
Title Practical distributed garbage collection for networks with
asynchronous clocks and message delay

Author(s) Kwan, Doug; Chin, Francis

Citation Proceedings Of The Internatoinal Conference On Parallel And
Distributed Systems - Icpads, 1994, p. 406-411

Issued Date 1994

URL http://hdl.handle.net/10722/45538

Rights Creative Commons: Attribution 3.0 Hong Kong License

Practical distributed garbage collection for networks with
asynchronous clocks and message delay

Doug Kwan

Dept. of Computer Science
University of Hong Kong

Hong Kong

Abstract

Distributed garbage collection over a message pas-
sage network i s discussed in this paper. Traditionally,
this can be done b y reference counting, which is fast
but cannot reclaim cyclic structures or b y graph traver-
sal, e.g. mark-and-sweep or time stamping, which is
capable of reclaiming cyclic structures but is slow. We
propose a combined scheme which is fast in reclaim-
ing acyclic garbage and guaranteed to reclaim cyclic
garbage. Our scheme does not rely on synchronized
clocks nor zero message delay and is thus practical.

1 Introduction

Garbage collection [a, 101 is a very useful mem-
ory management technique. In recent years, much
research effort has been put into the area of dis-
tributed and parallel garbage collection. In this paper,
the problem of distributed garbage collection over a
message-passing network is discussed.

Many algorithms for distributed garbage collection
have been proposed and studied. One important class
is based on reference counting[8, 911. Unlike their
counterparts in uniprocessor environments, these al-
gorithms have to address the problem of synchronisa-
tion, or live objects may be deleted prematurely be-
cause their reference counts may be reduced to zero
temporarily owing to race conditions. When the ref-
erence count of an object reaches zero, that object can
be reclaimed immediately and the reference counts of
all other objects pointed to by this object can also be
reduced subsequently. Therefore the latency of recla-
mation is low. However, reference counting cannot
detect cyclic garbage[8, 91.

lIn the reference counting scheme, each object has an asso-
ciated count on the number of pointers (references) at it.

Francis Chin

Dept. of Computer Science
University of Hong Kong

Hong Kong

Another class of distributed garbage collection algo-
rithms uses graph traversal to detect live, i.e. reach-
able objects[5, 71. The simplest one is a distributed
version of the mark-and-sweep algorithm[2, lo]. The
local graph traversal in each processor is done by local
garbage collectors conservatively. Local graph traver-
sal is conservative because all objects reachable from
local roots or from non-local objects through inter-
processor pointers are considered live even though ob-
jects referenced through inter-processor pointers may
be garbage. Global liveness information is propa-
gated through inter-processor pointers on top of lo-
cal garbage collection. If an inter-processor pointer is
encountered during a local collection, liveness infor-
mation is sent to the processor containing the object.
Garbage is detected when system has stablized and no
global liveness information needs to be propagated.

There are several problems with this kind of algo-
rithms. First, we have to detect stability with respect
to global liveness information propagation. No object
can be reclaimed unless all liveness information has
been propagated. Second, we may have to wait for
a long time before the system stablizes. For acyclic
garbage, reference counting should perform better un-
der such circumstances.

A way to reduce latency of reclamation is to over-
lap a number of distributed garbage collection pro-
cesses. Liveness information of several processes is
propagated by a single local collection. The can be
done by pipelining or temporal overlapping [5, 71, i.e.
a number of distributed garbage collection processes
are carried out simultaneously. Liveness information
of a distributed garbage collection instance overrides
the liveness information of all unfinished ones started
earlier. With this approach, liveness of an object is as-
sociated with a time stamp [5, 71 corresponding to the
latest distributed garbage collection and it is assumed
that the object is live by all unfinished instances of dis-
tributed garbage collection started earlier. Latency of

0-8186-6555-6/94 $04.00 0 1994 IEEE
406

reclamation can be high as information may have to
be propagated through the whole network.

We propose here a combined algorithm using time
stamps and reference counters in order to have the
virtues of these two approaches. Acyclic ga.rbage can
be reclaimed as soon as possible through reference
counting while cyclic garbage is reclaimed by means of
time stamping. Our presentation is formal and rigor-
ous and we have proposed solutions to problems which
have not been discussed before, especially during the
process of establishing inter-processor pointers.

Our approach also has several advantages over pre-
vious work in this area. First, our algorithm works
with finite but unbounded delay. Previous algorithms
either ignore network delay[5] or assume a known up-
per bound for network delay[7]. Second, our algo-
rithm does not rely on synchronised clocks, a condition
which was assumed by most previous work[5, 71; this
complicates our termination detection protocol.

In section 2, models used in our algorithm are de-
fined. The algorithm and its correctness are discussed
in section 3 and section 4 concludes this paper.

2 Basic Assumptions

2.1 Network Model

We assume a group of processors communicating
with each other over a message passing network with
finite but unbounded delay. Messages reach their des-
tinations and are acknowledged eventually in the order
they are sent. Processors have clocks which are not
synchronised. Every processor has its local objects,
which are inaccessible from other processors. Associ-
ated with each processor are two computing agents,
the m u t a t o r and the collector[4]. For the sake of con-
venience, when the objects, the mutator and the col-
lector all belong to the same processor, we refer to
the object as the mutator’s objects or the collector’s
objects, we also call the mutator the object’s mutator
and the collector the object’s collector. The mutators
perform computation in the network. A mutator only
has access to those objects reachable from its roots via
local pointer dereferencing. If a mutator has to access
a remote object, it can only do so through message
passing, i.e. by sending a message to the remote ob-
ject’s mutator requesting that the operation be done
on its behalf. In addition, a mutator can only receive
pointers from other mutators.’ The collectors, based

2Since a collector can see garbage, it can send a message
containing a pointer to a garbage object to a mutator and re-
vive the object. Therefore we have to prohibit mutators from

PROCESSOR p PROCESSOR q

I

b
0 LOCAL H001 D INLET

0 OTHER OBIECT

Figure 1: Inlets and Outlets

on either a mark ing or copying[2, 101 scheme, reclaim
objects which are inawessible from any of local roots
nor non-local objects.

2.2 Inlets and Outlets

Two kinds of special objects, namely inlets and out-
lets, (Fig 1) are used for inter-processor pointer indi-
rection. An inlet contains a pointer to a local ob-
ject which is known to be pointed to by some inter-
processor pointers. An inlet y on processor p is identi-
fied by a reference (p , y). An outlet contains a reference
to an inlet. An inter-processor pointer from an object
a in processor p to another object b in processor q is
represented by a locall pointer from a to an outlet a:
in p with a reference (q , y) where y is the inlet in q
pointing at b (Figure 1). Thus inter-processor point-
ers can be manipulated as if they were local pointers.
This indirection technique is common in distributed
garbage collection. We say inlet 2 and outlet y are
matched if y stores a reference to the a:.

2.3 Operations of Mutators and Collec-
tions

We classify the operations of the mutators and the
collectors into the following categories. Implementa-
tions will be described later.

1. Creating New Okljects

2. Changing Local Pointers

3. Sending References

receivicg pointers from collectors.

407

Receiving References

Local Garbage Collections

Sending Time Stamps

Receiving Time Stamps

These operations model computation and dis-
tributed garba,ge collection in the network.

3 Algorithm

There are two types of garbage, local garbage and
distrabuted garbage. Local garbage can be reclaimed
by local garbage collectors without involving inter-
processor pointers. Distributed garbage is garbage in-
volving inter-processor pointers. In particular, it is
sufficient that only inlets are considered by the dis-
tributed garbage collector. As outlets which are inac-
cessible from local roots or inlets can be reclaimed by
the local garbage collectors, they would not be con-
sidered distributed garbage.

3.1 Distributed Reference Counting

We now outline a distributed reference count-
ing scheme capable of reclaiming acyclic distributed
garbage similar to the one described in [8]. Under
this scheme, every inlet is associated with a reference
counter reflecting the number of matching outlets.
The reference counter is updated whenever matching
outlets are created or destroyed. Normally, as soon
as the reference counter of an inlet reaches zero, an
inlet can be reclaimed. However in some cases, owing
to network delay, an inlet with zero reference count
may not be garbage because there may still be some
messages containing reference to this inlet. We say an
inlet is zn use if a message containing a reference of the
inlet has been sent but not acknowledged. Similarly,
an outlet is in use if the particular reference stored in
the outlet has been sent but not acknowledged.

Each mutator records references it has sent but not
acknowledged. A message counter is added to every
inlet and outlet for finding out whether an object is in
use. The counter is zero when an object is created, in-
cremented when a reference associated with the object
is sent and decremented when the message is acknowl-
edged. Thus an object is in use if its message counter
is non-zero.

Our distributed reference counting algorithm is as
follows. This algorithm is only invoked when an inter-
processor pointer is created or removed. During the

creation of a new inter-processor pointer, a mutator,
say M A , sends a reference to another mutator, say
M B] and a new outlet for this reference has to be
created in MB’S processor if the referenced inlet is not
in MB’S processor. The reference counter of the inlet
matching this new outlet is incremented. Therefore
MB does not have to reply to M A and instead it sends
an ancrement reference message to the collector of that
inlet. This increment reference message contains the
reference, M A and the ID of the original message from
M A . When that inlet’s collector receives this message,
it increments the reference counter of that inlet and
replies to both MA and M B . The outlet or the inlet
associated with reference in MA’s processor is kept zn
use until the reply from the collector to M A is received.

When an inter-processor pointer is removed, an out-
let is reclaimed and the reference counter of the match-
ing inlet is decremented accordingly. Therefore, the
outlet’s collector, say CA, sends a decrement reference
count message to the the inlet’s collector. However, if
the outlet is in use, the sending of the decrement ref-
erence count message as well as its reclamation will be
delayed until it is not in use. Upon receiving the decre-
ment reference message, the collector C, decreases the
reference counter of the inlet. The inlet will be re-
claimed if its reference counter reaches zero and it is
not in use.

3.2 Time Stamping

As reference counting cannot reclaim cyclic
garbage, we augment it with time stamping. The
combined algorithm reclaims cyclic garbage and also
reclaims acyclic garbage faster than algorithms using
time stamping alone. Time stamps are introduced to
all inlets, outlets and roots. We denote the time stamp
of an object 2 by t i m e (z) . Loosely speaking, t ime(z)
denotes the “time” until which 2 remains alive and
thus time(z) is non-decreasing as time passes. They
are propagated from roots to inlets and outlets.

Intuitively, our algorithm works like this. Roots
are sources of increasing time stamps which are prop-
agated to inlets and outlets. Thus any live inlet or
outlet also has an increasing time stamp. If an inlet
or an outlet becomes garbage, it is disconnected from
all roots and hence its time stamp would stop increas-
ing. A threshold is found such that time stamps of all
live objects are of at least this value. All objects with
time stamps less than the threshold must be garbage
and hence removed.

Because of asynchronous clocks, one may ask
whether it makes sense in propagating time stamps
originating from asynchronous sources. It is easier to

408

understand our algorithm if we view time stamps as
version numbers, which are ordered like time stamps.
If we view the time stamping algorithm as a collection
of concurrent distributed mark-and-sweep algorithms,
then t i m e (x) denotes that object x is live during “all”
the distributed garbage collection processes with ver-
sion numbers 5 t ime(%) . Thus if object x receives
several time stamps, it makes sense for higher time
stamps to override lower ones as the liveness of x in a
distributed collection process of higher version number
implies that of lower ones.

3.2-1 tprop t t r a n s and tmin

In order to determine the threshold for live objects, we
have to ensure that all time stamps not greater than
the threshold are propagated properly throug,hout the
whole network. Intuitively, every processor p keeps
track of two time thresholds, tprop,p and t trans,p, where
tprop,p is the time threshold that all time stamps are
propagated properly within processor p[5] and t t r a n s , p
is the time threshold that all time stamps are trans-
mitted properly from processor p to other processors.
The time threshold is defined as

tmin = min(min(tprOp,, , ttrans,p))
P

As local roots are live when the collectiomn starts,
their time stamps are set to the starting time of the lo-
cal collection. Time stamps are then propagaked from
local roots or inlets to outlets within a proce#ssor dur-
ing a local collection, after which the time :stamp of
any outlet y is not less than that of any local root
or inlet x from which the outlet is accessible, i.e.,
t ime(y) = max{time(x)ly is reachable from IC}. Thus
t ime(y) is at least t i m e (x) but no more than the time
threshold for proper time stamp propagation, tprop,p.

Invariant 1 For any inlet or local root x and out-
let y of a processor p such that y is accessi-
ble from x via intra-processor pointers, t ime(y) 2
min(tPTOP,P, t i m e (x)) .

To uphold this invariant, tprop+, has to be adjusted
constantly. It is set to the starting time o’f the lo-
cal collection, i.e. the time stamp of the roots, after
the collection and this is the only time when tprop,p is
increased. During the period between two :instances
of garbage collection, if inlet x receives a higher time
stamp and tprop,p is also higher than outlet y’s time
stamp, we reduce tprop,p to maintain the time thresh-
old property and Invariant 1.

Invariant 2 For a n y processor p and local root x,
t i 4 z) L t p r o p , p

Time stamps are also propagated from outlets to
inlets via inter-processor pointers. We assume that
a time stamp message is sent from an outlet to its
matching inlets when the outlet’s time stamp is in-
creased Owing to network delay, the message does not
arrive at its destination immediately. This is similar
to the case that time stamps cannot be propagated
immediately within a processor. Therefore every pro-
cessor p also has another time threshold for the
highest time stamp value it has sent properly to other
processors. This means time stamp messages ever sent
out byp with values not greater than ttrans+ are guar-
anteed to be received.

Invariant 3 For any outlet x or U processor p and
its anlet y so that x and y are matching, t i m e (y) 2
min(ttrans,p, t i m e (x)) .

The propagation of time stamp among processor is
a continual process. Unlike propagating time stamps
within a processor, generally there does not exist a
convenient moment when all time stamps are prop-
agated properly, i.e. all received and acknowledged.
Hence the increase of ttrans+ cannot be done as easily
as that of tprop,p and we must take into the account of
the unacknowledged time stamps.

The above invariants are vital to the correctness
of our distributed garbage collection algorithm. Let
tmin denote the global minimum of tprop,p and ttrans,p
of all processors. Intuitively, any time stamp value not
greater than tmin are propagated correctly throughout
the whole network and time stamps not greater than
tmin remain unchanged forever. We now claim that
the time stamp of any live inlet is at least t,,, .

Theorem 1 The time stamp of any live inlet as ut
least tmin, the global minimum of tprop,p and t t r a n s , p

for all processor p .

Owing the space constraint, the proof of the theo-
rem from the three invariants is not presented here. A
detail proof is given in [6].

Theorem 1 shows that the invariants guarantee the
safety of our algorithm and that live objects would not
be erroneously deleted if only those object with time
stamps smaller than tmin are deleted.

To guarantee the correctness of our distributed
garbage collection algorithm, we preserve these invari-
ants all the time during the operations of the mutators
and collectors. In section 2.3 we have listed seven op-
erations for the mutators and the collectors, we now
the show they do not affect the invariants.

30perations pertaining to distributed reference counting are
neglected here for the sake of simplicity of our presentation.

409

3.2.2 Creating New Objects

New objects are only accessible from the local roots
and they do not contain pointers. Therefore all in-
variants are not affected.

3.2.3 Changing Local Pointers

The set of accessible outlets from an inlet may be
changed during local computation but this does not
affect Invariant 1 because any outlet involved must
be accessible from the local roots and hence its time
stamps is at least tp,.op,p (Invariant 2). As local com-
putation does not include increa.sing time stamps of
outlets, Invariant 3 is not affected.

3.2.4 Sending References

When a local reference is sent, the mutator creates a
new inlet if no inlet for the referenced object exits.
The time stamp of the inlet (new or old) is set to the
current time without violating Invariant 1 and is also
sent to the other mutator together with the reference.

When a remote reference is sent, the minimum of
tt,.aos,p and the time stamp of the outlet containing
the reference is sent along with the reference as a
lower bound of the inlet’s time stamp.

3.2.5 Receiving References

On receiving a local reference, the corresponding inlet
is found tprop,p is reduced to no more than the time
stamp of the inlet as we do not know if that higher
time stamps than this are properly propagated. After
adjusting tprop,p, we also increase the time stamp of
the inlet to the current time because the inlet is live
now. This increase has no effect on Invariant 1.

When a remote reference is received and there is no
outlet containing this reference, a new outlet is created
with its time stamp set to the current time. ttrans,p
is reduced to the time stamp received together with
the reference, which is a lower bound of the matching
inlet’s time stamp4.
If an outlet IC containing the reference exists, we in-
crease time(z) to lower bound of the matching inlet’s
time stamp without sending a message to its match-
ing inlet y because time(y) is guaranteed to be not
smaller than the lower bound. Since the outlet is now
accessible (previously may be inaccessible) from the
local roots, we reduce tprop,p to min(tPrOPIP, t ime(z))
to keep Invariant 1.

4This is true even if the inlet is local to p .

3.2.6 Local Garbage Collection

Besides reclaiming local garbage, local garbage collec-
tion also propagates time stamp within a processor.
[5, 71. It does so as follows. (1) Time stamps of local
roots are set to the starting time of local collection. (2)
Time stamps of inlets in use (if lower) are set to the
starting time of the local collection. (3) Time stamps
of local roots and inlets are propagated to their de-
scendants by local graph traversal in descending order
of their time stamps. When an outlet is first seen dur-
ing a local collection, its time stamp is set to that of
the local root or inlet from which it is reached if its
time stamp is lower. (4) The time stamps of all out-
lets in use are also increased to the starting time of
the local collection if they are lower. (5) When the
graph traversal finishes, the time stamp of an outlet
in not smaller than the maximum time stamp of all lo-
cal roots or inlets from which it is accessible. We take
this chance to advance tprop,p to the starting time of
this local collection5.

3.2.7 Sending Time Stamps

When processor p’s collector increases the time stamp
of an outlet IC with a matching inlet y, it sends the new
time stamp value of IC to y’s collector. Invariant 3 may
be violated in the period after the time stamp of IC is
increased till y’s new time stamp is received. There-
fore, ttrans,p is reduced to the minimum of ttrans,p and
the original time stamp of IC.

3.2.8 Receiving Time Stamps

When a time stamp for an inlet is received, the time
stamp of the inlet (if lower) is increased to the received
value. Invariant 1 may be violated by this increase.
To guard against this, the value of tprop is set to the
minimum of the old time stamp of the inlet and the
value of tprop before the increase (section 3.2.5).

3.3 Updating ttrans,p

We have shown that our algorithm does not reclaim
any live inlet erroneously. However, nothing is said
about the progress of the algorithm. To ensure that
garbage is eventually reclaimed, tmin is required to
be increasing. We add two things to get a complete
distributed garbage collection algorithm, First, we find
a way to increase ttrans,p of all processors. Second, we
find a way to calculate tmin.

We cannot increase tprop,p to a value greater than this be-
cause local computation changes accessibility of outlets.

410

From the definition of t t rans ,p :: old time
stamps of an outlet whose new time stamps have been
sent and not acknowledged (section 3.2.7:). We let

be the minimum of all such old time stamps.
Thus t trans,p is decreased or increased when a time
stamp message is sent or is acknowledged. These op-
erations can be implemented efficiently using a heap.

Acknowledgements

The authors would like to thank Dr. Olin Shivers
at MIT and Mr. Kelvin Kwan at University of Hong
Kong for their comments on the draft of this paper.

References
3.4 Estimating tmin

Because of asynchronous clocks, we find the min-
imum tmin in a period of time instead of that in a
specific moment. A leader processor initiates the cal-
culation of tmin. First, it broadcasts to all processors,
including itself, an initialization message. When the
leader has got all replies, it broadcasts another mes-
sage. Upon receiving the second message, each proces-
sor calculates and replies min(tprop,p, t t rans ,p) during
the period between the receiving times of two mes-
sages. Using the returned values, the leader finds
and broadcasts to all processors the global minimum
tmin, which is the threshold for reclaiming garbage.

Calculation of tmin as described above runs contin-
uously at the background it can be shown that tmin
is non-decreasing. Based on the fact that the time
stamp of any garbage inlet does not increase indef-
initely, all new inlets and outlets are stamped with
current time, progress of our distributed garbage col-
lection algorithm can be guaranteed.

4 Conclusions

Our algorithm reclaims distributed garbage in a
message passing processor network with unsynchro-
nised clocks and non-zero network delay. To decrease
the latency for reclaiming acyclic garbage, reference
counting mechanism is included in the algorithm.

Our algorithm is different from algorithms depend-
ing only on reference counting [8, 91 or graph traver-
sal [5, 71. It combines the fast reclamation of acyclic
garbage associated with reference counting and the ef-
fective reclamation of cyclic garbage associ.ated with
graph traversal. Although similar hybrid schemes
[l, 31 have been proposed, our scheme addresses some
problems neglected by them. In [l] an hybrid al-
gorithm is presented. This algorithm uses marking
where ours uses time stamps which are more efficient
owing to temporal overlapping. Also, we address some
specific issues like message delay and clock synchroni-
sation. The algorithm described in [3] is intended for
shared memory architecture where message delay and
asynchronous clocks does not exist.

[l] J . K. Bennett, “The Design and Implementation
of Distributed Smalltalk,” Proceedings OOPSLA
’87, ACM SIGPLAN Notices, vol. 22, no. 12, pp.
318-330, Dec. 1987.

[a] J. Cohen, “Garbage collection of linked list data
structures,’’ Computing Surveys, 13(3):341-367,
Sep. 1981.

[3] J . DeTreville, Experience with Concurrent
Garbage Collectors for Modular-L+, System Re-
search Centre Research Report 64, DEC, Nov.
1990.

[4] E. Dijstra at el, On the fly garbage collection, an
exercise in cooperation. CACM21, 11, Nov. 1978,
pp. 966-975.

[5] J . Hughes. “A Distributed Garbage Collection
Algorithm”. Proc of Functional Languages and
Computer Architectures 1985, pp. 256-271.

[6] D. Kwan. Master Thesis, in preparation.

[7] R. Ladin and B. Liskov. “Garbage Collection of
a Distributed Heap”. Proc. of IEEE Symposium
on the Principles of Distributed Computing. 1992,
pp. 708-715.

[8] C. W. Lermem and D. Maurer. A Protocol for
Distributed Reference Counting. Proceedings of
1986 ACM Conference on Lisp and Functional
Programming, MIT, 343-350

[9] D. PlainfossC and M. Shapiro. Experience with
a Fault-Tolerant Garbage Collector in a Dis-
tributed Lisp System. IWMM 1992 International
Workshop of Memory Management, pp. 116-133,
Springer Verlag, LNCS series.

[lo] P. Wilson, Uniprocessor Garbage Collection
Techniques. IWMM 1992 International Work-
shop of Memory Management, pp. 1-42, Springer
Verlag, LNCS series.

411

