpretations in dynamical networks are studied. To synchronize a CDN efficiently, controllers are generally needed. Controller design is one of the main tasks in this research. Our first design is a new sliding mode control to synchronize a dynamical network with two nodes. Its stability has been proven and verified by simulations.  Its convergence speed outperforms Vaidyanathan's scheme, a well-recognized scheme in this area. The design can be generalized to CDNs with more nodes.  As many applications can be modelled as CDNs with node clustering, a different sliding mode control is designed for cluster synchronization of a CDN with fractional order. Its stability is proven by using Lyapunov method. Its convergence and efficiency is shown in a simulation. Besides these nonlinear methods mentioned, linear control is also studied intensively for the synchronization.  A novel linear method for synchronization of fractional CDNs using a new fractional Proportional-Integral (PI) pinning control is proposed.  Its stability is proven and the synchronization criteria are obtained. The criteria have been simplified using two corollaries so the right value for the variables can be easily assigned. The proposed method is compared with the conventional linear method which uses Proportional (P) controller. In the comparison, the mean squared error function is used. The function measures the average of the squared errors and it is an instant indicator of the synchronization efficiency. A numerical simulation is repeated 100 times to obtain the averages over these runs. Each simulation has different random initial values for both controllers. The average of the errors in all the 100 simulations is obtained and the area under the function curve is defined as an overall performance index (OPI), which indicates the controller's overall performance. In control, small overshoot is always desired. In our work, the error variation is also used as a measure.  The maximum variation from the average of 100 simulations is calculated and compared for both methods. With all the statistical comparisons, it is clear that with the same power consumption, the proposed method outperforms the conventional one and achieves faster and smoother synchronization. Communication constraints exist in most real world CDNs. Communication constraints and their impact on control and synchronization of CDNs with fractional order are investigated in our study. A new adaptive method for synchronizing fractional CDN with disturbance and uncertainty is designed. Its stability is proven and its synchronization criteria are obtained for both fractional CDN with known and unknown parameters. Random disturbance is also included in both cases. Our results show that the new method is efficient in synchronizing CDNs with presence of both disturbance and uncertainty

    Robust adaptive anti-synchronization control of multiple uncertain chaotic systems of different orders

    Get PDF
    The precise anti-synchronization control of uncertain chaotic systems has always remained an interesting problem. The anti-synchronization control of multiple different orders uncertain chaotic systems increases the complexity and enhances the security of the information signal in secure communications. Hence, it confines the hacking in digital communication systems. This paper proposes a novel adaptive control technique and studies the double combination anti-synchronization of multiple different orders uncertain chaotic systems. The proposed adaptive feedback control technique consists of three fundamental nonlinear components. Each component accomplishes a different objective; (i) stability of the closed-loop, (ii) smooth and fast convergence behaviour of the anti-synchronization error, and (iii) disturbance rejection. The theoretical analysis in (i) to (iii) uses the Lyapunov stability theory. This paper also provides parameters adaptation laws that stabilize the uncertain parameters to some constants. The paper discusses the simulation results of two representative examples of four different orders uncertain chaotic systems. These examples demonstrate anti-synchronization among hyperchaotic Lü, uncertain chaotic Shimizu Morioka, uncertain second-order nonlinear duffing, and uncertain parametrically excited second-order nonlinear pendulum systems. The computer-based simulation results certify the efficiency and performance of the proposed anti-synchronization control approach and compare them with peer works

    Dynamical Systems

    Get PDF
    Complex systems are pervasive in many areas of science integrated in our daily lives. Examples include financial markets, highway transportation networks, telecommunication networks, world and country economies, social networks, immunological systems, living organisms, computational systems and electrical and mechanical structures. Complex systems are often composed of a large number of interconnected and interacting entities, exhibiting much richer global scale dynamics than the properties and behavior of individual entities. Complex systems are studied in many areas of natural sciences, social sciences, engineering and mathematical sciences. This special issue therefore intends to contribute towards the dissemination of the multifaceted concepts in accepted use by the scientific community. We hope readers enjoy this pertinent selection of papers which represents relevant examples of the state of the art in present day research. [...

    Adaptive Sliding Mode Controller Design for Projective Synchronization of Different Chaotic Systems with Uncertain Terms and External Bounded Disturbances

    Get PDF
    Synchronization is very useful in many science and engineering areas. In practical application, it is general that there are unknown parameters, uncertain terms, and bounded external disturbances in the response system. In this paper, an adaptive sliding mode controller is proposed to realize the projective synchronization of two different dynamical systems with fully unknown parameters, uncertain terms, and bounded external disturbances. Based on the Lyapunov stability theory, it is proven that the proposed control scheme can make two different systems (driving system and response system) be globally asymptotically synchronized. The adaptive global projective synchronization of the Lorenz system and the Lü system is taken as an illustrative example to show the effectiveness of this proposed control method

    A research on the synchronization of two novel chaotic systems based on a nonlinear active control algorithm

    Get PDF
    The problem of chaos synchronization is to design a coupling between two chaotic systems (master-slave/drive-response systems configuration) such that the chaotic time evaluation becomes ideal and the output of the slave (response) system asymptotically follows the output of the master (drive) system.This paper has addressed the chaos synchronization problem of two chaotic systems using the Nonlinear Control Techniques, based on Lyapunov stability theory.It has been shown that the proposed schemes have outstanding transient performances and that analytically as well as graphically, synchronization is asymptotically globally stable.Suitable feedback controllers are designed to stabilize the closed-loop system at the origin. All simulation results are carried out to corroborate the effectiveness of the proposed methodologies by using Mathematica 9

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue
    corecore