2,182 research outputs found

    Functional properties, structural studies and chemoenzymatic synthesis of oligosaccharides

    Get PDF
    Oligosaccharides offer beneficial effects on immune system and gut health, such as anticancer activity, immunomodulatory activity, and complement activation. Functional oligosaccharides are widely found in plants, algae, bacteria and higher fungi. Milk oligosaccharides, especially human milk oligosaccharides, have considerable health benefits, such as the growth-promotion of the beneficial bacterial flora in the intestines, and developing resistance to bactertial and viral infections. Recent developments in high performance liquid chromatography, mass spectrometry, nuclear magnetic resonance and capillary electrophoresis techniques contribute to the analysis of the oligosaccharide identification and mixture quantification. Synthesis of oligosaccharides is becoming increasingly important to pharmaceutical industries, in which chemo-enzymatic synthesis is considered as an effective method. This article gives a brief summary of structures, accessible sources, physiological and chemical characteristics, and potential health benefits of functional oligosaccharides

    Mass Spectrometry in the Elucidation of the Glycoproteome of Bacterial Pathogens

    Get PDF
    Presently some three hundred post-translational modifications are known to occur in bacteria in vivo. Many of these modifications play critical roles in the regulation of proteins and control key biological processes. One of the most predominant modifications, N- and O-glycosylations are now known to be present in bacteria (and archaea) although they were long believed to be limited to eukaryotes. In a number of human pathogens these glycans have been found attached to the surfaces of pilin, flagellin and other surface and secreted proteins where it has been demonstrated that they play a role in the virulence of these bacteria. Mass spectrometry characterization of these glycosylation events has been the enabling key technology for these findings. This review will look at the use of mass spectrometry as a key technology for the detection and mapping of these modifications within microorganisms, with particular reference to the human pathogens, Campylobacter jejuni and Mycobacterium tuberculosis. The overall aim of this review will be to give a basic understanding of the current ‘state-of-the-art’ of the key techniques, principles and technologies, including bioinformatics tools, involved in the analysis of the glycosylation modifications

    Microbial β-Glucosidases: screening, characterization, cloning and applications

    Get PDF
    Cellulose is the most abundant biomaterial in the biosphere and the major component of plant biomass. Cellulase is an enzymatic system required for conversion of renewable cellulose biomass into free sugar for subsequent use in different applications. Cellulase system mainly consists of three individual enzymes namely: endoglucanase, exoglucanase and β-glucosidases. β-Glucosidases are ubiquitous enzymes found in all living organisms with great biological significance. β-Glucosidases have also tremendous biotechnological applications such as biofuel production, beverage industry, food industry, cassava detoxification and oligosaccharides synthesis. Microbial β-glucosidases are preferred for industrial uses because of robust activity and novel properties exhibited by them. This review aims at describing the various biochemical methods used for screening and evaluating β-glucosidases activity from microbial sources. Subsequently, it generally highlights techniques used for purification of β-glucosidases. It then elaborates various biochemical and molecular properties of this valuable enzyme such as pH and temperature optima, glucose tolerance, substrate specificity, molecular weight, and multiplicity. Furthermore, it describes molecular cloning and expression of bacterial, fungal and metagenomic β-glucosidases. Finally, it highlights the potential biotechnological applications of β-glucosidases

    p-Cresyl sulfate

    Get PDF
    If chronic kidney disease (CKD) is associated with an impairment of kidney function, several uremic solutes are retained. Some of these exert toxic effects, which are called uremic toxins. p-Cresyl sulfate (pCS) is a prototype protein-bound uremic toxin to which many biological and biochemical (toxic) effects have been attributed. In addition, increased levels of pCS have been associated with worsening outcomes in CKD patients. pCS finds its origin in the intestine where gut bacteria metabolize aromatic amino acids, such as tyrosine and phenylalanine, leading to phenolic end products, of which pCS is one of the components. In this review we summarize the biological effects of pCS and its metabolic origin in the intestine. It appears that, according to in vitro studies, the intestinal bacteria generating phenolic compounds mainly belong to the families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae, Ruminococcaceae, and Veillonellaceae. Since pCS remains difficult to remove by dialysis, the gut microbiota could be a future target to decrease pCS levels and its toxicity, even at earlier stages of CKD, aiming at slowing down the progression of the disease and decreasing the cardiovascular burden

    Innovative solutions to sticky situations: Antiadhesive strategies for treating bacterial infections

    Get PDF
    ABSTRACT Bacterial adherence to host tissue is an essential process in pathogenesis, necessary for invasion and colonization and often required for the efficient delivery of toxins and other bacterial effectors. As existing treatment options for common bacterial infections dwindle, we find ourselves rapidly approaching a tipping point in our confrontation with antibiotic-resistant strains and in desperate need of new treatment options. Bacterial strains defective in adherence are typically avirulent and unable to cause infection in animal models. The importance of this initial binding event in the pathogenic cascade highlights its potential as a novel therapeutic target. This article seeks to highlight a variety of strategies being employed to treat and prevent infection by targeting the mechanisms of bacterial adhesion. Advancements in this area include the development of novel antivirulence therapies using small molecules, vaccines, and peptides to target a variety of bacterial infections. These therapies target bacterial adhesion through a number of mechanisms, including inhibition of pathogen receptor biogenesis, competition-based strategies with receptor and adhesin analogs, and the inhibition of binding through neutralizing antibodies. While this article is not an exhaustive description of every advancement in the field, we hope it will highlight several promising examples of the therapeutic potential of antiadhesive strategies.</jats:p

    Biomarkers for monitoring intestinal health in poultry : present status and future perspectives

    Get PDF
    Intestinal health is determined by host (immunity, mucosal barrier), nutritional, microbial and environmental factors. Deficiencies in intestinal health are associated with shifts in the composition of the intestinal microbiome (dysbiosis), leakage of the mucosal barrier and/or inflammation. Since the ban on growth promoting antimicrobials in animal feed, these dysbiosis-related problems have become a major issue, especially in intensive animal farming. The economical and animal welfare consequences are considerable. Consequently, there is a need for continuous monitoring of the intestinal health status, particularly in intensively reared animals, where the intestinal function is often pushed to the limit. In the current review, the recent advances in the field of intestinal health biomarkers, both in human and veterinary medicine are discussed, trying to identify present and future markers of intestinal health in poultry. The most promising new biomarkers will be stable molecules ending up in the feces and litter that can be quantified, preferably using rapid and simple pen-side tests. It is unlikely, however, that a single biomarker will be sufficient to follow up all aspects of intestinal health. Combinations of multiple biomarkers and/or metabarcoding, metagenomic, metatranscriptomic, metaproteomic and metabolomic approaches will be the way to go in the future. Candidate biomarkers currently are being investigated by many research groups, but the validation will be a major challenge, due to the complexity of intestinal health in the field

    The response of canine faecal microbiota to increased dietary protein is influenced by body condition

    Get PDF
    Background: High protein diets shift the faecal microbiota into a more unfavourable composition in obese humans. In lean dogs, higher protein consumption is accompanied with increased production of putrefactive fermentation products, whereas obese dogs have a different gut microbiota compared to lean dogs. Still, the impact of high dietary protein on gut microbiota in obese dogs remains unclear. The aim of this study was to investigate faecal microbial changes in lean and obese dogs in response to two different levels of dietary protein. Six healthy lean and six obese Beagles were fed a high protein diet (HP) and a low protein diet (LP) for 28 days each in a crossover design. Denaturing gradient gel electrophoresis and quantitative PCR were performed on faecal samples for microbial profiling. Plasma acylcarnitine and fermentation metabolites were measured. Results: Dogs fed HP had higher concentrations of protein fermentation metabolites including faecal ammonia, isovalerate, isobutyrate, phenol, indole, serum indoxyl sulphate and plasma 3-OH isovalerylcarnitine compared to dogs fed LP, whereas no changes in faecal concentrations of acetate and butyrate were observed. The abundances of clostridial clusters IV and XIVa, covering the majority of butyrate-producing bacteria, and of the butyrate kinase gene, one of the terminal genes of the butyrate synthesis pathway were higher in dogs on HP compared to LP. Significant interactions between diet and body condition were found for the abundance of Firmicutes, Lactobacillus and clostridial cluster I. The similarity coefficient of faecal microbiota between the two diets was smaller in obese dogs than in lean dogs. Conclusions: High protein diet increased the abundance and activity of butyrate-producing bacteria in Beagles independent of the body condition. In addition, increasing dietary protein content had a greater overall impact on faecal microbiota in obese compared to lean dogs
    corecore