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Abstract 

Distributed garbage collection over a message pas- 
sage network i s  discussed in this paper. Traditionally, 
this can be done b y  reference counting, which is fast 
but cannot reclaim cyclic structures or b y  graph traver- 
sal, e.g. mark-and-sweep or time stamping, which is 
capable of reclaiming cyclic structures but is slow. We 
propose a combined scheme which is fast in reclaim- 
ing acyclic garbage and guaranteed to reclaim cyclic 
garbage. Our scheme does not rely on synchronized 
clocks nor zero message delay and is thus practical. 

1 Introduction 

Garbage collection [a, 101 is a very useful mem- 
ory management technique. In recent years, much 
research effort has been put into the area of dis- 
tributed and parallel garbage collection. In this paper, 
the problem of distributed garbage collection over a 
message-passing network is discussed. 

Many algorithms for distributed garbage collection 
have been proposed and studied. One important class 
is based on reference counting[8, 911. Unlike their 
counterparts in uniprocessor environments, these al- 
gorithms have to  address the problem of synchronisa- 
tion, or live objects may be deleted prematurely be- 
cause their reference counts may be reduced to  zero 
temporarily owing to  race conditions. When the ref- 
erence count of an object reaches zero, that object can 
be reclaimed immediately and the reference counts of 
all other objects pointed to by this object can also be 
reduced subsequently. Therefore the latency of recla- 
mation is low. However, reference counting cannot 
detect cyclic garbage[8, 91. 

lIn the reference counting scheme, each object has an asso- 
ciated count on the number of pointers (references) at it. 
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Another class of distributed garbage collection algo- 
rithms uses graph traversal to detect live, i.e. reach- 
able objects[5, 71. The simplest one is a distributed 
version of the mark-and-sweep algorithm[2, lo]. The 
local graph traversal in each processor is done by local 
garbage collectors conservatively. Local graph traver- 
sal is conservative because all objects reachable from 
local roots or from non-local objects through inter- 
processor pointers are considered live even though ob- 
jects referenced through inter-processor pointers may 
be garbage. Global liveness information is propa- 
gated through inter-processor pointers on top of lo- 
cal garbage collection. If an inter-processor pointer is 
encountered during a local collection, liveness infor- 
mation is sent to the processor containing the object. 
Garbage is detected when system has stablized and no 
global liveness information needs to  be propagated. 

There are several problems with this kind of algo- 
rithms. First, we have to  detect stability with respect 
to global liveness information propagation. No object 
can be reclaimed unless all liveness information has 
been propagated. Second, we may have to wait for 
a long time before the system stablizes. For acyclic 
garbage, reference counting should perform better un- 
der such circumstances. 

A way to reduce latency of reclamation is to over- 
lap a number of distributed garbage collection pro- 
cesses. Liveness information of several processes is 
propagated by a single local collection. The can be 
done by pipelining or temporal overlapping [5, 71, i.e. 
a number of distributed garbage collection processes 
are carried out simultaneously. Liveness information 
of a distributed garbage collection instance overrides 
the liveness information of all unfinished ones started 
earlier. With this approach, liveness of an object is as- 
sociated with a time stamp [5, 71 corresponding to the 
latest distributed garbage collection and it is assumed 
that the object is live by all unfinished instances of dis- 
tributed garbage collection started earlier. Latency of 
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reclamation can be high as information may have to 
be propagated through the whole network. 

We propose here a combined algorithm using time 
stamps and reference counters in order to have the 
virtues of these two approaches. Acyclic ga.rbage can 
be reclaimed as soon as possible through reference 
counting while cyclic garbage is reclaimed by means of 
time stamping. Our presentation is formal and rigor- 
ous and we have proposed solutions to problems which 
have not been discussed before, especially during the 
process of establishing inter-processor pointers. 

Our approach also has several advantages over pre- 
vious work in this area. First, our algorithm works 
with finite but unbounded delay. Previous algorithms 
either ignore network delay[5] or assume a known up- 
per bound for network delay[7]. Second, our algo- 
rithm does not rely on synchronised clocks, a condition 
which was assumed by most previous work[5, 71; this 
complicates our termination detection protocol. 

In section 2,  models used in our algorithm are de- 
fined. The algorithm and its correctness are discussed 
in section 3 and section 4 concludes this paper. 

2 Basic Assumptions 

2.1 Network Model 

We assume a group of processors communicating 
with each other over a message passing network with 
finite but unbounded delay. Messages reach their des- 
tinations and are acknowledged eventually in the order 
they are sent. Processors have clocks which are not 
synchronised. Every processor has its local objects, 
which are inaccessible from other processors. Associ- 
ated with each processor are two computing agents, 
the m u t a t o r  and the collector[4]. For the sake of con- 
venience, when the objects, the mutator and the col- 
lector all belong to the same processor, we refer to 
the object as the mutator’s objects or the collector’s 
objects, we also call the mutator the object’s mutator 
and the collector the object’s collector. The mutators 
perform computation in the network. A mutator only 
has access to those objects reachable from its roots via 
local pointer dereferencing. If a mutator has to access 
a remote object, it can only do so through message 
passing, i.e. by sending a message to the remote ob- 
ject’s mutator requesting that the operation be done 
on its behalf. In addition, a mutator can only receive 
pointers from other mutators.’ The collectors, based 

2Since a collector can see garbage, it can send a message 
containing a pointer to a garbage object to a mutator and re- 
vive the object. Therefore we have to prohibit mutators from 
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Figure 1: Inlets and Outlets 

on either a mark ing  or copying[2,  101 scheme, reclaim 
objects which are inawessible from any of local roots 
nor non-local objects. 

2.2 Inlets and Outlets 

Two kinds of special objects, namely inlets  and out- 
lets,  (Fig 1) are used for inter-processor pointer indi- 
rection. An inlet  contains a pointer to a local ob- 
ject which is known to be pointed to by some inter- 
processor pointers. An inlet y on processor p is identi- 
fied by a reference ( p ,  y). An outlet  contains a reference 
to an inlet. An inter-processor pointer from an object 
a in processor p to another object b in processor q is 
represented by a locall pointer from a to  an outlet a: 
in p with a reference ( q , y )  where y is the inlet in q 
pointing at b (Figure 1). Thus inter-processor point- 
ers can be manipulated as if they were local pointers. 
This indirection technique is common in distributed 
garbage collection. We say inlet 2 and outlet y are 
matched if y stores a reference to the a:. 

2.3 Operations of Mutators and Collec- 
tions 

We classify the operations of the mutators and the 
collectors into the following categories. Implementa- 
tions will be described later. 

1. Creating New Okljects 

2. Changing Local Pointers 

3. Sending References 

receivicg pointers from collectors. 
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Receiving References 

Local Garbage Collections 

Sending Time Stamps 

Receiving Time Stamps 

These operations model computation and dis- 
tributed garba,ge collection in the network. 

3 Algorithm 

There are two types of garbage, local garbage and 
distrabuted garbage. Local garbage can be reclaimed 
by local garbage collectors without involving inter- 
processor pointers. Distributed garbage is garbage in- 
volving inter-processor pointers. In particular, it is 
sufficient that only inlets are considered by the dis- 
tributed garbage collector. As outlets which are inac- 
cessible from local roots or inlets can be reclaimed by 
the local garbage collectors, they would not be con- 
sidered distributed garbage. 

3.1 Distributed Reference Counting 

We now outline a distributed reference count- 
ing scheme capable of reclaiming acyclic distributed 
garbage similar to the one described in [8]. Under 
this scheme, every inlet is associated with a reference 
counter reflecting the number of matching outlets. 
The reference counter is updated whenever matching 
outlets are created or destroyed. Normally, as soon 
as the reference counter of an inlet reaches zero, an 
inlet can be reclaimed. However in some cases, owing 
to network delay, an inlet with zero reference count 
may not be garbage because there may still be some 
messages containing reference to this inlet. We say an 
inlet is zn use if a message containing a reference of the 
inlet has been sent but not acknowledged. Similarly, 
an outlet is in use if the particular reference stored in 
the outlet has been sent but not acknowledged. 

Each mutator records references it has sent but not 
acknowledged. A message counter is added to every 
inlet and outlet for finding out whether an object is in 
use. The counter is zero when an object is created, in- 
cremented when a reference associated with the object 
is sent and decremented when the message is acknowl- 
edged. Thus an object is in use if its message counter 
is non-zero. 

Our distributed reference counting algorithm is as 
follows. This algorithm is only invoked when an inter- 
processor pointer is created or removed. During the 

creation of a new inter-processor pointer, a mutator, 
say M A ,  sends a reference to another mutator, say 
M B ]  and a new outlet for this reference has to be 
created in MB’S processor if the referenced inlet is not 
in MB’S processor. The reference counter of the inlet 
matching this new outlet is incremented. Therefore 
MB does not have to reply to M A  and instead it sends 
an ancrement reference message to the collector of that 
inlet. This increment reference message contains the 
reference, M A  and the ID of the original message from 
M A .  When that inlet’s collector receives this message, 
it increments the reference counter of that inlet and 
replies to both MA and M B .  The outlet or the inlet 
associated with reference in MA’s processor is kept zn 
use until the reply from the collector to M A  is received. 

When an inter-processor pointer is removed, an out- 
let is reclaimed and the reference counter of the match- 
ing inlet is decremented accordingly. Therefore, the 
outlet’s collector, say CA, sends a decrement reference 
count message to the the inlet’s collector. However, if 
the outlet is in use, the sending of the decrement ref- 
erence count message as well as its reclamation will be 
delayed until it is not in use. Upon receiving the decre- 
ment reference message, the collector C, decreases the 
reference counter of the inlet. The inlet will be re- 
claimed if its reference counter reaches zero and it is 
not in use. 

3.2 Time Stamping 

As reference counting cannot reclaim cyclic 
garbage, we augment it with time stamping. The 
combined algorithm reclaims cyclic garbage and also 
reclaims acyclic garbage faster than algorithms using 
time stamping alone. Time stamps are introduced to 
all inlets, outlets and roots. We denote the time stamp 
of an object 2 by t i m e ( z ) .  Loosely speaking, t ime(z) 
denotes the “time” until which 2 remains alive and 
thus time(z) is non-decreasing as time passes. They 
are propagated from roots to inlets and outlets. 

Intuitively, our algorithm works like this. Roots 
are sources of increasing time stamps which are prop- 
agated to inlets and outlets. Thus any live inlet or 
outlet also has an increasing time stamp. If an inlet 
or an outlet becomes garbage, it is disconnected from 
all roots and hence its time stamp would stop increas- 
ing. A threshold is found such that time stamps of all 
live objects are of at  least this value. All objects with 
time stamps less than the threshold must be garbage 
and hence removed. 

Because of asynchronous clocks, one may ask 
whether it makes sense in propagating time stamps 
originating from asynchronous sources. It is easier to 
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understand our algorithm if we view time stamps as 
version numbers, which are ordered like time stamps. 
If we view the time stamping algorithm as a collection 
of concurrent distributed mark-and-sweep algorithms, 
then t i m e ( x )  denotes that object x is live during “all” 
the distributed garbage collection processes with ver- 
sion numbers 5 t ime(%) .  Thus if object x receives 
several time stamps, it makes sense for higher time 
stamps to override lower ones as the liveness of x in a 
distributed collection process of higher version number 
implies that of lower ones. 

3.2-1 tprop t t r a n s  and tmin 

In order to  determine the threshold for live objects, we 
have to ensure that all time stamps not greater than 
the threshold are propagated properly throug,hout the 
whole network. Intuitively, every processor p keeps 
track of two time thresholds, tprop,p and t trans,p,  where 
tprop,p is the time threshold that all time stamps are 
propagated properly within processor p[5] and t t r a n s , p  
is the time threshold that all time stamps are trans- 
mitted properly from processor p to other processors. 
The time threshold is defined as 

tmin = min(min(tprOp,, , ttrans,p)) 
P 

As local roots are live when the collectiomn starts, 
their time stamps are set to  the starting time of the lo- 
cal collection. Time stamps are then propagaked from 
local roots or inlets to outlets within a proce#ssor dur- 
ing a local collection, after which the time :stamp of 
any outlet y is not less than that of any local root 
or inlet x from which the outlet is accessible, i.e., 
t ime(y)  = max{time(x)ly is reachable from IC}. Thus 
t ime(y)  is at  least t i m e ( x )  but no more than the time 
threshold for proper time stamp propagation, tprop,p. 

Invariant 1 For any inlet or local root x and out- 
let y of a processor p such that y is accessi- 
ble from x via intra-processor pointers, t ime(y)  2 
min(tPTOP,P, t i m e ( x ) ) .  

To uphold this invariant, tprop+, has to be adjusted 
constantly. It is set to the starting time o’f the lo- 
cal collection, i.e. the time stamp of the roots, after 
the collection and this is the only time when tprop,p is 
increased. During the period between two :instances 
of garbage collection, if inlet x receives a higher time 
stamp and tprop,p is also higher than outlet y’s time 
stamp, we reduce tprop,p to maintain the time thresh- 
old property and Invariant 1. 

Invariant 2 For a n y  processor p and local root x, 
t i 4 z )  L t p r o p , p  

Time stamps are also propagated from outlets to 
inlets via inter-processor pointers. We assume that 
a time stamp message is sent from an outlet to its 
matching inlets when the outlet’s time stamp is in- 
creased Owing to network delay, the message does not 
arrive at its destination immediately. This is similar 
to the case that time stamps cannot be propagated 
immediately within a processor. Therefore every pro- 
cessor p also has another time threshold for the 
highest time stamp value it has sent properly to other 
processors. This means time stamp messages ever sent 
out byp  with values not greater than ttrans+ are guar- 
anteed to be received. 

Invariant 3 For any outlet x or U processor p and 
its anlet y so that x and y are matching, t i m e ( y )  2 
min(ttrans,p, t i m e ( x ) ) .  

The propagation of time stamp among processor is 
a continual process. Unlike propagating time stamps 
within a processor, generally there does not exist a 
convenient moment when all time stamps are prop- 
agated properly, i.e. all received and acknowledged. 
Hence the increase of ttrans+ cannot be done as easily 
as that of tprop,p and we must take into the account of 
the unacknowledged time stamps. 

The above invariants are vital to the correctness 
of our distributed garbage collection algorithm. Let 
tmin denote the global minimum of tprop,p and ttrans,p 
of  all processors. Intuitively, any time stamp value not 
greater than tmin are propagated correctly throughout 
the whole network and time stamps not greater than 
tmin remain unchanged forever. We now claim that 
the time stamp of any live inlet is at least t,,, . 

Theorem 1 The time stamp of any live inlet as ut 
least tmin,  the global  minimum of tprop,p and t t r a n s , p  

for all processor p .  

Owing the space constraint, the proof of the theo- 
rem from the three invariants is not presented here. A 
detail proof is given in [6]. 

Theorem 1 shows that the invariants guarantee the 
safety of our algorithm and that live objects would not 
be erroneously deleted if only those object with time 
stamps smaller than tmin are deleted. 

To guarantee the correctness of our distributed 
garbage collection algorithm, we preserve these invari- 
ants all the time during the operations of the mutators 
and collectors. In section 2.3 we have listed seven op- 
erations for the mutators and the collectors, we now 
the show they do not affect the invariants. 

30perations pertaining to distributed reference counting are 
neglected here for the sake of simplicity of our presentation. 
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3.2.2 Creating New Objects 

New objects are only accessible from the local roots 
and they do not contain pointers. Therefore all in- 
variants are not affected. 

3.2.3 Changing Local Pointers 

The set of accessible outlets from an inlet may be 
changed during local computation but this does not 
affect Invariant 1 because any outlet involved must 
be accessible from the local roots and hence its time 
stamps is at least tp,.op,p (Invariant 2). As local com- 
putation does not include increa.sing time stamps of 
outlets, Invariant 3 is not affected. 

3.2.4 Sending References 

When a local reference is sent, the mutator creates a 
new inlet if no inlet for the referenced object exits. 
The time stamp of the inlet (new or old) is set to the 
current time without violating Invariant 1 and is also 
sent to the other mutator together with the reference. 

When a remote reference is sent, the minimum of 
tt,.aos,p and the time stamp of the outlet containing 
the reference is sent along with the reference as a 
lower bound of the inlet’s time stamp. 

3.2.5 Receiving References 

On receiving a local reference, the corresponding inlet 
is found tprop,p is reduced to no more than the time 
stamp of the inlet as we do not know if that higher 
time stamps than this are properly propagated. After 
adjusting tprop,p,  we also increase the time stamp of 
the inlet to  the current time because the inlet is live 
now. This increase has no effect on Invariant 1. 

When a remote reference is received and there is no 
outlet containing this reference, a new outlet is created 
with its time stamp set to the current time. ttrans,p 
is reduced to  the time stamp received together with 
the reference, which is a lower bound of the matching 
inlet’s time stamp4. 
If an outlet IC containing the reference exists, we in- 
crease time(z) to lower bound of the matching inlet’s 
time stamp without sending a message to its match- 
ing inlet y because time(y) is guaranteed to be not 
smaller than the lower bound. Since the outlet is now 
accessible (previously may be inaccessible) from the 
local roots, we reduce tprop,p to min(tPrOPIP, t ime(z ) )  
to keep Invariant 1. 

4This is true even if the inlet is local to p .  

3.2.6 Local Garbage Collection 

Besides reclaiming local garbage, local garbage collec- 
tion also propagates time stamp within a processor. 
[5, 71. It does so as follows. (1) Time stamps of local 
roots are set to the starting time of local collection. (2) 
Time stamps of inlets in use (if lower) are set to  the 
starting time of the local collection. (3) Time stamps 
of local roots and inlets are propagated to  their de- 
scendants by local graph traversal in descending order 
of their time stamps. When an outlet is first seen dur- 
ing a local collection, its time stamp is set to  that of 
the local root or inlet from which it is reached if its 
time stamp is lower. (4) The time stamps of all out- 
lets in use are also increased to the starting time of 
the local collection if they are lower. (5) When the 
graph traversal finishes, the time stamp of an outlet 
in not smaller than the maximum time stamp of all lo- 
cal roots or inlets from which it is accessible. We take 
this chance to advance tprop,p to the starting time of 
this local collection5. 

3.2.7 Sending Time Stamps 

When processor p’s collector increases the time stamp 
of an outlet IC with a matching inlet y, it sends the new 
time stamp value of IC to y’s collector. Invariant 3 may 
be violated in the period after the time stamp of IC is 
increased till y’s new time stamp is received. There- 
fore, ttrans,p is reduced to the minimum of ttrans,p and 
the original time stamp of IC.  

3.2.8 Receiving Time Stamps 

When a time stamp for an inlet is received, the time 
stamp of the inlet (if lower) is increased to the received 
value. Invariant 1 may be violated by this increase. 
To guard against this, the value of tprop is set to  the 
minimum of the old time stamp of the inlet and the 
value of tprop before the increase (section 3.2.5). 

3.3 Updating ttrans,p 

We have shown that our algorithm does not reclaim 
any live inlet erroneously. However, nothing is said 
about the progress of the algorithm. To ensure that 
garbage is eventually reclaimed, tmin is required to 
be increasing. We add two things to get a complete 
distributed garbage collection algorithm, First, we find 
a way to increase ttrans,p of all processors. Second, we 
find a way to calculate tmin. 

We cannot increase tprop,p to a value greater than this be- 
cause local computation changes accessibility of outlets. 
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From the definition of t t rans ,p  :: old time 
stamps of an outlet whose new time stamps have been 
sent and not acknowledged (section 3.2.7:). We let 

be the minimum of all such old time stamps. 
Thus t trans,p is decreased or increased when a time 
stamp message is sent or is acknowledged. These op- 
erations can be implemented efficiently using a heap. 
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