41,055 research outputs found

    Object-oriented querying of existing relational databases

    Get PDF
    In this paper, we present algorithms which allow an object-oriented querying of existing relational databases. Our goal is to provide an improved query interface for relational systems with better query facilities than SQL. This seems to be very important since, in real world applications, relational systems are most commonly used and their dominance will remain in the near future. To overcome the drawbacks of relational systems, especially the poor query facilities of SQL, we propose a schema transformation and a query translation algorithm. The schema transformation algorithm uses additional semantic information to enhance the relational schema and transform it into a corresponding object-oriented schema. If the additional semantic information can be deducted from an underlying entity-relationship design schema, the schema transformation may be done fully automatically. To query the created object-oriented schema, we use the Structured Object Query Language (SOQL) which provides declarative query facilities on objects. SOQL queries using the created object-oriented schema are much shorter, easier to write and understand and more intuitive than corresponding S Q L queries leading to an enhanced usability and an improved querying of the database. The query translation algorithm automatically translates SOQL queries into equivalent SQL queries for the original relational schema

    Query processing of geometric objects with free form boundarie sin spatial databases

    Get PDF
    The increasing demand for the use of database systems as an integrating factor in CAD/CAM applications has necessitated the development of database systems with appropriate modelling and retrieval capabilities. One essential problem is the treatment of geometric data which has led to the development of spatial databases. Unfortunately, most proposals only deal with simple geometric objects like multidimensional points and rectangles. On the other hand, there has been a rapid development in the field of representing geometric objects with free form curves or surfaces, initiated by engineering applications such as mechanical engineering, aviation or astronautics. Therefore, we propose a concept for the realization of spatial retrieval operations on geometric objects with free form boundaries, such as B-spline or Bezier curves, which can easily be integrated in a database management system. The key concept is the encapsulation of geometric operations in a so-called query processor. First, this enables the definition of an interface allowing the integration into the data model and the definition of the query language of a database system for complex objects. Second, the approach allows the use of an arbitrary representation of the geometric objects. After a short description of the query processor, we propose some representations for free form objects determined by B-spline or Bezier curves. The goal of efficient query processing in a database environment is achieved using a combination of decomposition techniques and spatial access methods. Finally, we present some experimental results indicating that the performance of decomposition techniques is clearly superior to traditional query processing strategies for geometric objects with free form boundaries

    A storage and access architecture for efficient query processing in spatial database systems

    Get PDF
    Due to the high complexity of objects and queries and also due to extremely large data volumes, geographic database systems impose stringent requirements on their storage and access architecture with respect to efficient query processing. Performance improving concepts such as spatial storage and access structures, approximations, object decompositions and multi-phase query processing have been suggested and analyzed as single building blocks. In this paper, we describe a storage and access architecture which is composed from the above building blocks in a modular fashion. Additionally, we incorporate into our architecture a new ingredient, the scene organization, for efficiently supporting set-oriented access of large-area region queries. An experimental performance comparison demonstrates that the concept of scene organization leads to considerable performance improvements for large-area region queries by a factor of up to 150

    A spatial data handling system for retrieval of images by unrestricted regions of user interest

    Get PDF
    The Intelligent Data Management (IDM) project at NASA/Goddard Space Flight Center has prototyped an Intelligent Information Fusion System (IIFS), which automatically ingests metadata from remote sensor observations into a large catalog which is directly queryable by end-users. The greatest challenge in the implementation of this catalog was supporting spatially-driven searches, where the user has a possible complex region of interest and wishes to recover those images that overlap all or simply a part of that region. A spatial data management system is described, which is capable of storing and retrieving records of image data regardless of their source. This system was designed and implemented as part of the IIFS catalog. A new data structure, called a hypercylinder, is central to the design. The hypercylinder is specifically tailored for data distributed over the surface of a sphere, such as satellite observations of the Earth or space. Operations on the hypercylinder are regulated by two expert systems. The first governs the ingest of new metadata records, and maintains the efficiency of the data structure as it grows. The second translates, plans, and executes users' spatial queries, performing incremental optimization as partial query results are returned

    Geoinformation, Geotechnology, and Geoplanning in the 1990s

    Get PDF
    Over the last decade, there have been some significant changes in the geographic information available to support those involved in spatial planning and policy-making in different contexts. Moreover, developments have occurred apace in the technology with which to handle geoinformation. This paper provides an overview of trends during the 1990s in data provision, in the technology required to manipulate and analyse spatial information, and in the domain of planning where applications of computer technology in the processing of geodata are prominent. It draws largely on experience in western Europe, and in the UK and the Netherlands in particular, and suggests that there are a number of pressures for a strengthened role for geotechnology in geoplanning in the years ahead

    Moving Object Trajectories Meta-Model And Spatio-Temporal Queries

    Full text link
    In this paper, a general moving object trajectories framework is put forward to allow independent applications processing trajectories data benefit from a high level of interoperability, information sharing as well as an efficient answer for a wide range of complex trajectory queries. Our proposed meta-model is based on ontology and event approach, incorporates existing presentations of trajectory and integrates new patterns like space-time path to describe activities in geographical space-time. We introduce recursive Region of Interest concepts and deal mobile objects trajectories with diverse spatio-temporal sampling protocols and different sensors available that traditional data model alone are incapable for this purpose.Comment: International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 201

    A rapid prototyping/artificial intelligence approach to space station-era information management and access

    Get PDF
    Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced
    corecore