
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11433567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

B–

1

On the Efficiency of
Optimising Shallow Backtracking

in Compiled Prolog‡

Mats Carlsson
SICS, Swedish Institute of Computer Science

PO Box 1263
S-164 28 KISTA, Sweden

Abstract

The cost of backtracking has been identified as one of the bottlenecks in achieving
peak performance in compiled Prolog programs. Much of the backtracking in
Prolog programs is shallow, i.e. is caused by unification failures in the head of a
clause when there are more alternatives for the same procedure, and so special
treatment of this form of backtracking has been proposed as a significant
optimisation. This paper describes a modified WAM which optimises shallow
backtracking. Four different implementation approaches are compared. A number
of benchmark results are presented, measuring the relative tradeoffs between
compilation time, code size, and run time. The results show that the speedup
gained by this optimisation can be significant.

__

‡ The paper also appears in Logic Programming: Proceedings of the Sixth International
Conference, MIT Press, pp. 3–16, 1989.

B–

2

1 Introduction

The distinction between two types of backtracking, a simple one which is amenable
to optimisation, and a general one, was introduced in [8]. The simple type was
called shallow backtracking and occurs when a head unification fails with more
alternatives for the same procedure to try. The general case was called deep
backtracking; it occurs when there are no more clauses of the current procedure to
try when a head unification fails. If the machine state changes between a procedure
call and a shallow failure can be minimised, then shallow backtracking can be
implemented much more efficiently than deep backtracking.

We feel that there are many justifications to exploit an optimised mechanism for
shallow backtracking in Prolog implementations. Firstly, the implementation of if-
then-else where the if part consists of simple tests becomes more efficient, without
complicating the compiler by introducing conditional jumps and the like, as in

Head :-
 ...
 (X<Y -> p(X, Y); q(X, Y)),
 ...

Secondly, in or-parallel Prolog implementations like Aurora [10], the relative cost
of deep backtracking is higher than in sequential implementations. We expect that
optimising shallow backtracking in Aurora will have a significant effect on
performance. Finally, Tick showed [6] that shallow backtracking is the
predominant form of nondeterministic Prolog execution.

The distinction between the two kinds of backtracking was built into PLM, the
Prolog engine of Prolog-10. However, no such distinction is made in the later
WAM, or "New Engine", for Prolog [9]. We assume herein that the reader is
familiar with the WAM. To avoid ambiguities, we describe our WAM terminology
in Section 2.

Proposals for incorporating shallow backtracking into the WAM have appeared in
the literature, first in [6], for a detailed description see [3]. The key idea is that the
try and try_me_else instructions only save a small part of the machine state,
postponing completion of the choicepoint until a neck instruction is reached. This
new instruction is inserted into the compiled code for each clause and is
responsible for completing or updating a choicepoint where appropriate. It is
placed at the earliest possible point in a clause where it can be determined that the
head unification and any simple tests have succeeded. Consider, for example, the
recursive clause of append/3 :

append([X|L1], L2, [X|L3]) :-
 append(L1, L2, L3).

B–

3

standard WAM code WAM code with neck
instruction

get_list A1 get_list A1
unify_variable A4 unify_variable A4
unify_variable A1 unify_variable A5
get_list A3 get_list A3
unify_value A4 unify_value A4
unify_variable A3 neck
execute append/3 unify_variable A3

put_value A5,A1
execute append/3

Thus before the neck instruction is reached, the arguments for the body goal cannot
be set up. As this example shows, inserting the neck instruction impacted the
register allocation so that an extra put_value instruction was needed. Thus the
proposed method may incur a performance overhead which may outweigh a faster
backtracking mechanism. This fact motivated Van Roy et.al. [7] to introduce
multiple entrypoints into compiled clauses. In their scheme, a compiled clause C
can have four entrypoints depending on

(i) whether or not there are alternative clauses for C;
(ii) whether or not a previous clause has created a choicepoint for

this procedure.

The four entrypoints correspond to different compiled versions of the head of C,
specialised for the combinations of conditions (i–ii). These code streams then
merge into a single compiled version of the body of C. Obviously, if condition (i)
is true, unification failure triggers shallow backtracking, otherwise it triggers deep
backtracking. Multiple entrypoints have obvious drawbacks: increased code size
and compilation time.

With the neck instruction, the cost of creating choicepoints is slightly higher than in
the standard WAM due to the negative effects on register allocation and to the extra
instruction decode. However, we observe that creating and restoring choicepoints
are rather expensive operations anyway.

This report tries to compare the relative merits of four different approaches to
implementing backtracking (DB, SB1, SB2, and SB3) with respect to compilation
time, code size, and run time. The unit of compilation is a clause in all approaches:

DB. This approach does not optimise shallow backtracking at
all.

SB1. This approach inserts a neck instruction into each clause.
There is one code stream per clause.

SB2. This approach generates two code streams for each clause:
one with a neck instruction, used when there are
alternatives for the current goal, and one without a neck
instruction, used for determinate goals and for the last
alternative in a list.

B–

4

SB3. This approach is a hybrid between SB1 and SB2:
Approach SB1 is taken when the body is empty or
consists of simple tests only; approach SB2 is taken for
other clauses.

In the above approaches, the register allocation is only impaired in code streams
containing neck. For approaches SB2 and SB3 it is arranged at compile time so
that the indexing code refers to the correct code stream, to avoid a runtime
decision.

2 WAM Terminology

The implementation strategies described above have all been implemented as
modifications SICStus Prolog [2], a compiler-based system with a WAM emulator
written in C. Strategy SB3 is the one normally used in SICStus Prolog. Its
abstract machine is close to the standard WAM but differs in some respects. For
example, the local stack is split into an environment stack and a choicepoint stack.
This modification was first proposed in [5] to improve the locality of memory
references. Other changes were made as prerequisites for optimising shallowing
backtracking, as described in Section 4.

We use the following abbreviations for the principal WAM registers:

P program pointer
C P continuation program pointer
E current environment
B current choicepoint
T R top of trail
H top of heap
A1 , A2 , .. argument registers

A choicepoint is a stack frame with the following fields. Note that the "previous
choicepoint" field is replaced by the "top of environment stack" field, since the
local stack is split:

P(B) alternative program pointer
CP(B) continuation program pointer
E(B) current environment
A(B) top of environment stack

(shadowed by the AB register)
TR(B) top of trail
H(B) top of heap

(shadowed by the HB register)
A1(B) , A2(B) , .. argument registers

An environment is a stack frame with the following fields:

CE(E) continuation environment
CP(E) contnuation program pointer
Y1(E) , Y2(E) , .. permanent variables

B–

5

3. Shallow backtracking in the WAM

In this section we describe the changes in the compiler and abstract machine
necessary for optimising shallow backtracking. The compiler is a pure clause
compiler, i.e. it translates one Prolog clause at a time to WAM instructions. The
only way in which the indexing code is affected by the changes is by the
introduction of two entrypoints per clause, as described in Section 3.2.

The key idea of the optimisation is that the try and try_me_else instructions allocate
space for a choicepoint but only fill in a couple of fields, postponing completion of
the choicepoint until the neck instruction is reached. This new instruction is
inserted into the compiled code for each clause and is responsible for completing or
updating the choicepoint after a successful head unification with more alternatives
to try.

3.1 Basic scheme
We now describe the simplest approach, SB1. To implement it, a new WAM
register, PB, is introduced. PB holds a pointer to the next alternative clause for
the current goal, or 0, if none exists. When head unification failure occurs,
shallow backtracking is used if PB ≠ 0, otherwise deep backtracking must be
used. In the shallow case, the arguments and most control registers are guaranteed
to be valid: all that needs to be done is to reset all trail entries between TR(B) and
TR, and to restore the top of heap from HB. In the deep case, all arguments and
control registers must be restored from the choicepoint.

The try and try_me_else instructions are modified to create a partial choicepoint.
The only valid fields of a partial choicepoint are TR(B), initialised to the current
top of trail, and P(B), initialised to zero. The WAM registers AB, HB, and PB
are initialised to respectively the current top of environment stack, the current top
of heap, and the alternative clause. The retry and retry_me_else instructions are
modified to update PB rather than P(B). The trust and trust_me_else instructions
set PB to zero.

In the basic scheme, a neck instruction is inserted into all clauses. Its semantics is
summarised by the following table:

 PB=0 PB≠0, P(B)=0 PB≠0,
P(B)≠0

noop fill in choicepoint set P(B) to
P B
set PB to zero set PB to zero

Thus, the neck instruction does nothing if PB is zero. Executing a neck with PB
nonzero and P(B) zero corresponds to the first successful head unification for the
current goal with more alternatives to try. In this case, all remaining fields of the
choicepoint are filled in, including P(B), and PB is zeroed. Executing a neck
with both PB and P(B) nonzero corresponds to a successful head unification after
having backtracked to this choicepoint. P(B) is assigned the value of PB, and
PB is zeroed. A neck + cut combination is recognised as a special case: the current
choicepoint is flushed, AB and HB are reset to their previous values, and PB is
zeroed.

B–

6

The compiler is modified to insert a neck instruction before the first cut or body
goal which the compiler cannot compile inline. The neck instruction is inserted
into all clauses including the last clause of a procedure, as the clause compiler has
no way of knowing whether yet another clause for the same procedure will appear
later. The neck instruction affects the compiler's register allocation as the
instruction copies the procedure's argument registers when it completes a partial
choicepoint. As a result, the register allocation is often poorer than in the standard
WAM, requiring more temporary variables and more moves. The extra moves
occur if arguments for the first body goal cannot be placed in the correct argument
register until after the neck instruction. Notice that for clauses where the body is
empty or consists of simple tests only, no extra moves are ever needed, as simple
tests may take their arguments in any registers.

3.2 Optimisations
The drawback of the simple approach is for deterministic cases having to execute a
no-op neck instruction which also impairs the register allocation. This can be
avoided by emitting two instruction streams per clause: one with a neck instruction
and one without. We call this approach SB2. It is arranged at load time so that
try(_me_else) and retry(_me_else) instructions use the code streams with neck and
all other ways of entering a clause use the code streams without the neck. The
implications for the abstract machine is that PB is always nonzero when the neck
instruction is reached, and for the compiler and loader some extra complications to
manage the two code streams per clause.

To conserve space, the code for the body is shared between the two streams. The
instruction streams are actually laid out as a single sequence with two entrypoints,
NonDet and Det, and a jump. NonDet is entered when there are more alternatives
to try; Det is used for the last alternative and for determinate calls. The NonDet
instruction stream contains a branch to the body code whereas the Det stream just
continues into the body code, minimising overhead for deterministic cases. The
general instruction stream outline is depicted below:

NonDet: < head unification instructions >
. . .
< simple tests >
neck
< moves >
branch S

Det: < head unification instructions >
. . .
< simple tests >
< moves >

S: < body code >

The drawback of this approach is the code size overhead which is particularly
serious for unit clause databases. To reduce the overhead, we introduce approach
SB3 as using SB1 when there is very little to gain from duplicating code, and SB2
otherwise.

B–

7

In approach SB3, we emit a single code stream, with a neck instruction, for
clauses where the body consists of simple tests only, in particular for unit clauses.
For all other clauses two code streams are emitted. This strategy is based on the
observation that for clauses where there are no general body goals constraining the
register allocator, no extra register transfers are ever introduced by the neck
instruction. The main implication for the abstract machine is that the neck
instruction again needs to check whether PB is zero.

B–

8

4 Nonstandard WAM features

The SICS abstract machine differs in some respects, not only by optimising
shallow backtracking, from the standard WAM. Some of the other changes are
however crucial for the shallow backtracking mechanism:

4.1 One-level indexing
In the SICS abstract machine, clause indexing is done in one step when a compiled
predicate is entered, even in situations with a mixture of clauses with variable and
nonvariable first arguments. This indexing step singles out an applicable subset of
clauses, and at most one choicepoint is created. Although not essential for the
shallow backtracking mechanism, this modification increases its effectiveness as
the number of alternatives per choicepoints increases. This technique is further
discussed in [1].

4.2 Split environment pointer
Since an allocate instruction can occur before a neck instruction, it would seem that
the E register has to be saved by try(_me_else) and restored when a shallow failure
occurs. This is avoided in the SICS abstract machine by introducing the E2
register which is used instead of the E register whenever a permanent variable is
accessed. The motivation for this is both to improve shallow backtracking and to
delay as long as possible filling in the control part of environments and updating E.
In particular, E is never updated between the beginning of a clause and the neck
instruction.

This modification is done by modifying the proceed instruction and splitting the
allocate instruction into two parts: preallocate, placed before the first occurrence of
a permanent variable, and postallocate, placed before the first call instruction:

 preallocate:
E2 = max(E+env_size(CP),A(B));

postallocate:
CE(E2) = E;
CP(E2) = CP;
E = E2;

proceed:
E2 = E;
P = CP;

4.3 Preserving argument registers
With the shallow backtracking optimisation, the contents of the argument registers
must not be altered prior to the neck instruction, as neck may copy these registers
into a choicepoint after a number of unification steps. In the standard WAM,
certain instructions (e.g. get_value, unify_value) are allowed to store the
dereferenced result of the operation back into an argument register. However, this
must be disallowed for shallow backtracking to work.

B–

9

5 Performance evaluation

To study the effectiveness of optimising shallow backtracking, three performance
aspects were studied: compilation time, code size, and execution time.

Strategy SB3 is currently implemented in SICStus Prolog. The other strategies
were implemented by modifying parts of SICStus Prolog, carefully trying not to
introduce any new overheads that would blur a comparison.

5.1 Benchmark programs
Four Prolog programs were studied. None of them can be considered a toy
program. They were written by different people and likely represent different
coding styles. The programs include two compilers which were expected to have
very little nondeterminism. The other two programs were expected to contain a lot
of nondeterminism. The programs were:

CHAT: an English language parser by F.C.N. Pereira and D.H.D.
Warren, running a query that took 15.2 seconds. The size
of CHAT is 2812 Prolog clauses.

PLM_COMPILER:
the Berkeley Prolog compiler by Peter Van Roy, running a
query that took 2.5 seconds. The program consists of 738
Prolog clauses.

PLWAM: the SICStus compiler by myself, compiling itself which
took 250 seconds. The program contains 1147 Prolog
clauses.

TP: a propositional theorem prover by Ross Overbeek, running
a problem that took 47.7 seconds. The size of TP is 155
Prolog clauses.

In the size figures above, a disjunction (P; Q; R) counts as three clauses. The
timings were made using approach DB (not optimising shallow backtracking).

In order to measure the amount of potential shallow backtracking, we computed for
each program the following dynamic properties:

Pf the fraction of deep failures to total failures, and
Pc the fraction of completed choicepoints to total number of

try:s and try_me_else:s.

These figures for the benchmarks are summarised in the following table.

Table 1: Available shallow nondeterminism.

 Pf Pc (1/Pf)+(1/Pc)
PLWAM: .20 .26 8.85
CHAT: .47 .28 5.70
TP: .33 .27 6.70

B–

10

PLM_COMPILER: .23 .34 7.29

These figures confirm Tick's observation that shallow backtracking is the
predominant form of nondeterministic Prolog execution. The (1/Pf)+(1/Pc) figure
indicates the availability of shallow nondeterminism in each program. The higher
the figure, the better the expected runtime speedup yielded by the shallow
backtracking optimisation.

5.2 Performance data
The timing and code size data are presented in three tables below. All data have
been normalised with respect to strategy DB:

Table 2: Compilation time.

 SB1 SB2 SB3
PLWAM: .97 1.16 1.12
CHAT: .98 1.18 1.05
TP: .97 1.07 1.02
PLM_COMPILER: .97 1.15 1.10

Table 3: Code size.

 SB1 SB2 SB3
PLWAM: 1.01 1.15 1.10
CHAT: 1.01 1.20 1.05
TP: 1.01 1.09 1.05
PLM_COMPILER: 1.01 1.16 1.10

Table 4: Execution time.

 SB1 SB2 SB3
PLWAM: .92 .89 .90
CHAT: .96 .93 .92
TP: .85 .85 .85
PLM_COMPILER: .93 .89 .90

5.3 Discussion
Several observations can be made about the performance data presented above.
Firstly, there is surprisingly little variation between the four sample programs.
This shows that there is a fair amount of exploitable "shallow nondeterminism"
over a wide range of applications. Secondly, the results do not correlate perfectly
with the dynamic properties computed in Section 5.1, but we do note that
optimising shallow backtracking yielded the least speedup for CHAT, which was
expected. Lastly, we found that much of the deep backtracking in TP could easily
be made shallow by rearranging code, unfolding tests, etc. By applying these
changes we increased the scope of the shallow backtracking optimisation, yielding

B–

11

a speedup factor of as much as 1.5 compared to the unchanged program under
approach SB3.

The performance data is summarised in the following table of relative figures:

Table 5: Performance summary.

 DB SB1 SB2 SB3
Compilation time: 1.0 ≈.97 1.07–1.18 1.02–1.12
Code size: 1.0 ≈1.01 1.09–1.20 1.05–1.10
Execution time: 1.0 .85–.96 .85–.93 .85–.92

As we can see from this table, strategies SB2 and SB3 offered the best runtime
speedups (7% to 15%) for the sample programs. Strategy SB2 was not
significantly faster for any of the programs, and as strategy SB3 is the more space
economic of the two, it seems a sensible choice.

Strategy SB1 is attractive as it has very little compilation time and code size
overhead. Although it did yield significant speedups for the sample programs, it
can have a big run time overhead on examples like append, because register
allocation is impaired in the deterministic case. In fact, strategy SB1 slowed down
the well-known naive reverse benchmark, where append is the inner loop, by a
factor of 1.29. This large factor is partly due to the way the SICStus compiler
collapses certain WAM sequences into single byte codes: the neck instruction was
inserted into such a sequence (see page 3), and the inner loop size grew from 4 to 7
byte codes. A native code implementation would probably not display this
anomalous behaviour. In a native code implementation, strategy SB1 could be the
best choice, especially since the need to keep the code size down is more urgent
than in a bytecode implementation.

Meier reports only 3–4% slowdown of naive reverse.

6 Comparison with other work

Our implementation is much like Meier's. The main difference is that Meier
introduces new WAM registers which are written by the try and try_me_else
instructions, read when shallow backtracking occurs, and copied into a choicepoint
by the neck instruction. No partial choicepoint is constructed. On hardware like
the MC68020, however, the extra WAM registers would have to be stored in
memory anyway because of shortage of machine registers. This was our
motivation for building a partial choicepoint instead.

Meier's abstract machine always preserves the E register up to the first call
instruction by maintaining the top of the environment stack in a register TE and
using two sets of unify instructions: one for head unification which accesses
permanent variables using TE, and another for the clause body which uses E. One
set of unify instructions suffices for us.

The design of Van Roy et.al. uses up to four entrypoints per clause

B–

12

whereas ours uses at most two entrypoints. The scope of the shallow backtracking
optimisation is somewhat restricted in their design, as head unification for
"nondeterministic entries" is not allowed to bind variables.

Tateno et.al. [4] describe a design similar to ours but restricted to predicates in
which all clauses but the last one have a cut before the first general body goal.
Their design allows head unifications to bind variables and handles the trail
specially for such bindings.

To the author's knowledge, all published speedup figures for optimised shallow
backtracking have been for toy programs. We ran the same toy programs to see if
the results could be reproduced. In all cases, the published figures were rather
better than our results. For example, Meier uses the memberchk predicate as an
example where shallow backtracking is extremely advantageous, and reports a
65% performance improvement. Using strategy SB3, we measured a speedup
factor of 1.34 over strategy DB:

memberchk(X, [X|_]) :- !.
memberchk(X, [_|Xs]) :- memberchk(X, Xs).

Van Roy et.al. report a speedup factor of as much as 2.6 for the min_list predicate,
listed below. Again using SB3 we measured a speedup of 1.22 over DB:

min_list([X], X).
min_list([X|L], M) :-

min_list(L, Y),
minimum(X, Y, M).

minimum(A, B, A) :- A<B, !.
minimum(A, B, B).

7 Conclusions

The main contribution of this paper is to present actual measurements of the
effectiveness of optimising shallow backtracking in non-trivial Prolog programs,
running on a highly optimised Prolog system. The measurements show that this
optimisation is worthwhile over a wide range of applications, yielding a speedup of
7%–15%. We expect the optimisation to be more important for or-parallel
implementations than for sequential ones. We showed that program transformation
can significantly increase the scope of the optimisation.

Three approaches to this optimisation were presented, two of which involve
generating two code streams for each compiled clause. We showed that if only a
single code stream is generated, the overhead on deterministic programs can be
intolerable if executed by a bytecode emulator. We expect that in a native code
implementation, with its more urgent need to keep the code size down, the
overhead on deterministic programs may be tolerable.

B–

13

A great deal of extra analysis can be done in a procedure compiler, at the cost of
increased compilation time, since a procedure compiler knows precisely which
clauses may be used nondeterministically and which may not. Mode declarations
provide further information in this respect.

B–

14

Acknowledgements

The author is indebted to Carl Kesselman, Hiroshi Nakashima and the referees for
their comments, which substantially improved the presentation.

This research would not have been possible without the support of my family.

References

[1] M. Carlsson, Freeze, Indexing and Other Implementation Issues in the
WAM, Proc. Fourth International Conference on Logic Programming, pp.
40–58, MIT Press, 1987.

[2] M. Carlsson, J. Widén, SICStus Prolog User's Manual, SICS Research
Report R88007B, October, 1988.

[3] M. Meier, Shallow Backtracking in Prolog Programs, Internal report,
ECRC, 1987.

[4] H. Tateno, H. Nakashima, S. Kondo, K. Nakajima, Neck Cut Optimization:
An Optimization technique for the Shallow Backtracking, Internal report,
Mitsubishi Electric Corporation and ICOT, 1989.

[5] E. Tick and D.H.D. Warren, Towards a pipelined Prolog processor, in Proc.
International Symposium on Logic Programming, pp. 29–40, IEEE
Computer Society, 1984.

[6] E. Tick, Studies in Prolog Architectures, Technical Report No. CSL-TR-87-
329, Stanford University, June 1987.

[7] P. Van Roy, B. Demoen, and Y.D. Willems, Improving the execution speed
of compiled Prolog with modes, clause selection, and determinacy, Proc.
TAPSOFT'87: International Joint Conference on Theory and Practice of
Software Development, pp. 111–125, Springer–Verlag, 1987.

[8] D.H.D. Warren, IMPLEMENTING PROLOG—compiling predicate logic
programs, D.A.I. Research Report 39, University of Edinburgh, May,
1977.

[9] D.H.D. Warren, An Abstract Prolog Instruction Set , Technical Note 309,
SRI International, 1983.

[10] E. Lusk, D.H.D. Warren, S. Haridi et.al., The Aurora Or-Parallel Prolog
System, in Proc. International Conference on Fifth Generation Computer
Systems, pp. 819–830, ICOT, Tokyo, 1988.

