16 research outputs found

    Practical distributed garbage collection for networks with asynchronous clocks and message delay

    Get PDF
    Distributed garbage collection over a message passage network is discussed in this paper. Traditionally, this can be done by reference counting, which is fast but cannot reclaim cyclic structures or by graph traversal, e.g. mark-and-sweep or time stamping, which is capable of reclaiming cyclic structures but is slow. We propose a combined scheme which is fast in reclaiming acyclic garbage and guaranteed to reclaim cyclic garbage. Our scheme does not rely on synchronized clocks nor zero message delay and is thus practical.published_or_final_versio

    Clustered Serialization with Fuel

    Get PDF
    International audienceSerializing object graphs is an important activity since objects should be stored and reloaded on different environments. There is a plethora of frameworks to serialize objects based on recursive parsing of the object graphs. However such approaches are often too slow. Most approaches are limited in their provided features. For example, several serializers do not support class shape changes, global references, transient references or hooks to execute something before or after being stored or loaded. Moreover, to be faster, some serializers are not written taking into account the object-oriented paradigm and they are sometimes even implemented in the Virtual Machine hampering code portability. VM-based serializers such as ImageSegment are difficult to understand, maintain, and fix. For the final user, it means a serializer which is difficult to customize, adapt or extend to his own needs. In this paper we present a general purpose object graph serializer based on a pickling format and algorithm. We implement and validate this approach in the Pharo Smalltalk environment. We demonstrate that we can build a really fast serializer without specific VM support, with a clean object-oriented design, and providing most possible required features for a serializer. We show that our approach is faster that traditional serializers and compare favorably with ImageSegment as soon as serialized objects are not in isolation

    Fuel: A Fast General Purpose Object Graph Serializer

    Get PDF
    International audienceSince objects need to be stored and reloaded on different environments, serializing object graphs is a very important activity. There is a plethora of serialization frameworks with different requirements and design trade-offs. Most of them are based on recursive parsing of the object graphs, an approach which often is too slow. In addition, most of them prioritize a language-agnostic format instead of speed and language-specific object serialization. For the same reason, such serializers usually do not support features like class-shape changes, global references or executing pre and post load actions. Looking for speed, some frameworks are partially implemented at Virtual Machine (VM) level, hampering code portability and making them difficult to understand, maintain and extend. In this paper we present Fuel, a general-purpose object serializer based on these principles: (1) speed, through a compact binary format and a pickling algorithm which invests time in serialization for obtaining the best performance on materialization; (2) good object-oriented design, without special help at VM; (3) serialize any object, thus have a full-featured language-specific format. We implement and validate this approach in Pharo, where we demonstrate that Fuel is faster than other serializers, even those with special VM support. The extensibility of Fuel made possible to successfully serialize various objects: classes in Newspeak, debugger stacks, and full CMS object graphs

    Ghost: A uniform and general-purpose proxy implementation

    Get PDF
    International audienceA proxy object is a surrogate or placeholder that controls access to another target object. Proxy objects are a widely used solution for different scenarios such as remote method invocation, future objects, behavioral reflection, object databases, inter-languages communications and bindings, access control, lazy or parallel evaluation, security, among others. Most proxy implementations support proxies for regular objects but are unable to create proxies for objects with an important role in the runtime infrastructure such as classes or methods. Proxies can be complex to install, they can have a significant overhead, they can be limited to certain kind of classes, etc. Moreover, proxy implementations are often not stratified and they do not have a clear separation between proxies (the objects intercepting messages) and handlers (the objects handling interceptions). In this paper, we present Ghost: a uniform and general-purpose proxy implementation for the Pharo programming language. Ghost provides low memory consuming proxies for regular objects as well as for classes and methods. When a proxy takes the place of a class, it intercepts both the messages received by the class and the lookup of methods for messages received by its instances. Similarly, if a proxy takes the place of a method, then the method execution is intercepted too

    Models of higher-order, type-safe, distributed computation over autonomous persistent object stores

    Get PDF
    A remote procedure call (RPC) mechanism permits the calling of procedures in another address space. RPC is a simple but highly effective mechanism for interprocess communication and enjoys nowadays a great popularity as a tool for building distributed applications. This popularity is partly a result of their overall simplicity but also partly a consequence of more than 20 years of research in transpaxent distribution that have failed to deliver systems that meet the expectations of real-world application programmers. During the same 20 years, persistent systems have proved their suitability for building complex database applications by seamlessly integrating features traditionally found in database management systems into the programming language itself. Some research. effort has been invested on distributed persistent systems, but the outcomes commonly suffer from the same problems found with transparent distribution. In this thesis I claim that a higher-order persistent RPC is useful for building distributed persistent applications. The proposed mechanism is: realistic in the sense that it uses current technology and tolerates partial failures; understandable by application programmers; and general to support the development of many classes of distributed persistent applications. In order to demonstrate the validity of these claims, I propose and have implemented three models for distributed higher-order computation over autonomous persistent stores. Each model has successively exposed new problems which have then been overcome by the next model. Together, the three models provide a general yet simple higher-order persistent RPC that is able to operate in realistic environments with partial failures. The real strength of this thesis is the demonstration of realism and simplicity. A higherorder persistent RPC was not only implemented but also used by programmers without experience of programming distributed applications. Furthermore, a distributed persistent application has been built using these models which would not have been feasible with a traditional (non-persistent) programming language

    Adaptive object management for distributed systems

    Get PDF
    This thesis describes an architecture supporting the management of pluggable software components and evaluates it against the requirement for an enterprise integration platform for the manufacturing and petrochemical industries. In a distributed environment, we need mechanisms to manage objects and their interactions. At the least, we must be able to create objects in different processes on different nodes; we must be able to link them together so that they can pass messages to each other across the network; and we must deliver their messages in a timely and reliable manner. Object based environments which support these services already exist, for example ANSAware(ANSA, 1989), DEC's Objectbroker(ACA,1992), Iona's Orbix(Orbix,1994)Yet such environments provide limited support for composing applications from pluggable components. Pluggability is the ability to install and configure a component into an environment dynamically when the component is used, without specifying static dependencies between components when they are produced. Pluggability is supported to a degree by dynamic binding. Components may be programmed to import references to other components and to explore their interfaces at runtime, without using static type dependencies. Yet thus overloads the component with the responsibility to explore bindings. What is still generally missing is an efficient general-purpose binding model for managing bindings between independently produced components. In addition, existing environments provide no clear strategy for dealing with fine grained objects. The overhead of runtime binding and remote messaging will severely reduce performance where there are a lot of objects with complex patterns of interaction. We need an adaptive approach to managing configurations of pluggable components according to the needs and constraints of the environment. Management is made difficult by embedding bindings in component implementations and by relying on strong typing as the only means of verifying and validating bindings. To solve these problems we have built a set of configuration tools on top of an existing distributed support environment. Specification tools facilitate the construction of independent pluggable components. Visual composition tools facilitate the configuration of components into applications and the verification of composite behaviours. A configuration model is constructed which maintains the environmental state. Adaptive management is made possible by changing the management policy according to this state. Such policy changes affect the location of objects, their bindings, and the choice of messaging system

    Interrupt-generating active data objects

    Get PDF
    An investigation is presented into an interrupt-generating object model which is designed to reduce the effort of programming distributed memory multicomputer networks. The object model is aimed at the natural modelling of problem domains in which a number of concurrent entities interrupt one another as they lay claim to shared resources. The proposed computational model provides for the safe encapsulation of shared data, and incorporates inherent arbitration for simultaneous access to the data. It supplies a predicate triggering mechanism for use in conditional synchronization and as an alternative mechanism to polling. Linguistic support for the proposal requires a novel form of control structure which is able to interface sensibly with interrupt-generating active data objects. The thesis presents the proposal as an elemental language structure, with axiomatic guarantees which enforce safety properties and aid in program proving. The established theory of CSP is used to reason about the object model and its interface. An overview is presented of a programming language called HUL, whose semantics reflect the proposed computational model. Using the syntax of HUL, the application of the interrupt-generating active data object is illustrated. A range of standard concurrent problems is presented to demonstrate the properties of the interrupt-generating computational model. Furthermore, the thesis discusses implementation considerations which enable the model to be mapped precisely onto multicomputer networks, and which sustain the abstract programming level provided by the interrupt-generating active data object in the wider programming structures of HUL
    corecore