4,647 research outputs found

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Design and Analysis of a Labview and Arduino-Based Automatic Solar Tracking System

    Get PDF
    A Thesis Presented to the Faculty of the College of Science and Technology Morehead State University in Partial Fulfillment of the requirements for the Degree Master of Science by Caiwen Ding April 24, 201

    Evaluation of a semi-active gravity gradient system. Volume II - Appendices

    Get PDF
    Evaluation of semi-active gravity gradient system - appendixe

    Design of an autonomous Lunar construction utility vehicle

    Get PDF
    In order to prepare a site for a manned lunar base, an autonomously operated construction vehicle is necessary. A Lunar Construction Utility Vehicle (LCUV), which utilizes interchangeable construction implements, was designed conceptually. Some elements of the machine were studied in greater detail. Design of an elastic loop track system has advanced to the testing stage. A standard coupling device was designed to insure a proper connection between the different construction tools and the LCUV. Autonomous control of the track drive motors was simulated successfully through the use of a joystick and computer interface. A study of hydrogen-oxygen fuel cells has produced estimates of reactant and product size requirements and identified multi-layer insulation techniques. Research on a 100 kW heat rejection system has determined that it is necessary to house a radiator panel on a utility trailer. The impact of a 720 hr use cycle has produced a very large logistical support lien which requires further study

    Dual Axis Solar Tracker: Trends, Influence & Impact

    Get PDF
    This supplementary document examines the international relevance and impact of the device in the Central Washington University, M.E.T. Senior Project entitled, “Dual-Axis Solar Tracker”. This is done so by analyzing the data collected from the device, as well as related trends in society, and establishing connections between the device’s viability and its impact within the society. Climate change, the solar industry, technology, policy, and market are the main topics of research within this document to provide background and context for the methods of analysis. Following intensive research, two major research strategies were implemented: (1) the data collected from the device during the testing phase of the MET489 Course is used to conduct a quantitative comparison to similar real-world models and evaluate its performance; (2) the project’s marketability is also analyzed, to make an educated hypothesis of changes that can be made in potential iterations. This supplementary document expands upon the testing analysis of the device to provide a more in-depth representation of its current and potential impact. The device was being analyzed for its ability to be a promising economic investment as well as a solution to global challenges

    Dual-Axis Solar Tracker

    Get PDF
    The global energy crisis and continued supporting evidence of global climate change have begun to shift the world economies towards solutions that solve both challenges. Solar power has become one of the most recognizable and popularized renewable energy methods to date. In comparison to other photovoltaic systems, this project demonstrates the performance advantages of a dual-axis solar tracker. It also addressing its viability on a non-commercial scale. The objective was to improve upon previous solar tracker projects at Central Washington University by adding another axis to the system. This system implements both an actuator and a stepper motor to examine the advantages of using different drivers. Initially, the theoretical design and construction plan of the device was developed. Sketches and drawings were created with engineering analysis and supporting research for the best possible results. The manufacturing phase encompassed project management, risk mitigation and materializing the theoretical design. Materials, logistics, and human resources are all processed during this period, in accordance with the proposed budget and schedule, to ensure the project came to fruition. Based on the deliverables set out by the design requirements, the project provided largely successful results. The entire project was developed under budget, on schedule, with both axes functioning as intended, and under the weight limits. The photovoltaic was able to maintain a perpendicular relationship with sunlight within 3% tolerance. The energy collected was approximately 38.9% more than the PV cell without the tracking system

    A novel design and simulation of a mechanical coordinate based photovoltaic solar tracking system

    Get PDF
    Various methods have been developed to increase electrical energy production gains in photovoltaic (PV) systems. These can be classified as solar tracking systems, cooling systems and methods of reducing the effect of shading. In order to maximise the PV energy yield, the PV systems must follow the sun. In this study, the effect of solar tracking systems on the energy yield gains of PV systems is investigated, and various types of solar tracking systems are discussed in detail. To ensure accuracte tracking of the postion of the sun, a new, low-cost, system has been developed that employs a global positioning system (GPS) module, compass and accelerometer. With this necessary angle information a dual-axis coordinate-based solar tracking system was designed using the Arduino Mega 2560 microcontroler with home-built control software. The system is validated by comparing it to a fixed angle system and an energy yield gain of 33–38% is found

    JUNO Conceptual Design Report

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the detection of reactor antineutrinos can resolve the neutrino mass hierarchy at a confidence level of 3-4σ\sigma, and determine neutrino oscillation parameters sin2θ12\sin^2\theta_{12}, Δm212\Delta m^2_{21}, and Δmee2|\Delta m^2_{ee}| to an accuracy of better than 1%. The JUNO detector can be also used to study terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard Model. The central detector contains 20,000 tons liquid scintillator with an acrylic sphere of 35 m in diameter. \sim17,000 508-mm diameter PMTs with high quantum efficiency provide \sim75% optical coverage. The current choice of the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of detected photoelectrons per MeV is larger than 1,100 and the energy resolution is expected to be 3% at 1 MeV. The calibration system is designed to deploy multiple sources to cover the entire energy range of reactor antineutrinos, and to achieve a full-volume position coverage inside the detector. The veto system is used for muon detection, muon induced background study and reduction. It consists of a Water Cherenkov detector and a Top Tracker system. The readout system, the detector control system and the offline system insure efficient and stable data acquisition and processing.Comment: 328 pages, 211 figure

    Robotic Mobile Holder (For CAR Dashboards)

    Get PDF
    In the current smart tech world, there is an immense need of automating tasks and processes to avoid human intervention, save time and energy. Nowadays, mobile phones have become one of the essential things for human beings either to call someone, connect to the internet, while driving people need mobile phones to receive or make a call, use google maps to know the routes and many more. Normally in cars, mobile holders are placed on the dashboard to hold the mobile and the orientation of the phone needs to be changed according to the driver's convenience manually, but the driver may distract from driving while trying to access mobile phone which may lead to accidents. To solve this problem, an auto adjustable mobile holder is designed in such a way that it rotates according to the movement of the driver and also it can even alert the driver when he feels drowsiness. Image Processing is used to detect the movement of the driver which is then processed using LabVIEW software and NI myRIO hardware. NI Vision development module is used to perform face recognition and servo motors are used to rotate the holder in the required position. Simulation results show that the proposed system has achieved maximum accuracy in detecting faces, drowsiness and finding the position coordinates

    Design and Analysis of a Mechanical Driveline with Generator for an Atmospheric Energy Harvester

    Get PDF
    The advent of renewable energy as a primary power source for microelectronic devices has motivated research within the energy harvesting community over the past decade. Compact, self-contained, portable energy harvesters can be applied to wireless sensor networks, Internet of Things (IoT) smart appliances, and a multitude of standalone equipment; replacing batteries and improving the operational life of such systems. Atmospheric changes influenced by cyclical temporal variations offer an abundance of harvestable thermal energy. However, the low conversion efficiency of a common thermoelectric device does not tend to be practical for microcircuit operations. One solution may lie in a novel electromechanical power transformer integrated with a thermodynamic based phase change material to create a temperature/pressure energy harvester. The performance of the proposed harvester will be investigated using both numerical and experimental techniques to offer insight into its functionality and power generation capabilities. The atmospheric energy harvester consists of a ethyl chloride filled mechanical bellows attached to an end plate and constrained by a stiff spring and four guide rails that allow translational motion. The electromechanical power transformer consists of a compound gear train driven by the bellows end plate, a ratchet-controlled coil spring to store energy, and a DC micro generator. Nonlinear mathematical models have been developed for this multi-domain dynamic system using fundamental engineering principles. The initial analyses predicted 9.6 mW electric power generation over a 24 hour period for ±1°C temperature variations about a nominal 22°C temperature. Transfer functions were identified from the lumped parameter models and the transient behavior of the coupled thermal-electromechanical system has been studied. A prototype experimental system was fabricated and laboratory tested to study the overall performance and validate the mathematical models for the integrated energy harvester system. The experimental results agree with the numerical analyses in behavioral characteristics. Further, the power generation capacity of 30 mW for a representative electrical resistance load and emulated rack input which correspond to 50 cyclic bidirectional temperature variations (~175 hours of field operation) validated the simulation models. This research study provides insight into the challenges of designing an electromechanical power transformer to complement an atmospheric energy harvester system. The mathematical models estimated the behavior and performance of the integrated harvester system and establishes a foundation for future optimization studies. The opportunity to power microelectronic devices in the milliwatt range for burst electric operation or with the use of supercapacitors/batteries enables global remote operation of smart appliances. This system can assist in reducing/eliminating the need for batteries and improving the operational life of a variety of autonomous equipment. Future research areas have been identified to improve the overall system capabilities and implement the harvester device for real-world applications
    corecore