
Rerouting shortest paths in planar graphs
Paul Bonsma

Computer Science Department, RWTH Aachen University, Germany.
bonsma@informatik.rwth-aachen.de

Abstract
A rerouting sequence is a sequence of shortest st-paths such that consecutive paths differ in one
vertex. We study the Shortest Path Rerouting Problem, which asks, given two shortest st-paths
P and Q in a graph G, whether a rerouting sequence exists from P to Q. This problem is
PSPACE-hard in general, but we show that it can be solved in polynomial time if G is planar.
To this end, we introduce a dynamic programming method for reconfiguration problems.

1998 ACM Subject Classification G.2.2 (Graph algorithms)

Keywords and phrases shortest path, rerouting, reconfiguration problem, planar graph, polyno-
mial time, dynamic programming

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.337

1 Introduction

In this paper, we study the Shortest Path Rerouting (SPR) Problem, as introduced by
Kamiński et al. [14]. An instance of this problem consists of a graph G with unit edge
lengths, two vertices s, t ∈ V (G), and two shortest st-paths P and Q. Shortest st-paths
are adjacent if they differ in one vertex. The question is whether there exists a rerouting
sequence from P to Q, which is a sequence of shortest st-paths Q0, . . . , Qk with Q0 = P ,
Qk = Q, such that consecutive paths are adjacent. This question may arise for instance
when a commodity is routed in a network along a shortest path, and a different shortest
path route is desired. However, changing the path can only be done by exchanging one node
at a time, and transfer should not be interrupted [14]. A different setting where this problem
may occur is if a shortest path changes randomly over time, and one wishes to know which
paths are reachable from a given starting path.

On the negative side, this problem is known to be PSPACE-complete [2]. Furthermore,
Kamiński et al. [14] describe instances where the minimum length of a rerouting sequence
is exponential in n = |V (G)|. In addition they show that it is strongly NP-hard to decide
whether a rerouting sequence of length at most k exists [14]. On the positive side, in [2]
it is shown that SPR can be solved in polynomial time in the case where G is claw-free
or chordal. In these cases, the related problem of deciding whether there is a rerouting
sequence between every pair of shortest st-paths is also shown to be solvable in polynomial
time, and in the chordal case, a shortest rerouting sequence can be found efficiently.

In this paper, we study the SPR Problem for planar graphs, and prove that this case
can also be solved in polynomial time. Questions related to (rerouting) shortest paths occur
often in networks, and these are often planar in practice, so this is a relevant graph class for
this problem.

Similar questions about the reachability of solutions can be asked for many different com-
binatorial problems. This only requires defining a (symmetric) adjacency relation between
feasible solutions. Ito et al. [12] called such problems reconfiguration problems, and initiated
a systematic study of them. To be precise, for a reconfiguration problem, it is necessary

© Paul Bonsma;
licensed under Creative Commons License NC-ND

32nd Int’l Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012).
Editors: D. D’Souza, J. Radhakrishnan, and K. Telikepalli; pp. 337–349

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62917544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.337
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

338 Rerouting shortest paths in planar graphs

that both adjacency between solutions and the property of being a solution can be tested
in polynomial time [12]. Such reconfiguration problems have been studied often in recent
literature, for instance based on vertex colorings [3, 5, 6, 7], independent sets [11, 12, 15],
satisfying assignments for boolean formulas [10], matchings [12], and more [9, 12, 13, 14].
Usually, the most natural adjacency relation between solutions is considered, e.g. two vertex
colorings are considered adjacent in [3, 5, 6, 7] if they differ in one vertex.

One of the motivations for researching reconfiguration problems is to study the struc-
ture of the solution space of well-studied combinatorial problems, which can explain the
performance of various heuristics [5, 10]. In addition, similar problems have also occurred in
practical applications such as stacking problems in storage spaces [17] and train switch-yards
(see [16] and references therein).

The main question that has been studied for reconfiguration problems is the complexity
of deciding whether there exists a reconfiguration sequence between a given pair of solutions.
For most of the aforementioned problems this problem turned out to be PSPACE-complete,
although Ito et al. [12] identified a few reconfiguration problems that can be solved in
polynomial time, such as matching reconfiguration. Alternatively, one may ask whether
there exist reconfiguration sequences between all solutions [5, 6, 10], or study the question
of how much the solution space needs to be increased such that a reconfiguration sequence
becomes possible [4, 12], e.g. allowing to use more colors in vertex colorings used in a
reconfiguration sequence [4]. In addition, one may study the problem of finding shortest
reconfiguration sequences, or give upper bounds on their length [7, 10, 14].

Various advanced negative results have been proved for reconfiguration problems, such
as the first two (independent) PSPACE-hardness results for such problems, on satisfiability
reconfiguration [10] and sliding block puzzles [11]. To our knowledge, the other known
PSPACE-hardness results on reconfiguration problems have been proved using reductions
from these two results. We remark that various PSPACE-complete problems of a similar
flavor have been described earlier, such as in the context of local search [18]. An essential
difference is however that these are based on asymmetric adjacency relations.

In contrast, it has turned out to be rather challenging to obtain nontrivial positive
results for (special cases) of reconfiguration problems. Only very few advanced polynomial
time algorithms are known for reconfiguration problems, such as the algorithm by Cereceda
et al. [7] on the reconfiguration of vertex colorings using three colors, and the result from
Ito et al. [12] on matching reconfiguration. A reason for this lack may be that no general
algorithmic techniques are known for reconfiguration problems. Introducing such techniques,
and further showing that advanced positive results are possible for reconfiguration problems,
are important motivations for the research presented in this paper.

We now give an outline of our results, an informal introduction to the new techniques
and ideas, and sketch some obstacles for SPR in planar graphs. Detailed definitions will
be given afterwards in Section 2. Firstly, in polynomial time we can delete all vertices
and edges of G that do not lie on any shortest st-path, without affecting the answer. So
we may assume that all vertices and edges of G lie on shortest st-paths. The problem is
then straightforward in the case where the given graph G is st-planar, i.e. has a (planar)
embedding where the end vertices s and t are incident with the same face, say the infinite
face. The symmetric difference C := E(P)∆E(Q) of the edge sets of the two given shortest
st-paths P and Q gives a set of cycles, with disjoint insides (an embedded cycle divides the
plane into two regions; the finite region is called the inside). One can easily verify that a
rerouting sequence from P to Q exists if and only if all faces inside these cycles C have length
4. See Figure 1(a) for an example. If G is not st-planar, there are still cases where such

P. Bonsma 339

�����������
�����������
�����������

�����������
�����������
�����������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��
��
��
��

(c)

(a) (b)

: P

: Q

: inside of cycles C

length > 4
: faces of s t

Q

P

ts

P

Q

Q

P

s t

Figure 1 Three examples of planar graphs where a rerouting sequence from P to Q exists. In
our figures, half edges leaving the top of the figure continue on the bottom.

a topological viewpoint works well: Figure 1(b) shows an example where every rerouting
sequence Q0, . . . , Qk has the property that for any pair of consecutive shortest paths Qi and
Qi+1, the symmetric difference of the edge sets E(Qi)∆E(Qi+1) gives a facial 4-cycle. (For
readability, some edges are shown as pairs of half edges in our figures; edges leaving the top
of the figure continue on the bottom.) Sloppily speaking, rerouting sequences of this type
are called topological. Even though it is not clear in advance which region of the plane should
have only faces of length 4, using some topological intuition it can be verified that also in
this example a rerouting sequence from P to Q exists (the unique face of length greater
than 4 is shaded). However, not all rerouting sequences in planar graphs are topological.
Figure 1(c) shows an example where there exists no topological rerouting sequence from P

to Q (consider the shaded faces). The method given in Section 5 will show that nevertheless,
there exists a rerouting sequence from P to Q. The reason is that the two non-facial 4-cycles
shown in bold can also be used for ‘non-topological rerouting steps’. Cycles of this type will
be called switches.

In Section 4, we will first give an algorithm for the problem of finding topological rerout-
ing sequences. Next, in Section 5, switches are addressed, and our main algorithm for the
SPR Problem is presented, which reduces the problem to a polynomial number of instances
of the topological version of the problem. This reduction actually requires answering a
slightly more general question: instead of asking for a topological rerouting sequence be-
tween two given shortest st-paths P and Q, we ask for a topological rerouting sequence from
P to some shortest st-path that contains a given set of vertices. This problem is called the
Topological SPR Problem.

The proofs in Section 5 demonstrate the following simple but powerful principle for re-
configuration problems: instead of searching for a direct reconfiguration sequence between
two solutions, it is often easier to identify ‘central solutions’, and search for two reconfigu-
ration sequences to a common central solution. In our case, central solutions turn out to be
paths that contain many switch vertices.

To solve the Topological SPR Problem, we will not further pursue the topological ideas
sketched above, but instead solve a more general problem, and develop a dynamic program-
ming method for reconfiguration problems. This is done in Section 3, where an algorithm
for the Restricted SPR Problem is given. In this generalization of SPR, auxiliary edges are
added (layer edges), to encode which rerouting steps are allowed. Our dynamic program-
ming algorithm for Restricted SPR returns the correct answer for all instances, and does not
even require the graph G to be planar, but it may require exponential time in some cases.

FSTTCS 2012

340 Rerouting shortest paths in planar graphs

In Section 4, we show however that this algorithm can be used to solve the Topological SPR
Problem in polynomial time. This is not the only purpose of the algorithm however; in
Section 3 we also mention other nontrivial (and nonplanar) cases that it solves efficiently.
The new algorithmic techniques are discussed in a broader context in Section 6, and open
questions are presented. In Section 2, we first give detailed definitions. Because of space
constraints, most proofs or proof details are omitted from this extended abstract; they can
be found in the full version of the paper.

2 Preliminaries

For graph theoretical notions not defined here (in detail), and background on results men-
tioned in this section, we refer to [8]. By N(v) we denote the neighborhood of a vertex v.
A walk of length k from v0 to vk in a graph G is a vertex sequence v0, . . . , vk, such that for
all i ∈ {0, . . . , k − 1}, vivi+1 ∈ E(G). It is a path if all vertices are distinct. It is a cycle
if k ≥ 3, v0 = vk, and v0, . . . , vk−1 is a path. The corresponding subgraphs will also be
called paths and cycles, respectively. A plane graph is a graph together with an embedding
in the plane (without crossing edges). For planar graphs, an embedding can be found in
polynomial time, so it suffices to prove our results for plane graphs. If a plane graph is
2-connected, then the boundary of every face is a cycle, which is called a facial cycle. Cycles
in plane graphs correspond to simple closed curves, which divide the plane into two regions.
For a cycle C in a plane graph G and vertices s, t ∈ V (G), we say C separates s from t if
s and t lie in different regions of the curve given by C (and thus s, t 6∈ V (C)). Instead of
S ∪ {x} and S\{x}, we write S + x and S − x, respectively.

Throughout this paper, s and t denote two (distinct) vertices of an unweighted, undi-
rected, simple, finite graph G, and we will consider shortest st-paths in G. Let d denote the
distance from s to t in G. For i ∈ {0, . . . , d}, we define Li ⊆ V (G) to be the set of vertices
that lie on a shortest st-path, at distance i from s. The vertex set Li is also called a layer.

Observe that a shortest st-path contains exactly one vertex of every layer, and that a
shortest path is uniquely determined by its vertex set. Therefore, we will denote shortest
st-paths simply by their vertex set. A vertex set Q ⊆ V (G) such that there exists a shortest
st-path P with Q ⊆ P is called a shortest st-subpath. Note that it is not required that Q is
actually a path; the vertices of Q are not necessarily from consecutive layers. Since we are
only concerned with shortest paths in G between two given terminals s and t, we will call
these S-paths for short. Shortest st-subpaths will be called S-subpaths. When considering
reduced instances, defined by the subgraph induced by all shortest paths between two vertices
x and y, these definitions refer to x and y. Given an S-path P , a rerouting step consists
of replacing a vertex a by another vertex b in the same layer, such that the resulting set is
again an S-path. To be precise, let x, a, y ∈ P such that x ∈ Li−1, a ∈ Li and y ∈ Li+1. For
any b ∈ Li− a with {x, y} ⊆ N(b), the rerouting step x, a, y → x, b, y may be applied, which
yields the S-path Q = P − a + b.

Let G be a graph and s, t ∈ V (G). The rerouting graph SP(G, s, t) has as set of vertices
all S-paths in G. Two paths are adjacent if they differ in exactly one vertex. To distin-
guish vertices of SP(G, s, t) from vertices of G, the former will be called nodes. Subsets of
V (SP(G, s, t)) will be called sets of S-paths or sets of nodes, depending on the context. In
order to prove our results, we need to consider two additional variants of the SPR prob-
lem, which are defined by considering different adjacency relations. Call a rerouting step
x, a, y → x, b, y a restricted rerouting step if ab ∈ E(G). In the restricted rerouting graph
SPR(G, s, t), two S-paths P and Q are adjacent if Q can be obtained from P using a restricted

P. Bonsma 341

rerouting step. Edges ab ∈ E(G) with a, b ∈ Li for some i are called layer edges.
In the case that G is a plane graph, we can define a third type of rerouting graph. A

sequence of four vertices x, a, b, y is called a switch if x, a, y, b, x is a cycle that separates s

from t, and for some i, x ∈ Li and y ∈ Li+2. (Recall that separating s from t means that
e.g. s lies ‘inside’ the cycle, and t ‘outside’.) The vertices x and y are called its (left and
right) switch vertices. Together, they are also called a switch-pair. (Note that in the switch
notation x, a, b, y, the vertices are ordered non-decreasingly by their layers, but this is not
the order on the cycle.) For instance, the graph G4 shown in Figure 3 contains exactly
one switch: 6, 7, 8, 9. (6, 8, 7, 9 is considered to be the same switch.) A rerouting step
x, a, y → x, b, y is called topological if x, a, b, y is not a switch. In the topological rerouting
graph SPT (G, s, t), two S-paths P and Q are adjacent if Q can be obtained from P by a
topological rerouting step.

Walks in SP(G, s, t), SPR(G, s, t) and SPT (G, s, t) are called rerouting sequences, re-
stricted rerouting sequences, and topological rerouting sequences, respectively. Let P be an
S-path, and let Q be an S-subpath. We write P G Q to denote that in G, there exists a
rerouting sequence from P to an S-path Q′ with Q ⊆ Q′. Similarly, the notations P R

G Q

and P T
G Q are used for the restricted and topological case, respectively. If the graph G

in question is clear, the subscript is omitted. If P Q, P R Q or P T Q, we also say
that Q is reachable from P . We write P 6 Q to denote that P Q does not hold.

The Generalized Shortest Path Rerouting (GSPR) Problem asks, given a graph G with
s, t ∈ V (G), an S-path P and an S-subpath Q, whether P G Q. Similarly, for the Restricted
SPR (RSPR) Problem and Topological SPR (TSPR) Problem, it should be decided whether
P R

G Q and P T
G Q, respectively.

Since Q may be an S-subpath (in all of these problems), GSPR is a generalization of the
SPR Problem (defined in Section 1). The RSPR Problem in turn generalizes the GSPR
Problem: a GSPR instance G, P, Q can be transformed to an equivalent RSPR instance by
adding edges between every pair of vertices in the same layer. (This may however destroy
planarity.)

All algorithmic results and reductions presented in this paper for deciding P Q,
P T Q or P R Q are constructive, in the following sense: if P Q for an S-subpath
Q, then in addition our algorithms construct an S-path Q′ with P Q′ and Q ⊆ Q′.
(Analogously for the topological and restricted case.) For brevity, this is not stated in every
lemma and theorem, but this fact is essential for the proofs in Section 5.

For ease of notation, we will assume throughout the paper that in the given graph G,
every vertex lies on an S-path. Since vertices that do not lie on an S-path are irrelevant
for all problems considered here, they may be deleted in advance, which can be done in
polynomial time.

3 A Dynamic Programming Algorithm for RSPR

Let P be an S-path in G of length d, and let Q be an S-subpath. We want to decide whether
P R

G Q. For i = 0, . . . , d − 1, we define the graph Gi as follows: Gi is obtained from G

by first removing all vertices in layers Li+1, . . . , Ld−1, and then adding edges from t to all
vertices in Li. Using the assumption that every vertex of G lies on an S-path, in particular
those in Ld−1, we see that Gd−1 = G. By P i and Qi we denote P ∩ V (Gi) and Q ∩ V (Gi),
which clearly are again an S-path and an S-subpath in Gi. Figure 2(a) shows an example of
G3, P 3 and Q3, for the G, P and Q that are shown in Figure 5(a), although in Figure 5(a),
we have omitted the layer edges.

FSTTCS 2012

342 Rerouting shortest paths in planar graphs

0
1
0

0
0
1

7
8
8

p(.): q(.):l(.):
Node labels:

x:
y:
z:

(b)

H3

(c)

z 88y

x 7

G3

(a)

Q3P 3

P 3

Q3

SPR(G3, s, t)

3,6,72,5,7

2,4,7 3,4,7

1,4,7

3,6,82,5,8

s t

3
2

1 4

5

6

7

8

Figure 2 G3, its restricted rerouting graph SPR(G3, s, t), and a contraction H3 of it (with nodes
x, y, z), which is the encoding of (G3, P, Q). In the nodes of SPR(G3, s, t), the vertices of the
corresponding paths are shown, except s and t. In the nodes of H3, the corresponding contracted
subgraph of SPR(G3, s, t) is drawn.

The idea is now to compute SPR(Gi+1, s, t) from SPR(Gi, s, t), for i = 0, . . . , d − 2. In
the end, this will yield SPR(Gd−1, s, t) = SPR(G, s, t), and we can decide whether in this
graph a path from P to Q exists. The problem is of course that the graphs SPR(Gi, s, t) are
usually exponentially large compared to G. We solve this problem by instead considering
a graph Hi that is obtained from a component of SPR(Gi, s, t) by contracting connected
subgraphs into single nodes, and using node labels to keep track of essential information
about the corresponding path sets.

For two S-paths R and R′ in Gi, we define R ∼i R′ if and only if there exists a restricted
rerouting sequence from R to R′ that does not change the vertex in Li (so R∩Li = R′∩Li).
Clearly, ∼i is an equivalence relation. Furthermore, if S is an equivalence class of ∼i,
then S induces a connected subgraph of SPR(Gi, s, t). These are exactly the subgraphs of
SPR(Gi, s, t) that we will contract to obtain Hi. The following definition is illustrated in
Figure 2(b) and (c).

I Definition 1 (Encoding). Let P be an S-path in G of length d, let Q be an S-subpath in
G, and let i ∈ {0, . . . , d− 1}. The encoding Hi of (Gi, P, Q) is a node-labeled graph that is
obtained from H ′ = SPR(Gi, s, t) as follows:

1. Delete every component of H ′ that does not contain the node P i.
2. For every equivalence class S ⊆ V (H ′) of ∼i that has not been deleted, contract the

subgraph H ′[S] into a single node x, and define Sx := S (this is a set of S-paths in
Gi). Define l(x) to be the vertex in Li that is part of every path in Sx. Set p(x) = 1 if
P i ∈ Sx, and p(x) = 0 otherwise. Set q(x) = 1 if there exists an S-path Q′ ∈ Sx with
Qi ⊆ Q′ and q(x) = 0 otherwise.

Hi is now the resulting graph, together with the node labels l(x), p(x) and q(x) for every
node x ∈ V (Hi).

Note that the encoding Hi defined this way is unique (ignoring node names). We remark
that the path sets Sx for every node x are not part of the encoding and do not count towards
the size; these sets are only used for the correctness proofs below. We first observe that this
definition indeed allows us to decide whether P R Q.

I Proposition 2. Let Hd−1 be the encoding of (Gd−1, P, Q). Then P R Q if and only if
Hd−1 contains a node x with q(x) = 1.

Next, we study how the encoding Hi+1 of (Gi+1, P, Q) is related to the encoding Hi of
(Gi, P, Q). The objective is that we wish to construct Hi+1 from Hi without considering
SPR(Gi+1, s, t). An example of this construction is shown in Figure 3. For every v ∈ Li+1,

P. Bonsma 343

Node labels:
q(.):p(.):l(.):

10
11

11
10

0
0
0

0

00

0
0

1

1
9

H4H3

10

11

10

11
b d

a e
7

8 8

c 9

a:
b:
c:
d:
e:

x

y z
t10s

9

3
2

1 4

5

6

7

8 11

G4

Q4

P 4

Figure 3 Constructing the encoding H4 from H3. In every node a of H4, the corresponding
subgraph Ca of H3 is drawn. Numbers next to nodes a indicate their label l(a).

let Xv be the set of nodes of Hi that correspond to neighbors of v. Formally, Xv :=
{x ∈ V (Hi) | l(x) ∈ N(v)}. By Hv

i := Hi[Xv] we denote the subgraph of Hi induced by
these nodes. This graph may have multiple components, even though Hi is connected. For
v ∈ Li+1 and x ∈ Xv, by Sx ⊕ v we denote the set obtained by adding v to every path in
Sx, so Sx ⊕ v = ∪R∈Sx

(R + v). Since l(x) ∈ N(v), this is a set of S-paths in Gi+1.

I Lemma 3. Let Hi and Hi+1 be the encodings of (Gi, P, Q) and (Gi+1, P, Q), respectively.
For any v ∈ Li+1 and component C of Hv

i , ∪x∈V (C)(Sx⊕ v) is a set of S-paths in Gi+1 that
is an equivalence class of ∼i+1. In addition, for every a ∈ V (Hi+1) with l(a) = v, there
exists a component Ca of Hv

i such that Sa = ∪x∈V (Ca)(Sx ⊕ v).

Lemma 3 shows that for every a ∈ V (Hi+1), there exists a corresponding component C

of Hv
i , where v = l(a). We denote this component by Ca.

I Lemma 4. Let Hi+1 be the encoding of (Gi+1, P, Q). Let a, b ∈ V (Hi+1).

(i) ab ∈ E(Hi+1) if and only if l(a)l(b) ∈ E(G) and V (Ca) ∩ V (Cb) 6= ∅.
(ii) p(a) = 1 if and only if l(a) ∈ P and there exists a node x ∈ V (Ca) with p(x) = 1.
(iii) q(a) = 1 if and only if Q ∩ Li+1 ⊆ {l(a)} and there exists a node x ∈ V (Ca) with

q(x) = 1.

The previous two lemmas give all the information that is necessary to compute Hi+1
from Hi, including the node labels l, p and q. The essential fact that will guarantee a good
complexity bound is that for this computation, knowledge of the path sets Sx for x ∈ V (Hi)
is unnecessary. Together with Proposition 2, this yields a dynamic programming algorithm
for deciding P R Q.

I Theorem 5. Let G be a graph on n vertices with two vertices s, t ∈ V (G) at distance d.
Let P be an S-path, and let Q be an S-subpath in G. In time polynomial in n and m, it can
be decided whether P R Q. Here m = maxi∈{1,...,d−1} |V (Hi)|, where Hi is the encoding
of (Gi, P, Q).

Theorem 5 shows that the RSPR problem can be solved in polynomial time if the size of
the encodings Hi remains polynomially bounded. However, since the problem is PSPACE-
hard [2], we should not expect this to be true for all graphs. Indeed, there exist examples
where the size of the encoding grows exponentially. The example shown in Figure 4 shows
that this is even true for the case of planar graphs of maximum degree 6 (or 4, when ignoring
layer edges). It can be verified that for i = 4k− 1, the encoding Hi is a star with 2k leaves.

However, there are many nontrivial instances for which this algorithm is polynomial.
For instance, we remark (without proof) that this holds for the class of instances described
by Kamiński et al. [14], where any rerouting sequence from P to Q has exponential length.
(Provided that we swap the choice of s and t in their examples, or in other words, start the

FSTTCS 2012

344 Rerouting shortest paths in planar graphs

......

L3 L7 L4k−1L11

o

p

a

b l

kc

d

e

f

g

h

i

j

m

n

H4k−1 = K1,2k

a

b b

H3 = K1,2 H5 H6

h

j

e

gg

c

d d

f f i

l l

k

H7 = K1,4

l l

L5L4 L6

n

n

n

nn

n

n

n

o

p
m

H11 = K1,8H4

j

i

p

s t

Figure 4 A plane instance of RSPR where the encoding Hi becomes exponentially large. Colors
and numbers next to nodes x ∈ V (Hi) indicate the labels l(x).

computation of encodings from the side of t instead.) In addition, for the following type of
low degree instances, the algorithm terminates in polynomial time. The example in Figure 4
shows that the ‘degree bounds’ in next result are best possible for our algorithm.

I Theorem 6. Let G, P, Q be an RSPR instance such that for every i and v ∈ Li, |N(v) ∩
Li−1| ≤ 2 and |N(v) ∩ Li+1| ≤ 2. Then in polynomial time, it can be decided whether
P R Q.

Next, we prove that Hi remains polynomially bounded for instances in a certain standard
form, which is closely related to planar graphs.

4 A Polynomial Complexity Bound for TSPR

In this section, we show that if G, P, Q is a (reduced) TSPR instance, then in polynomial
time it can be decided whether P T Q. To this end, we define a standard form for RSPR
instances, and show for these that the algorithm from Section 3 terminates in polynomial
time. Subsequently we show how TSPR instances can be transformed to equivalent RSPR
instances in standard form. Figure 5(b) illustrates the following definition.

I Definition 7. Consider a graph G and vertices s, t ∈ V (G) that are part of an RSPR
instance. Then G is in standard form if the following properties hold:

(i) For every i ∈ {1, . . . , d− 1}, G[Li] has maximum degree 2.
(ii) For every i ∈ {1, . . . , d− 1} and v ∈ Li, G[Li−1 ∩N(v)] is a path.
(iii) For every i and u, v ∈ Li, if uv ∈ E(G) then |N(u) ∩N(v) ∩ Li−1| ≤ 1.

If G is in standard form, then with some effort we can show that all encodings Hi are
paths, on at most i · |Li| nodes. Theorem 5 then shows that our dynamic programming
algorithm terminates in polynomial time. This gives:

I Theorem 8. Let G, P, Q be an RSPR instance in standard form. Then in polynomial time,
it can be decided whether P R Q.

The objective is to apply Theorem 8 for TSPR instances G, P, Q. To this end, we will
give a polynomial transformation to an equivalent instance G′, P, Q of RSPR, and prove that
the latter instance is in standard form. In the case of TSPR and GSPR, it will be useful to
work with reduced instances. An instance G, P , Q of GSPR or TSPR is reduced if:

1. Every vertex and edge of G lies on an S-path,
2. G contains no cut vertices, and

P. Bonsma 345

: new edge: layer edge: new vertex: original vertex

s t s t

(a) G: (b) G′:

Q Q

P P

Figure 5 The transformation of a TSPR instance G, P, Q to an equivalent RSPR instance G′, P, Q

in standard form.

3. G contains no neighborhood-dominated vertices, which are vertices z for which there exists
a vertex z′ with N(z) ⊆ N(z′).

We remark that, even though the above definition is useful for both GSPR and TSPR,
only in the case of GSPR we can give a polynomial time procedure that can transform every
instance to a set of equivalent reduced instances. This procedure is straightforward: we
may simply delete all vertices and edges not on S-paths. Next, as long as there exists a
neighborhood-dominated vertex z, we may delete z, and replace occurrences of z in P and
Q by the corresponding vertex z′. When a cut vertex v is present, the instance basically
consists of two independent instances: one induced by all shortest sv-paths, and one induced
by all shortest vt-paths.

I Theorem 9. Let G, P, Q be a GSPR instance. In polynomial time, a set of reduced GSPR
instances can be constructed such that P G Q if and only if every reduced instance is a
YES-instance. If G is plane, all of the reduced instances are plane. The sum of the number
of edges of the reduced instances is at most |E(G)|.

For v ∈ V (G), by dists(v) we denote the distance from s to v, so v ∈ Ldists(v). We
assume that G, P, Q is reduced, so every vertex and edge of G lies on an S-path. It follows
that for every edge uv, it holds that |dists(u) − dists(v)| = 1. Furthermore, assuming G is
nontrivial, G is 2-connected. So in the case where G is plane, for every face f of G and
vertex v incident with f , v has exactly two incident edges uv and vw that are also incident
with f . We call v a local maximum for f if dists(v) > dists(u) = dists(w), and a local
minimum for f if dists(v) < dists(u) = dists(w).

I Proposition 10. Let G be a 2-connected plane graph in which every vertex and edge lies
on a shortest st-path. For every face f of G, there is exactly one local maximum and one
local minimum.

Now we can define the transformation from the TSPR instance G to the RSPR instance
G′. This transformation is illustrated in Figure 5, and consists of the following two steps.

1. For every face f of G, we do the following. Let u and v be the local minimum and
maximum of f . Since G is simple, dists(u) ≤ dists(v)−2. Let ` = dists(v)−dists(u). Add
`−1 new vertices x1, . . . , x`−1, drawn in the face f , and ` edges such that u, x1, . . . , x`−1, v

is a path of length `, drawn in face f . Clearly, this preserves planarity. Call the vertices
and edges introduced this way new vertices and edges. The vertices and edges that were
already present in G are called original vertices and edges.

2. For every face f in the resulting graph, we do the following. Note that f still has
a unique local minimum u and local maximum v. Furthermore, for every edge xy,
|dists(x) − dists(y)| = 1. It follows that for every i ∈ {dists(u) + 1, . . . ,dists(v) − 1},

FSTTCS 2012

346 Rerouting shortest paths in planar graphs

there are exactly two vertices a and b incident with f in layer Li. Between every such
pair of vertices a and b, we can add an edge ab, drawn in the face f , without destroying
planarity. (Hence the new edges are layer edges.)

Call the resulting plane graph G′. It can be shown that G′, P, Q is an RSPR instance in
standard form. Since G contains no neighborhood-dominated vertices, for any topological
rerouting step x, a, y → x, b, y, it holds that x, a, y, b, x is a facial cycle. So it can be replaced
by two restricted rerouting steps x, a, y → x, z, y → x, b, y for G′, where z is a new vertex.
Therefore, P T

G Q implies P R
G′ Q. For the converse, it can be shown that rerouting steps

in a restricted rerouting sequence for G′ can be grouped in pairs x, a, y → x, z, y → x, b, y

where only z is a new vertex. Hence x, a, y, b, x is a facial cycle of G, and x, a, y → x, b, y is
a topological rerouting step. We conclude that P T

G Q if and only if P R
G′ Q. The above

transformation is polynomial, so applying Theorem 8 gives:

I Theorem 11. Let G, P, Q be a reduced TSPR instance. In polynomial time, it can be
decided whether P T

G Q.

5 Reducing Switches, and an Algorithm for SPR

As shown in Figure 4, the presence of switches in a plane graph G may cause our dynamic
programming algorithm to take exponential time. However, in this section we show that
switches also give a lot of structural information, which can be used to obtain a polynomial
time algorithm. If x, a, b, y is a switch in G, then in many cases we can reduce the problem
to two smaller subproblems, defined as follows: Gsy is the subgraph of G induced by all
vertices that lie on a shortest sy-path, and Gxt is the subgraph of G induced by all vertices
that lie on a shortest xt-path. For an S-subpath Q, we denote Qxt = Q ∩ V (Gxt), and
Qsy = Q∩ V (Gsy). We remark that the rerouting sequences that we consider in Gsy (Gxt),
consist of shortest sy-paths (resp. xt-paths). We are now ready to state the key lemma for
reducing the GSPR problem, when switches are present.

I Lemma 12. Let G, P, Q be a plane reduced GSPR instance, such that x, y is a switch pair
with {x, y} ⊆ P , and Q is one of the following:

(i) an S-path that contains x and y,
(ii) Q = {x′, y′} where x′, y′ is a switch pair, or
(iii) |Q| = 1.
Then P G Q if and only if both Psy Gsy

Qsy and Pxt Gxt
Qxt.

I Theorem 13. Let G, P, Q be a plane reduced GSPR instance, where Q is a set containing
a switch pair or a single vertex of G. Then in polynomial time it can be decided whether
P Q.

Proof: First, compute whether P T Q, which can be done in polynomial time (Theo-
rem 11). If yes, then clearly P Q holds as well, and an S-path Q′ with P Q′ and Q ⊆ Q′

can be computed. (Recall that, as discussed in Section 2, all of our algorithms are construc-
tive.) If P 6 T Q, then for every switch pair x, y, we compute whether P T {x, y}, and if
so, compute the corresponding reachable S-path that contains x and y. Since the number of
switch pairs in G is polynomial (linear in fact), this can again be done in polynomial time
(Theorem 11). If no switch pair is reachable, then note that we may conclude that P 6 Q.

Now consider a switch pair x, y with P T {x, y}. Let P ′ be the S-path with P T P ′

and {x, y} ⊆ P ′ that has been computed. Clearly, P T P ′ implies P P ′ and P ′ P .
Therefore, P Q if and only if P ′ Q. By Lemma 12, P ′ Q if and only if both

P. Bonsma 347

P ′xt Qxt and P ′sy Qsy hold. We decide the latter two properties recursively. This way,
we can decide whether P Q.

It remains to consider the complexity of this algorithm. We argued that the complexity
of the above procedure, not counting the recursive calls, can be bounded by a (monotone
increasing) polynomial poly(n), where n = |V (G)|. Recall that d denotes the distance
between the end vertices s and t. If there are no switch pairs (which is true in particular
when d ≤ 3), then the entire procedure terminates in time poly(n).

For d ≥ 3, we prove by induction over d that the complexity of the algorithm can be
bounded by (2d−5)·poly(n). We have just proved the induction basis (d = 3), so now assume
d ≥ 4. In that case, the algorithm may consider a switch pair x, y, and reduce the problem
to two instances Gsy and Gxt. The distance between the end vertices of these instances is d′

and d−d′+2, respectively, for some 3 ≤ d′ ≤ d−1. Using the induction assumption and the
fact that both Gsy and Gxt contain at most n vertices, we can bound the total complexity
by (2d′ − 5) · poly(n) + (2(d− d′ + 2)− 5) · poly(n) + poly(n) = (2d− 5) · poly(n). �

Finally, we are able to prove the main result of this paper.

I Theorem 14. Let G be a plane graph, and let P and Q be S-paths in G. In polynomial
time, it can be decided whether P Q.

Proof sketch: By Theorem 9, we may assume that the instance is reduced. The proof
is similar to the proof of Theorem 13. The difference is that now, for every switch pair
x, y, we decide whether P {x, y} and Q {x, y}, which can be done in polynomial time
(Theorem 13). If the answer differs for P and Q, then we may conclude P 6 Q. If both
P {x, y} and Q {x, y}, then the problem can be reduced using Lemma 12(i), and
decided recursively. If P 6 {x, y} and Q 6 {x, y} for every switch pair x, y, then it suffices
to decide whether P T Q, which can be done in polynomial time (Theorem 11). �

6 Discussion

In Section 3, we introduced a dynamic programming method for reconfiguration problems,
that can informally be summarized as follows: identify subgraphs Gi, that are separated from
the rest of the graph by small separators Li (in our case, the distance layers). For deciding the
reconfiguration problem, detailed information about all solutions is not necessary. So based
on how solutions intersect with Li, one can identify large connected subgraphs (equivalence
classes) in the solution graph of Gi, which may be contracted. This method can readily
be applied to all kinds of reconfiguration problems, and different sets of separators, in
particular small separators given by tree decompositions [1]. The challenge is however proving
that the resulting encodings stay polynomially bounded. In our case, exponentially large
star-like structures (Figure 4) could be avoided by restricting to the topological version
of the problem. There may however be different approaches, such as based on reduction
rules for the encodings. Exploring this method seems useful firstly for finding other graph
classes for which SPR can be solved efficiently, beyond planar graphs and low degree graphs
(Theorem 6).

More generally, this dynamic programming method seems useful for answering the fol-
lowing interesting open question: Are there reconfiguration problems that are PSPACE-hard
for graphs of bounded treewidth? Or are there PSPACE-hard reconfiguration problems that
can be solved in polynomial time for graphs of treewidth k, for every fixed k? In contrast to
the abundance of positive results on NP-complete problems for bounded treewidth [1], to our

FSTTCS 2012

348 Rerouting shortest paths in planar graphs

knowledge, not a single (nontrivial) positive or negative result is known for reconfiguration
problems on bounded treewidth graphs!

The results presented in this paper can easily be extended to show that if G is planar,
shortest (topological) rerouting sequences have polynomial length. Furthermore, a shortest
topological rerouting sequence can be found in polynomial time. Whether this also holds
for finding a shortest (non-topological) rerouting sequence remains an open question. Recall
that if G is not planar, this problem is strongly NP-hard [14].

In addition, the reader may verify that our dynamic programming algorithm can be
used to decide efficiently whether SPT (G, s, t) is connected. Whether this can also be done
efficiently for SP(G, s, t) is another open question.

References

1 H.L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In ICALP
1988, volume 317 of LNCS, pages 105–118. Springer, 1988.

2 P. Bonsma. The complexity of rerouting shortest paths. In MFCS 2012, volume 7464 of
LNCS, pages 222–233. Springer, 2012.

3 P. Bonsma and L. Cereceda. Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoret. Comput. Sci., 410(50):5215–5226,
2009.

4 L. Cereceda. Mixing graph colourings. PhD thesis, London School of Economics and
Political Science, 2007.

5 L. Cereceda, J. van den Heuvel, and M. Johnson. Connectedness of the graph of vertex-
colourings. Discrete Appl. Math., 308(5–6):913–919, 2008.

6 L. Cereceda, J. van den Heuvel, and M. Johnson. Mixing 3-colourings in bipartite graphs.
European J. Combin., 30(7):1593–1606, 2009.

7 L. Cereceda, J. van den Heuvel, and M. Johnson. Finding paths between 3-colorings. J.
Graph Theory, 67(1):69–82, 2011.

8 R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer, Berlin,
fourth edition, 2010.

9 C.E.J. Eggermont and G.J. Woeginger. Motion planning with pulley, rope, and baskets.
In STACS 2012, volume 14 of LIPIcs, pages 374–383, 2012.

10 P. Gopalan, P.G. Kolaitis, E. Maneva, and C.H. Papadimitriou. The connectivity of boolean
satisfiability: Computational and structural dichotomies. SIAM J. Comput., 38(6), 2009.

11 R.A. Hearn and E.D. Demaine. PSPACE-completeness of sliding-block puzzles and other
problems through the nondeterministic constraint logic model of computation. Theoret.
Comput. Sci., 343(1–2):72–96, 2005.

12 T. Ito, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri, R. Uehara, and
Y. Uno. On the complexity of reconfiguration problems. Theoret. Comput. Sci., 412(12–
14):1054–1065, 2011.

13 T. Ito, M. Kamiński, and E.D. Demaine. Reconfiguration of list edge-colorings in a graph.
In WADS 2009, volume 5664 of LNCS, pages 375–386. Springer, 2009.

14 M. Kamiński, P. Medvedev, and M. Milanič. Shortest paths between shortest paths. The-
oret. Comput. Sci., 412(39):5205–5210, 2011.

15 M. Kamiński, P. Medvedev, and M. Milanič. Complexity of independent set reconfigura-
bility problems. Theoret. Comput. Sci., 439:9–15, 2012.

16 F. König and M. Lübbecke. Sorting with complete networks of stacks. In ISAAC 2008,
volume 5369 of LNCS, pages 895–906. Springer, 2008.

P. Bonsma 349

17 F. König, M. Lübbecke, R. Möhring, G. Schäfer, and I. Spenke. Solutions to real-world
instances of PSPACE-complete stacking. In ESA 2007, volume 4698 of LNCS, pages 729–
740. Springer, 2007.

18 C.H. Papadimitriou, A.A. Schäffer, and M. Yannakakis. On the complexity of local search.
In STOC 1990, pages 438–445, New York, 1990. ACM.

FSTTCS 2012

	Introduction
	Preliminaries
	A Dynamic Programming Algorithm for RSPR
	A Polynomial Complexity Bound for TSPR
	Reducing Switches, and an Algorithm for SPR
	Discussion

