2,616 research outputs found

    The Complexity of Rerouting Shortest Paths

    Get PDF
    The Shortest Path Reconfiguration problem has as input a graph G (with unit edge lengths) with vertices s and t, and two shortest st-paths P and Q. The question is whether there exists a sequence of shortest st-paths that starts with P and ends with Q, such that subsequent paths differ in only one vertex. This is called a rerouting sequence. This problem is shown to be PSPACE-complete. For claw-free graphs and chordal graphs, it is shown that the problem can be solved in polynomial time, and that shortest rerouting sequences have linear length. For these classes, it is also shown that deciding whether a rerouting sequence exists between all pairs of shortest st-paths can be done in polynomial time. Finally, a polynomial time algorithm for counting the number of isolated paths is given.Comment: The results on claw-free graphs, chordal graphs and isolated paths have been added in version 2 (april 2012). Version 1 (September 2010) only contained the PSPACE-hardness result. (Version 2 has been submitted.

    Rerouting shortest paths in planar graphs

    Get PDF
    A rerouting sequence is a sequence of shortest st-paths such that consecutive paths differ in one vertex. We study the the Shortest Path Rerouting Problem, which asks, given two shortest st-paths P and Q in a graph G, whether a rerouting sequence exists from P to Q. This problem is PSPACE-hard in general, but we show that it can be solved in polynomial time if G is planar. To this end, we introduce a dynamic programming method for reconfiguration problems.Comment: submitte

    Logical topology design for IP rerouting: ASONs versus static OTNs

    Get PDF
    IP-based backbone networks are gradually moving to a network model consisting of high-speed routers that are flexibly interconnected by a mesh of light paths set up by an optical transport network that consists of wavelength division multiplexing (WDM) links and optical cross-connects. In such a model, the generalized MPLS protocol suite could provide the IP centric control plane component that will be used to deliver rapid and dynamic circuit provisioning of end-to-end optical light paths between the routers. This is called an automatic switched optical (transport) network (ASON). An ASON enables reconfiguration of the logical IP topology by setting up and tearing down light paths. This allows to up- or downgrade link capacities during a router failure to the capacities needed by the new routing of the affected traffic. Such survivability against (single) IP router failures is cost-effective, as capacity to the IP layer can be provided flexibly when necessary. We present and investigate a logical topology optimization problem that minimizes the total amount or cost of the needed resources (interfaces, wavelengths, WDM line-systems, amplifiers, etc.) in both the IP and the optical layer. A novel optimization aspect in this problem is the possibility, as a result of the ASON, to reuse the physical resources (like interface cards and WDM line-systems) over the different network states (the failure-free and all the router failure scenarios). We devised a simple optimization strategy to investigate the cost of the ASON approach and compare it with other schemes that survive single router failures

    Fast emergency paths schema to overcome transient link failures in ospf routing

    Full text link
    A reliable network infrastructure must be able to sustain traffic flows, even when a failure occurs and changes the network topology. During the occurrence of a failure, routing protocols, like OSPF, take from hundreds of milliseconds to various seconds in order to converge. During this convergence period, packets might traverse a longer path or even a loop. An even worse transient behaviour is that packets are dropped even though destinations are reachable. In this context, this paper describes a proactive fast rerouting approach, named Fast Emergency Paths Schema (FEP-S), to overcome problems originating from transient link failures in OSPF routing. Extensive experiments were done using several network topologies with different dimensionality degrees. Results show that the recovery paths, obtained by FEPS, are shorter than those from other rerouting approaches and can improve the network reliability by reducing the packet loss rate during the routing protocols convergence caused by a failure.Comment: 18 page

    The List Coloring Reconfiguration Problem for Bounded Pathwidth Graphs

    Full text link
    We study the problem of transforming one list (vertex) coloring of a graph into another list coloring by changing only one vertex color assignment at a time, while at all times maintaining a list coloring, given a list of allowed colors for each vertex. This problem is known to be PSPACE-complete for bipartite planar graphs. In this paper, we first show that the problem remains PSPACE-complete even for bipartite series-parallel graphs, which form a proper subclass of bipartite planar graphs. We note that our reduction indeed shows the PSPACE-completeness for graphs with pathwidth two, and it can be extended for threshold graphs. In contrast, we give a polynomial-time algorithm to solve the problem for graphs with pathwidth one. Thus, this paper gives precise analyses of the problem with respect to pathwidth

    Upper and Lower Bounds on Long Dual-Paths in Line Arrangements

    Full text link
    Given a line arrangement A\cal A with nn lines, we show that there exists a path of length n2/3O(n)n^2/3 - O(n) in the dual graph of A\cal A formed by its faces. This bound is tight up to lower order terms. For the bicolored version, we describe an example of a line arrangement with 3k3k blue and 2k2k red lines with no alternating path longer than 14k14k. Further, we show that any line arrangement with nn lines has a coloring such that it has an alternating path of length Ω(n2/logn)\Omega (n^2/ \log n). Our results also hold for pseudoline arrangements.Comment: 19 page
    corecore