168 research outputs found

    Sufficiency and necessity in reliability modeling

    Get PDF
    Limitations of current analytic techniques in estimating the reliability of life-critical electronics systems are discussed. A new framework for specification of recovery and fault-handling submodels is suggested, and is shown through several examples to provide substantially improved modeling accuracy and flexibility. Implementation of the new technique in an X-windows based system, XHARP, is also described. The implementation allows for an automated behavioral decomposition of full system models, heretofore unavailable in such tools

    The Local Integrity Approach for Urban Contexts: Definition and Vehicular Experimental Assessment

    Get PDF
    A novel cooperative integrity monitoring concept, called “local integrity”, suitable to automotive applications in urban scenarios, is discussed in this paper. The idea is to take advantage of a collaborative Vehicular Ad hoc NETwork (VANET) architecture in order to perform a spatial/temporal characterization of possible degradations of Global Navigation Satellite System (GNSS) signals. Such characterization enables the computation of the so-called “Local Protection Levels”, taking into account local impairments to the received signals. Starting from theoretical concepts, this paper describes the experimental validation by means of a measurement campaign and the real-time implementation of the algorithm on a vehicular prototype. A live demonstration in a real scenario has been successfully carried out, highlighting effectiveness and performance of the proposed approach

    On the energy efficiency of rate and transmission power control in 802.11

    Get PDF
    Rate adaptation and transmission power control in 802.11 WLANs have received a lot of attention from the research community, with most of the proposals aiming at maximising throughput based on network conditions. Considering energy consumption, an implicit assumption is that optimality in throughput implies optimality in energy efficiency, but this assumption has been recently put into question. In this paper, we address via analysis, simulation and experimentation the relation between throughput performance and energy efficiency in multi-rate 802.11 scenarios. We demonstrate the trade-off between these performance figures, confirming that they may not be simultaneously optimised, and analyse their sensitivity towards the energy consumption parameters of the device. We analyse this trade-off in existing rate adaptation with transmission power control algorithms, and discuss how to design novel schemes taking energy consumption into account.This work has been performed in the framework of the H2020-ICT-2014-2 projects 5GNORMA (grant agreement no. 671584) and Flex5Gware (grant agreement no. 671563). The authors would like to acknowledge the contributions of their colleagues. This information reflects the consortium's view, but the consortium is not liable for any use that may be made of any of the information contained therein

    Resilience-oriented control and communication framework for cyber-physical microgrids

    Get PDF
    Climate change drives the energy supply transition from traditional fossil fuel-based power generation to renewable energy resources. This transition has been widely recognised as one of the most significant developing pathways promoting the decarbonisation process toward a zero-carbon and sustainable society. Rapidly developing renewables gradually dominate energy systems and promote the current energy supply system towards decentralisation and digitisation. The manifestation of decentralisation is at massive dispatchable energy resources, while the digitisation features strong cohesion and coherence between electrical power technologies and information and communication technologies (ICT). Massive dispatchable physical devices and cyber components are interdependent and coupled tightly as a cyber-physical energy supply system, while this cyber-physical energy supply system currently faces an increase of extreme weather (e.g., earthquake, flooding) and cyber-contingencies (e.g., cyberattacks) in the frequency, intensity, and duration. Hence, one major challenge is to find an appropriate cyber-physical solution to accommodate increasing renewables while enhancing power supply resilience. The main focus of this thesis is to blend centralised and decentralised frameworks to propose a collaboratively centralised-and-decentralised resilient control framework for energy systems i.e., networked microgrids (MGs) that can operate optimally in the normal condition while can mitigate simultaneous cyber-physical contingencies in the extreme condition. To achieve this, we investigate the concept of "cyber-physical resilience" including four phases, namely prevention/upgrade, resistance, adaption/mitigation, and recovery. Throughout these stages, we tackle different cyber-physical challenges under the concept of microgrid ranging from a centralised-to-decentralised transitional control framework coping with cyber-physical out of service, a cyber-resilient distributed control methodology for networked MGs, a UAV assisted post-contingency cyber-physical service restoration, to a fast-convergent distributed dynamic state estimation algorithm for a class of interconnected systems.Open Acces

    An Energy-Efficient Controller for Wirelessly-Powered Communication Networks

    Full text link
    In a wirelessly-powered communication network (WPCN), an energy access point (E-AP) supplies the energy needs of the network nodes through radio frequency wave transmission, and the nodes store their received energy in their batteries for possible data transmission. In this paper, we propose an online control policy for energy transfer from the E-AP to the wireless nodes and for data transfer among the nodes. With our proposed control policy, all data queues of the nodes are stable, while the average energy consumption of the network is shown to be within a bounded gap of the minimum energy required for stabilizing the network. Our proposed policy is designed using a quadratic Lyapunov function to capture the limitations on the energy consumption of the nodes imposed by their battery levels. We show that under the proposed control policy, the backlog level in the data queues and the stored energy level in the batteries fluctuate in small intervals around some constant levels. Consequently, by imposing negligible average data drop rate, the data buffer size and the battery capacity of the nodes can be significantly reduced

    Advanced information processing system for advanced launch system: Avionics architecture synthesis

    Get PDF
    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described
    corecore