124,960 research outputs found

    The design principles for flow experience in educational games

    Get PDF
    Educational games have to be well designed to incorporate learner engagement, an integral component of educational effectiveness. One foundation of designing educational engagement is flow theory. This article presents a flow framework that describes the building blocks of flow experience that can be used to design appealing and effective educational games for formal and informal learning contexts. The framework provides the principles for good educational game design, based upon associative, cognitive and situative learning theories, including engagement and pedagogic elements with a focus upon feedback and flow principles. Furthermore, the paper clarifies the relation between the flow experience and immersion. We tested the flow framework in the RealGame case study, which revealed that the RealGame business simulation game was well designed and effective at engaging student.We found tht the university student; flow experience in the game was high and the findings indicated that sense of control, clear goals and challenge-skill dimensions of flow scored the highest, but a rewarding experience and feedback dimensions also scored highly by the students. Overall, the results indicate that flow framework is a useful tool in studying game-based learning experiences

    Game, Motivation, and Effective Learning: An Integrated Model for Educational Game Design

    Get PDF
    Game environments have great potential to support immersive learning experiences. Learning can be defined as "the act, process, or experience of gaining knowledge or skill." To engage in this act of gaining knowledge or skill, learners must be motivated. According to Chan & Ahern (1999), "When people are intrinsically motivated to learn, they not only learn more, they also have a more positive experience." Games meet both these tests for effective learning environments: they are active experiences, and they have the capacity to provide intrinsic motivation. MOTIVATION & FLOW To motivate is to "provide with an incentive". In traditional instructional design practice, motivation is often considered as a preliminary step in the instructional process (Chan & Ahern, 1999). Intrinsic motivation, however, focuses on the development of motivation throughout the entire instructional process. To understand motivation in instruction, the authors of this paper look at the ARCS Model of Motivational Design developed by John M. Keller. The ARCS Model identifies four components for motivating instruction: attention strategies, relevance strategies, confidence strategies, and satisfaction strategies (Keller, 1983). A well-designed game can include all of these strategies. A well-designed educational game will meld them with the desired learning outcomes. Chan and Ahern (1999) suggest Csikszentmihalyi’s Flow Theory as a tool for understanding and implementing motivation. The authors of this paper see Flow Theory as a critical factor in the development of effective educational game environments. Flow Theory describes a state where the subject experiences a perfect balance between challenge and ability. According to Mihaly Csikszentmihalyi (1990), flow is being completely involved in an activity for its own sake. Consistent with the ARCS model, applications of this theory focus on providing the learner with appropriate challenge, setting concrete goals, structuring control, and providing clear feedback (Chan & Ahern 1999). To learn, students need to be motivated, and an appropriate level of challenge combined with a clear and attainable goal is highly motivating. Since flow experiences share these key aspects of motivational design, they can be described as intrinsically motivating. Instructional designers can utilize game environments that support flow and enable learning. Learning environments have been largely limited to the classroom model: the teacher stands in front of the class and transmits knowledge to a listening group of students. To support a flow state, a learning environment must closely match each student’s skill level, and provide tasks with clear goals and immediate individual feedback. Houser and De Loach review Donald Norman\u27s work: Things that make us Smart. Norman identifies seven basic requirements of a learning environment. They note Norman\u27s call for interaction, feedback, goals, motivation, challenge, engagement and concentration and conclude that games demonstrate effective learning environments (Houser & Deloach, 1998). GAME, PLAY, AND LEARNING A game is "a system in which players engage in artificial conflict, defined by rules, that results in a quantifiable outcome." (Salen & Zimmerman, 2004). The goal of successful game design is the creation of meaningful play (ibid). Johann Huizinga (1955) defines play as "a free activity standing quite consciously outside ‘ordinary’ life as being ‘not serious’, but at the same time absorbing the player intensely and utterly". The authors of this paper argue for educational game environments that combine play, motivation, flow, and learning. Lepper and Malone (1987) illustrate four key attributes that educational games can employ: challenge, sensory and cognitive curiosity, a sense of control, and the use of fantasy to reinforce and stimulate. The diagram below illustrates the potential for well-designed educational games: Games > Play > Flow > Motivation > Learning Games foster play and challenge, which produces a state of flow, which increases motivation, which supports the learning process. The juncture of learning outcomes with well-designed game mechanics can result in learning experiences which are intrinsically motivating. The challenge for educational designers is to build environments where the dynamics of learning are fully integrated with the dynamics of game-play. Lepper and Malone describe a term called ‘Fantasy’. Fantasy is what players first experience when they play a game. They see the graphics, hear the sounds, and interact with the world. Many educational games implement a form of educational ‘sugar coating’ known as exogenous fantasies - the game is merely used to package and improve the educational setting (Rieber, 1996). In contrast, games that employ endogenous fantasies weave the content into the game. One cannot tell where the game stops and the content begins (ibid). These games integrate the learning dynamics within the \u27magic circle\u27 [Salen and Zimmerman (2004), Huzuinga (1955)] that constitutes an immersive game world. If learning is situated outside of the magic circle, the game’s powerful ability to draw the learner into a state of flow is broken, and the learning becomes an incidental intrusion. In a fully integrated educational game, ‘stealth learning’ can occur naturally within the context of the game world (Prensky, 2001 as cited in De Castell & Jenson, 2003). The educational possibilities that videogames provide are similar to those known in ‘active learning’. Active learning is student participation in the learning and teaching process, where students themselves engage with and, to an extent, create their own learning experience (Mitchell, 2002). One of the difficulties with flow experiences is the lack of reflection that is able to take place while one is in a flow state. The authors cite the design of a 3D education hockey game that teaches about concussion. In the game, reflection is incorporated into the immersive \u27magic circle\u27 of the game play. Players that engage in concussive activities are forced to sit for a while and consider the seriousness and the implications of concussion effects, just a player would be forced to sit in a live hockey game. The act of reflection is incorporated into both the core mechanics of the game, and the fantasy experience of the game world. This is an example of an integrated design approach, which reconciles flow, learning, and endogenous motivation within an immersive game experience. REFERENCES Chamberlin, J. (1998). Reaching ‘flow’ to optimize work and play. American Psychological Association. Vol. 29. No. 7. Accessed: April 22, 2004. Available online: http://www.apa.org/monitor/jul98/joy.html. Chan, T. S., & Ahern, T. C. (1999). Targeting motivation – adapting flow theory to instructional design. Journal of Educational Computing Research, 21 (2), 152-163. Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience. New York: Harper & Row. De Castell, S., & Jenson, J. (2003). Serious Play. Journal of Curriculum Studies, Vol. 35, No. 6, 649-665. Hoonhout, J., Diederiks, E. & Stienstra, M. (2003). Designing fun, and test it too. Usability Professionals’ Association, Marriott City Center Minneapolis, Minnesota. Accessed: April 22, 2004. Available online: http://www.upassoc.org/conferences_and_events/upa_conference/2004/progra... Houser, R., & Deloach, S. (1998). Learning from games: Seven principles of effective design. Technical Communication, August, 319-329. Huizinga, Johann. (1955). Homo Ludens: A Study of the Play Element in Culture. Boston: Beacon Press. Keller, J. M. (1983). Motivational design of instruction. In C.M. Reigeluth (Ed.). Instructional design theories and models: An overview of their current status. Hillsdale, NJ: Erlbaum. Kolb, D. A. (1984). Experiential Learning: experience as the source of learning and development. Englewood Cliffs. Lepper, M. R., & Malone, T. W. (1987). Intrinsic motivation and instructional effectiveness in computer-based education. In R. E. Snow & M. J. Farr (Eds.), Aptitude, learning, and instruction: Vol. 3. Cognitive and affective process analysis. (pp. 255-286). Hillsdale NJ: Erlbaum. Mitchell, L. (2002). Active Learning and Reflection. LTSN: History, Classics & Archaeology. Accessed: April 22, 2004. Available online: http://hca.ltsn.ac.uk/resources/Briefing_Papers/Active_Learning_Reflecti... Murray, J. (1997). Hamlet on the Holodeck: The Future of Narrative in Cyberspace. New York: The Free Press. Prensky, M. (2001). Digital Game-Based Learning. New York: McGraw-Hill. Rieber, L. P. (1996). Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games. Educational Technology Research and Development; 44(2), 43-58. Salen, K. & Zimmerman, E. (2004). Rules of Play: Game Design Fundamentals. Massachusetts Institute of Technology. Small, R. V. (1997). Motivation in Instructional Design. ERIC Digest. ERIC Clearinghouse on Information and Technology Syracuse NY

    A Mixed Method Approach for Evaluating and Improving the Design of Learning in Puzzle Games

    Get PDF
    Despite the acknowledgment that learning is a necessary part of all gameplay, the area of Games User Research lacks an established evidence based method through which designers and researchers can understand, assess, and improve how commercial games teach players game-specific skills and information. In this paper, we propose a mixed method procedure that draws together both quantitative and experiential approaches to examine the extent to which players are supported in learning about the game world and mechanics. We demonstrate the method through presenting a case study of the game Portal involving 14 participants, who differed in terms of their gaming expertise. By comparing optimum solutions to puzzles against observed player performance, we illustrate how the method can indicate particular problems with how learning is structured within a game. We argue that the method can highlight where major breakdowns occur and yield design insights that can improve the player experience with puzzle games

    Motivating children to learn effectively: exploring the value of intrinsic integration in educational games

    Get PDF
    The concept of intrinsic motivation lies at the heart of the user engagement created by digital games. Yet despite this, educational software has traditionally attempted to harness games as extrinsic motivation by using them as a sugar coating for learning content. This article tests the concept of intrinsic integration as a way of creating a more productive relationship between educational games and their learning content. Two studies assessed this approach by designing and evaluating an educational game called Zombie Division to teach mathematics to 7- to 11-year-olds. Study 1 examined the learning gains of 58 children who played either the intrinsic, extrinsic, or control variants of Zombie Division for 2 hr, supported by their classroom teacher. Study 2 compared time on task for the intrinsic and extrinsic variants of the game when 16 children had free choice of which game to play. The results showed that children learned more from the intrinsic version of the game under fixed time limits and spent 7 times longer playing it in free-time situations. Together, these studies offer evidence for the genuine value of an intrinsic approach for creating effective educational games. The theoretical and commercial implications of these findings are discussed

    'I play, therefore I learn?' Measuring the Evolution of Perceived Learning and Game Experience in the Design Flow of a Serious Game

    Get PDF
    This article explores how the serious game Poverty Is Not a Game (PING) is experienced by high school students in its subsequent design stages. We first focus on the multifaceted construct of game experience and how it is related to serious games. To measure game experience we use the Game Experience Questionnaire and add a perceived learning scale to account for the specificity of serious games in a classroom. Next, the data obtained from testing PING in 22 classrooms are analyzed. Results suggest that the evolution in the different design stages of the game is not just an issue of game experience, but also of usability. Furthermore, little evidence is found indicating that the learning experience changed positively during the different test phases. However, findings show a strong effect of the game experience on perceived learning while the game experience also varies significantly between different classrooms

    Profiling the educational value of computer games

    Get PDF
    There are currently a number of suggestions for educators to include computer games in formal teaching and learning contexts. Educational value is based on claims that games promote the development of complex learning. Very little research, however, has explored what features should be present in a computer game to make it valuable or conducive to learning. We present a list of required features for an educational game to be of value, informed by two studies, which integrated theories of Learning Environments and Learning Styles. A user survey showed that some requirements were typical of games in a particular genre, while other features were present across all genres. The paper concludes with a proposed framework of games and features within and across genres to assist in the design and selection of games for a given educational scenari

    Kaleidoscope JEIRP on Learning Patterns for the Design and Deployment of Mathematical Games: Final Report

    Get PDF
    Project deliverable (D40.05.01-F)Over the last few years have witnessed a growing recognition of the educational potential of computer games. However, it is generally agreed that the process of designing and deploying TEL resources generally and games for mathematical learning specifically is a difficult task. The Kaleidoscope project, "Learning patterns for the design and deployment of mathematical games", aims to investigate this problem. We work from the premise that designing and deploying games for mathematical learning requires the assimilation and integration of deep knowledge from diverse domains of expertise including mathematics, games development, software engineering, learning and teaching. We promote the use of a design patterns approach to address this problem. This deliverable reports on the project by presenting both a connected account of the prior deliverables and also a detailed description of the methodology involved in producing those deliverables. In terms of conducting the future work which this report envisages, the setting out of our methodology is seen by us as very significant. The central deliverable includes reference to a large set of learning patterns for use by educators, researchers, practitioners, designers and software developers when designing and deploying TEL-based mathematical games. Our pattern language is suggested as an enabling tool for good practice, by facilitating pattern-specific communication and knowledge sharing between participants. We provide a set of trails as a "way-in" to using the learning pattern language. We report in this methodology how the project has enabled the synergistic collaboration of what started out as two distinct strands: design and deployment, even to the extent that it is now difficult to identify those strands within the processes and deliverables of the project. The tools and outcomes from the project can be found at: http://lp.noe-kaleidoscope.org
    corecore