45,454 research outputs found

    Build your own clarithmetic I: Setup and completeness

    Full text link
    Clarithmetics are number theories based on computability logic (see http://www.csc.villanova.edu/~japaridz/CL/ ). Formulas of these theories represent interactive computational problems, and their "truth" is understood as existence of an algorithmic solution. Various complexity constraints on such solutions induce various versions of clarithmetic. The present paper introduces a parameterized/schematic version CLA11(P1,P2,P3,P4). By tuning the three parameters P1,P2,P3 in an essentially mechanical manner, one automatically obtains sound and complete theories with respect to a wide range of target tricomplexity classes, i.e. combinations of time (set by P3), space (set by P2) and so called amplitude (set by P1) complexities. Sound in the sense that every theorem T of the system represents an interactive number-theoretic computational problem with a solution from the given tricomplexity class and, furthermore, such a solution can be automatically extracted from a proof of T. And complete in the sense that every interactive number-theoretic problem with a solution from the given tricomplexity class is represented by some theorem of the system. Furthermore, through tuning the 4th parameter P4, at the cost of sacrificing recursive axiomatizability but not simplicity or elegance, the above extensional completeness can be strengthened to intensional completeness, according to which every formula representing a problem with a solution from the given tricomplexity class is a theorem of the system. This article is published in two parts. The present Part I introduces the system and proves its completeness, while Part II is devoted to proving soundness

    Introduction to clarithmetic I

    Get PDF
    "Clarithmetic" is a generic name for formal number theories similar to Peano arithmetic, but based on computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html) instead of the more traditional classical or intuitionistic logics. Formulas of clarithmetical theories represent interactive computational problems, and their "truth" is understood as existence of an algorithmic solution. Imposing various complexity constraints on such solutions yields various versions of clarithmetic. The present paper introduces a system of clarithmetic for polynomial time computability, which is shown to be sound and complete. Sound in the sense that every theorem T of the system represents an interactive number-theoretic computational problem with a polynomial time solution and, furthermore, such a solution can be efficiently extracted from a proof of T. And complete in the sense that every interactive number-theoretic problem with a polynomial time solution is represented by some theorem T of the system. The paper is written in a semitutorial style and targets readers with no prior familiarity with computability logic

    Ptarithmetic

    Get PDF
    The present article introduces ptarithmetic (short for "polynomial time arithmetic") -- a formal number theory similar to the well known Peano arithmetic, but based on the recently born computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html) instead of classical logic. The formulas of ptarithmetic represent interactive computational problems rather than just true/false statements, and their "truth" is understood as existence of a polynomial time solution. The system of ptarithmetic elaborated in this article is shown to be sound and complete. Sound in the sense that every theorem T of the system represents an interactive number-theoretic computational problem with a polynomial time solution and, furthermore, such a solution can be effectively extracted from a proof of T. And complete in the sense that every interactive number-theoretic problem with a polynomial time solution is represented by some theorem T of the system. The paper is self-contained, and can be read without any previous familiarity with computability logic.Comment: Substantially better versions are on their way. Hence the present article probably will not be publishe

    Model checking coalitional games in shortage resource scenarios

    Full text link
    Verification of multi-agents systems (MAS) has been recently studied taking into account the need of expressing resource bounds. Several logics for specifying properties of MAS have been presented in quite a variety of scenarios with bounded resources. In this paper, we study a different formalism, called Priced Resource-Bounded Alternating-time Temporal Logic (PRBATL), whose main novelty consists in moving the notion of resources from a syntactic level (part of the formula) to a semantic one (part of the model). This allows us to track the evolution of the resource availability along the computations and provides us with a formalisms capable to model a number of real-world scenarios. Two relevant aspects are the notion of global availability of the resources on the market, that are shared by the agents, and the notion of price of resources, depending on their availability. In a previous work of ours, an initial step towards this new formalism was introduced, along with an EXPTIME algorithm for the model checking problem. In this paper we better analyze the features of the proposed formalism, also in comparison with previous approaches. The main technical contribution is the proof of the EXPTIME-hardness of the the model checking problem for PRBATL, based on a reduction from the acceptance problem for Linearly-Bounded Alternating Turing Machines. In particular, since the problem has multiple parameters, we show two fixed-parameter reductions.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Reasoning about Knowledge in Linear Logic: Modalities and Complexity

    No full text
    In a recent paper, Jean-Yves Girard commented that ”it has been a long time since philosophy has stopped intereacting with logic”[17]. Actually, it has no

    Extended RDF: Computability and Complexity Issues

    Get PDF
    ERDF stable model semantics is a recently proposed semantics for ERDF ontologies and a faithful extension of RDFS semantics on RDF graphs. In this paper, we elaborate on the computability and complexity issues of the ERDF stable model semantics. Based on the undecidability result of ERDF stable model semantics, decidability under this semantics cannot be achieved, unless ERDF ontologies of restricted syntax are considered. Therefore, we propose a slightly modified semantics for ERDF ontologies, called ERDF #n- stable model semantics. We show that entailment under this semantics is, in general, decidable and also extends RDFS entailment. Equivalence statements between the two semantics are provided. Additionally, we provide algorithms that compute the ERDF #n-stable models of syntax-restricted and general ERDF ontologies. Further, we provide complexity results for the ERDF #nstable model semantics on syntax-restricted and general ERDF ontologies. Finally, we provide complexity results for the ERDF stable model semantics on syntax-restricted ERDF ontologies
    corecore