2,463 research outputs found

    The ciao modular, standalone compiler and its generic program processing library

    Get PDF
    Ciao Prolog incorporates a module system which allows sepárate compilation and sensible creation of standalone executables. We describe some of the main aspects of the Ciao modular compiler, ciaoc, which takes advantage of the characteristics of the Ciao Prolog module system to automatically perform sepárate and incremental compilation and efficiently build small, standalone executables with competitive run-time performance, ciaoc can also detect statically a larger number of programming errors. We also present a generic code processing library for handling modular programs, which provides an important part of the functionality of ciaoc. This library allows the development of program analysis and transformation tools in a way that is to some extent orthogonal to the details of module system design, and has been used in the implementation of ciaoc and other Ciao system tools. We also describe the different types of executables which can be generated by the Ciao compiler, which offer different tradeoffs between executable size, startup time, and portability, depending, among other factors, on the linking regime used (static, dynamic, lazy, etc.). Finally, we provide experimental data which illustrate these tradeoffs

    A new module system for prolog

    Get PDF
    It is now widely accepted that separating programs into modules has proven very useful in program development and maintenance. While many Prolog implementations include useful module systems, we feel that these systems can be improved in a number of ways, such as, for example, being more amenable to effective global analysis and allowing sepárate compilation or sensible creation of standalone executables. We discuss a number of issues related to the design of such an improved module system for Prolog. Based on this, we present the choices made in the Ciao module system, which has been designed to meet a number of objectives: allowing sepárate compilation, extensibility in features and in syntax, amenability to modular global analysis, etc

    On the Efficiency of Optimising Shallow Backtracking in Prolog

    Get PDF
    The cost of backtracking has been identified as one of the bottlenecks in achieving peak performance in compiled Prolog programs. Much of the backtracking in Prolog programs is shallow, i.e. is caused by unification failures in the head of a clause when there are more alternatives for the same procedure, and so special treatment of this form of backtracking has been proposed as a significant optimisation. This paper describes a modified WAM which optimises shallow backtracking. Four different implementation approaches are compared. A number of benchmark results are presented, measuring the relative tradeoffs between compilation time, code size, and run time. The results show that the speedup gained by this optimisation can be significant

    On the Implementation of GNU Prolog

    Get PDF
    GNU Prolog is a general-purpose implementation of the Prolog language, which distinguishes itself from most other systems by being, above all else, a native-code compiler which produces standalone executables which don't rely on any byte-code emulator or meta-interpreter. Other aspects which stand out include the explicit organization of the Prolog system as a multipass compiler, where intermediate representations are materialized, in Unix compiler tradition. GNU Prolog also includes an extensible and high-performance finite domain constraint solver, integrated with the Prolog language but implemented using independent lower-level mechanisms. This article discusses the main issues involved in designing and implementing GNU Prolog: requirements, system organization, performance and portability issues as well as its position with respect to other Prolog system implementations and the ISO standardization initiative.Comment: 30 pages, 3 figures, To appear in Theory and Practice of Logic Programming (TPLP); Keywords: Prolog, logic programming system, GNU, ISO, WAM, native code compilation, Finite Domain constraint

    Description and Optimization of Abstract Machines in a Dialect of Prolog

    Full text link
    In order to achieve competitive performance, abstract machines for Prolog and related languages end up being large and intricate, and incorporate sophisticated optimizations, both at the design and at the implementation levels. At the same time, efficiency considerations make it necessary to use low-level languages in their implementation. This makes them laborious to code, optimize, and, especially, maintain and extend. Writing the abstract machine (and ancillary code) in a higher-level language can help tame this inherent complexity. We show how the semantics of most basic components of an efficient virtual machine for Prolog can be described using (a variant of) Prolog. These descriptions are then compiled to C and assembled to build a complete bytecode emulator. Thanks to the high level of the language used and its closeness to Prolog, the abstract machine description can be manipulated using standard Prolog compilation and optimization techniques with relative ease. We also show how, by applying program transformations selectively, we obtain abstract machine implementations whose performance can match and even exceed that of state-of-the-art, highly-tuned, hand-crafted emulators.Comment: 56 pages, 46 figures, 5 tables, To appear in Theory and Practice of Logic Programming (TPLP

    The CIAO Multi-Dialect Compiler and System: An Experimentation Workbench for Future (C)LP Systems

    Full text link
    CIAO is an advanced programming environment supporting Logic and Constraint programming. It offers a simple concurrent kernel on top of which declarative and non-declarative extensions are added via librarles. Librarles are available for supporting the ISOProlog standard, several constraint domains, functional and higher order programming, concurrent and distributed programming, internet programming, and others. The source language allows declaring properties of predicates via assertions, including types and modes. Such properties are checked at compile-time or at run-time. The compiler and system architecture are designed to natively support modular global analysis, with the two objectives of proving properties in assertions and performing program optimizations, including transparently exploiting parallelism in programs. The purpose of this paper is to report on recent progress made in the context of the CIAO system, with special emphasis on the capabilities of the compiler, the techniques used for supporting such capabilities, and the results in the áreas of program analysis and transformation already obtained with the system

    TWAM: A Certifying Abstract Machine for Logic Programs

    Full text link
    Type-preserving (or typed) compilation uses typing derivations to certify correctness properties of compilation. We have designed and implemented a type-preserving compiler for a simply-typed dialect of Prolog we call T-Prolog. The crux of our approach is a new certifying abstract machine which we call the Typed Warren Abstract Machine (TWAM). The TWAM has a dependent type system strong enough to specify the semantics of a logic program in the logical framework LF. We present a soundness metatheorem which constitutes a partial correctness guarantee: well-typed programs implement the logic program specified by their type. This metatheorem justifies our design and implementation of a certifying compiler from T-Prolog to TWAM.Comment: 41 pages, under submission to ACM Transactions on Computational Logi
    corecore