4,075 research outputs found

    Hybrid Branching-Time Logics

    Full text link
    Hybrid branching-time logics are introduced as extensions of CTL-like logics with state variables and the downarrow-binder. Following recent work in the linear framework, only logics with a single variable are considered. The expressive power and the complexity of satisfiability of the resulting logics is investigated. As main result, the satisfiability problem for the hybrid versions of several branching-time logics is proved to be 2EXPTIME-complete. These branching-time logics range from strict fragments of CTL to extensions of CTL that can talk about the past and express fairness-properties. The complexity gap relative to CTL is explained by a corresponding succinctness result. To prove the upper bound, the automata-theoretic approach to branching-time logics is extended to hybrid logics, showing that non-emptiness of alternating one-pebble Buchi tree automata is 2EXPTIME-complete.Comment: An extended abstract of this paper was presented at the International Workshop on Hybrid Logics (HyLo 2007

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    The Complexity of Enriched Mu-Calculi

    Full text link
    The fully enriched μ-calculus is the extension of the propositional μ-calculus with inverse programs, graded modalities, and nominals. While satisfiability in several expressive fragments of the fully enriched μ-calculus is known to be decidable and ExpTime-complete, it has recently been proved that the full calculus is undecidable. In this paper, we study the fragments of the fully enriched μ-calculus that are obtained by dropping at least one of the additional constructs. We show that, in all fragments obtained in this way, satisfiability is decidable and ExpTime-complete. Thus, we identify a family of decidable logics that are maximal (and incomparable) in expressive power. Our results are obtained by introducing two new automata models, showing that their emptiness problems are ExpTime-complete, and then reducing satisfiability in the relevant logics to these problems. The automata models we introduce are two-way graded alternating parity automata over infinite trees (2GAPTs) and fully enriched automata (FEAs) over infinite forests. The former are a common generalization of two incomparable automata models from the literature. The latter extend alternating automata in a similar way as the fully enriched μ-calculus extends the standard μ-calculus.Comment: A preliminary version of this paper appears in the Proceedings of the 33rd International Colloquium on Automata, Languages and Programming (ICALP), 2006. This paper has been selected for a special issue in LMC

    On the Complexity of ATL and ATL* Module Checking

    Full text link
    Module checking has been introduced in late 1990s to verify open systems, i.e., systems whose behavior depends on the continuous interaction with the environment. Classically, module checking has been investigated with respect to specifications given as CTL and CTL* formulas. Recently, it has been shown that CTL (resp., CTL*) module checking offers a distinctly different perspective from the better-known problem of ATL (resp., ATL*) model checking. In particular, ATL (resp., ATL*) module checking strictly enhances the expressiveness of both CTL (resp., CTL*) module checking and ATL (resp. ATL*) model checking. In this paper, we provide asymptotically optimal bounds on the computational cost of module checking against ATL and ATL*, whose upper bounds are based on an automata-theoretic approach. We show that module-checking for ATL is EXPTIME-complete, which is the same complexity of module checking against CTL. On the other hand, ATL* module checking turns out to be 3EXPTIME-complete, hence exponentially harder than CTL* module checking.Comment: In Proceedings GandALF 2017, arXiv:1709.0176

    Modal logics are coalgebraic

    Get PDF
    Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large variety of specific logics used in particular domains. The coalgebraic approach is generic and compositional: tools and techniques simultaneously apply to a large class of application areas and can moreover be combined in a modular way. In particular, this facilitates a pick-and-choose approach to domain specific formalisms, applicable across the entire scope of application areas, leading to generic software tools that are easier to design, to implement, and to maintain. This paper substantiates the authors' firm belief that the systematic exploitation of the coalgebraic nature of modal logic will not only have impact on the field of modal logic itself but also lead to significant progress in a number of areas within computer science, such as knowledge representation and concurrency/mobility

    Satisfiability Games for Branching-Time Logics

    Full text link
    The satisfiability problem for branching-time temporal logics like CTL*, CTL and CTL+ has important applications in program specification and verification. Their computational complexities are known: CTL* and CTL+ are complete for doubly exponential time, CTL is complete for single exponential time. Some decision procedures for these logics are known; they use tree automata, tableaux or axiom systems. In this paper we present a uniform game-theoretic framework for the satisfiability problem of these branching-time temporal logics. We define satisfiability games for the full branching-time temporal logic CTL* using a high-level definition of winning condition that captures the essence of well-foundedness of least fixpoint unfoldings. These winning conditions form formal languages of \omega-words. We analyse which kinds of deterministic {\omega}-automata are needed in which case in order to recognise these languages. We then obtain a reduction to the problem of solving parity or B\"uchi games. The worst-case complexity of the obtained algorithms matches the known lower bounds for these logics. This approach provides a uniform, yet complexity-theoretically optimal treatment of satisfiability for branching-time temporal logics. It separates the use of temporal logic machinery from the use of automata thus preserving a syntactical relationship between the input formula and the object that represents satisfiability, i.e. a winning strategy in a parity or B\"uchi game. The games presented here work on a Fischer-Ladner closure of the input formula only. Last but not least, the games presented here come with an attempt at providing tool support for the satisfiability problem of complex branching-time logics like CTL* and CTL+

    Reasoning about XML with temporal logics and automata

    Get PDF
    We show that problems arising in static analysis of XML specifications and transformations can be dealt with using techniques similar to those developed for static analysis of programs. Many properties of interest in the XML context are related to navigation, and can be formulated in temporal logics for trees. We choose a logic that admits a simple single-exponential translation into unranked tree automata, in the spirit of the classical LTL-to-Büchi automata translation. Automata arising from this translation have a number of additional properties; in particular, they are convenient for reasoning about unary node-selecting queries, which are important in the XML context. We give two applications of such reasoning: one deals with a classical XML problem of reasoning about navigation in the presence of schemas, and the other relates to verifying security properties of XML views

    First-Order and Temporal Logics for Nested Words

    Get PDF
    Nested words are a structured model of execution paths in procedural programs, reflecting their call and return nesting structure. Finite nested words also capture the structure of parse trees and other tree-structured data, such as XML. We provide new temporal logics for finite and infinite nested words, which are natural extensions of LTL, and prove that these logics are first-order expressively-complete. One of them is based on adding a "within" modality, evaluating a formula on a subword, to a logic CaRet previously studied in the context of verifying properties of recursive state machines (RSMs). The other logic, NWTL, is based on the notion of a summary path that uses both the linear and nesting structures. For NWTL we show that satisfiability is EXPTIME-complete, and that model-checking can be done in time polynomial in the size of the RSM model and exponential in the size of the NWTL formula (and is also EXPTIME-complete). Finally, we prove that first-order logic over nested words has the three-variable property, and we present a temporal logic for nested words which is complete for the two-variable fragment of first-order.Comment: revised and corrected version of Mar 03, 201
    corecore