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Abstract

Background: High protein diets shift the faecal microbiota into a more unfavourable composition in obese
humans. In lean dogs, higher protein consumption is accompanied with increased production of putrefactive
fermentation products, whereas obese dogs have a different gut microbiota compared to lean dogs. Still, the
impact of high dietary protein on gut microbiota in obese dogs remains unclear. The aim of this study was to
investigate faecal microbial changes in lean and obese dogs in response to two different levels of dietary protein.
Six healthy lean and six obese Beagles were fed a high protein diet (HP) and a low protein diet (LP) for 28 days
each in a crossover design. Denaturing gradient gel electrophoresis and quantitative PCR were performed on faecal
samples for microbial profiling. Plasma acylcarnitine and fermentation metabolites were measured.

Results: Dogs fed HP had higher concentrations of protein fermentation metabolites including faecal ammonia,
isovalerate, isobutyrate, phenol, indole, serum indoxyl sulphate and plasma 3-OH isovalerylcarnitine compared to
dogs fed LP, whereas no changes in faecal concentrations of acetate and butyrate were observed. The abundances
of clostridial clusters IV and XIVa, covering the majority of butyrate-producing bacteria, and of the butyrate kinase
gene, one of the terminal genes of the butyrate synthesis pathway were higher in dogs on HP compared to LP.
Significant interactions between diet and body condition were found for the abundance of Firmicutes, Lactobacillus
and clostridial cluster I. The similarity coefficient of faecal microbiota between the two diets was smaller in obese
dogs than in lean dogs.

Conclusions: High protein diet increased the abundance and activity of butyrate-producing bacteria in Beagles
independent of the body condition. In addition, increasing dietary protein content had a greater overall impact on
faecal microbiota in obese compared to lean dogs.
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Background
Obesity is defined as an accumulation of excessive
amounts of adipose tissue in the body, and it is the most
common nutritional disorder in companion animals [1].
The prevalence of obesity has been reported to range
from 8 to 34% in dogs [2, 3]. In the last decade, the link
between obesity and gut microbiota has been established

in humans and rodents [4–6], however, compared to
humans, the relationship between gut microbiota and
obesity is less well understood in dogs and needs to be
investigated [7, 8].
Gut microbiota are mainly influenced by undigested

dietary carbohydrates and protein. In dogs, there is
increasing interest in feeding high protein diets, e.g. raw
meat-based diets and weight management diets [9, 10].
In obese humans, high protein diets result in decreased
butyrate concentration and numbers of butyrate-
producing bacteria. Additionally, several studies carried
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out in lean dogs reported negative effects of colonic
protein fermentation including increased faecal pH and
elevated production of putrefactive substances [11].
Furthermore, a high protein diet has shown to promote
the growth of Clostridium perfringens and to reduce the
abundance of clostridial cluster XIVa in dogs [12].
However, the impact of high protein diets on faecal
microbiota in obese dogs has not been studied.
The interactions between gut microbiota and host

metabolism are of great importance thus receiving in-
creased attention more recently [13]. Short-chain fatty
acids (SCFA) are major fermentation products that are
rapidly absorbed and utilized by the host. The metabol-
ism of SCFA requires activation with coenzyme (CoA)
[14]. Intracellular CoA bound acylgroups are then trans-
ported from the cytoplasm to the mitochondria by
means of carnitine groups. Therefore, acetylcarnitine,
propionylcarnitine, and butyrylcarnitines are measures
of the respective SCFA-CoA by which SCFA influence
cellular metabolism [14, 15]. In addition, the protein fer-
mentation product indole can be metabolized to indoxyl
sulphate by the liver [16], and the latter has been associ-
ated with chronic kidney disease in dogs [17]. Therefore,
the assessment of these metabolites might be a useful
approach to evaluate host metabolism of the gut fermen-
tation end-products [18, 19].
Butyrate-producing bacteria supply energy to the gut

epithelium, regulate host cell responses, and therefore,
are considered to exert health-promoting effects on the
colon [20]. The reduction of butyrate-producing bacteria
has been associated with colon cancer and inflammatory
bowel disease [21, 22]. The biosynthesis of butyrate can
occur via the butyrate kinase (BK) pathway or via the
butyryl CoA: acetate CoA transferase (BCoAT) pathway
[23]. Although clostridial clusters IV and XIVa consist
the majority of butyrate-producing bacteria from human
colon [24], they still habour a diverse collection of non-
butyrate producers. Therefore, assessing terminal genes
of butyrate synthesis pathways could provide valuable
information specifically target the activity of the
butyrate-producing bacterial community.
The aim of the present study was (1) to investigate the

impact of dietary protein on faecal microbial profile and
functionality especially focusing on butyrate-producing
microbiota and the concomitant fermentation and host
metabolic profile in dogs; and (2) to compare the re-
sponse of lean and obese dogs to two different levels of
dietary protein. We hypothesize that high protein diet
alters the profile and functionality of faecal microbiota
and thus induces associated changes to host metabolism.
The diversity and composition of faecal microbiota were
measured through DGGE and quantitative PCR. The
functionality of faecal microbiota was assessed by quan-
tifying faecal fermentation metabolites and terminal

genes expression for butyrate synthesis. The effect on
the host metabolism was evaluated through the concen-
trations of plasma acylcarnitines and serum indoxyl
sulphate.

Methods
Animals and diets
This study was approved by the Ethical Committee of
the Faculty of Veterinary Medicine, Ghent University,
Belgium (EC 2011/056).
Twelve healthy Beagles (Marshall Farms and Domaine

des Souches) with a mean age of 6.0 years (range 3.8–
8.3 year) were included in this study. Six Beagles (one
spayed and three intact females; two intact males) were
lean with a body condition score (BCS) of 4–5/9 and six
Beagles (three intact females, one castrated and two in-
tact males) were obese with a BCS of 8–9/9 [25]. Obesity
was induced approximately one year prior to the present
study by feeding the dogs a high fat commercial diet as
described by Van de Velde et al., [26]. Prior to the study,
dogs were deemed healthy, apart from obesity in six
dogs, based on physical exams, complete blood counts,
and serum biochemistry.
Two isocaloric experimental diets (Table 1), a high

protein diet (HP) which consisted of 50.0 g crude pro-
tein (CP), 12.2 g ether extract (EE) and 32.2 g nitrogen
free extract (NFE) on 100 g dry matter (DM) basis and a
low protein diet (LP) which consisted of 17.8 g CP,
13.6 g EE and 62.3 g NFE on 100 g DM basis were for-
mulated with the same ingredients (NV Versele-Laga).
Both diets met the Minimal Requirement for adult dogs
according to the National Research Council (NRC) [27].
The initial amount of food offered was calculated based
on individual maintenance energy requirements accor-
ding to population history and adjusted to maintain a
stable body weight throughout the study. Dogs were fed
twice daily and had free access to water.

Animal experimental procedures
The study was designed as a crossover with two 4-weeks
periods. The first 3 weeks were an adaptation period and
samples were taken in the fourth week. In the first
period, three lean and three obese dogs were randomly
selected and assigned to LP first and the other three lean
and obese dogs first received HP. In the second period,
diets were switched. Each dog was therefore assigned to
one of four groups (group 1: lean dogs received LP first;
group 2 lean dogs received HP first; group 3 obese dogs
received LP first; group 4 obese dogs received HP first).

Sampling procedure
Leftover food was collected and weighed after each feeding.
Body weight and BCS were measured weekly. After over-
night fasting, blood samples were drawn from the jugular
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vein on day 27 of each period. Heparinized plasma and
serum were obtained by centrifugation at 1620 g for 15 min
at 4 °C and stored at −20 °C until assayed. On day 27 of
each period, fresh faecal samples (± 10 g) were collected
within 10 min after spontaneous voiding. An aliquot of
±2 g was put into a sterile plastic tube, frozen immediately
on dry ice and stored at −80 °C for microbial analyses, and
the rest was stored at −20 °C for chemical analyses.

Chemical analyses
Dry matter of diets and faecal samples was analyzed by dry-
ing to a constant weight at 103 °C (ISO 1442, 1997), and
crude ash was determined by combustion at 550 °C (ISO
936, 1998). Dietary crude protein was calculated from Kjel-
dahl nitrogen (6.25 ×N, ISO 5983–1, 2005), ether extract
was analyzed by the Soxhlet method (ISO 1443, 1973) and
crude fibre was determined by acid-alkali digestion (ISO
5498, 1981). Nitrogen-free extract was calculated by sub-
tracting crude ash, crude protein, crude fat, and crude fibre
of the DM content. Total dietary fibre (TDF) and insoluble
dietary fibre was measured with a Total Dietary Fibre Assay
Kit (Sigma–Aldrich Co.), using procedures based on a com-
bination of enzymatic and gravimetric methods [28].

Soluble dietary fibre was calculated by subtracting insoluble
dietary fibre for the TDF [28].
Faecal pH was measured with a portable pH meter

(Hanna Instruments). Faecal ammonia was analysed by
steam distillation and titration [29]. Faecal SCFA con-
centrations were determined via gas chromatography
after extraction with diethyl ether [30]. Faecal phenol,
indole and p-cresol concentrations were measured as
described by Depauw et al. [31].
Serum cobalamin and folate concentrations were mea-

sured using commercially available ARCHITECT B12 and
ARCHITECT Folate assays, respectively, on ARCHITECT
i System (Abbott Diagnostics). Plasma acylcarnitine profile
was determined according to Zytkovicz et al. [32]. Serum
indoxyl sulphate concentrations were measured according
to Depauw et al. [31].

Microbial analyses
Total bacterial DNA extractions from 500 mg faeces
were performed according to Boon et al. [33]. Isolated
DNA was subsequently used as a template to amplify
the 16S rDNA for all members of the Bacteria with for-
ward primer P338F-GC and the reverse primer P518r,
and a GC-clamp of 40 bp was incorporated into the

Table 1 Primer set used in the present study

Target Primers (5’➔3′) References

Bacteria V3 region PRBA338f ACTCCTACGGGAGGCAGCAG [56]

PRUN518r ATTACCGCGGCTGCTGG

Total Bacteria fwd CGGYCCAGACTCCTACGGG [57]

rev TTACCGCGGCTGCTGGCA

Firmicutes fwd GGAGYATGTGGTTTAATTCGAAGCA [58]

rev AGCTGACGACAACCATGCAC

Enterobacteriaceae fwd CATTGACGTTACCCGCAGAAGAAGC [59]

rev CTCTACGAGACTCAAGCTTGC

Bacteriodetes fwd GGARCATGTGGTTTAATTCGATGAT [58]

rev AGCTGACGACAACCATGCAG

Lactobacillus fwd GGAATCTTCCACAATGGACG [60]

rev CGCTTTACGCCCAATAAATCCGG

Clostridial cluster I fwd TACCHRAGGAGGAAGCCAC [61]

rev GTTCTTCCTAATCTCTACGCAT

Clostridial cluster IV fwd ATGCAAGTCGAGCGA(G/T)G [62]

rev TATGCGGTATTAATCT(C/T)CCTTT

Clostridial cluster XIVa fwd CGGTACCTGACTAAGAAG [63]

rev AGTTT(C/T)ATTCTTGCGAAC

Butyryl-CoA acetate-CoA transferase fwd AAGGATCTCGGIRTICAYWSIGARATG) [64]

rev GAGGTCGTCICKRAAITYIGGRTGNGC

Butyrate kinase fwd TGCTGTWGTTGGWAGAGGYGGA; [65]

rev GCAACIGCYTTTTGATTTAATGCATGG
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forward primer. DGGE based on the protocol of
Muyer et al. [34] was performed on the Bio-Rad D
gene system (Bio-Rad). The PCR products (10 μL of
mixture from 20 μL PCR product and 5 μL loading
dye) of the second round were loaded. The obtained
DGGE patterns were normalized and analyzed using
BioNumerics 2.0 (Applied Maths) [35]. The number
of bands in the DGGE profile was used to calculate
the richness in the present study. A matrix of similar-
ities for the densiometric curves of the band patterns
was calculated based on the Pearson product-moment
correlation coefficient, and dendrograms were created
by using Ward linkage [36].
The quantification of DNA by qPCR was performed

with a C1000 Thermal Cycler (Bio-Rad). The amplifi-
cation and detection were carried out in 96-well
plates using SensiMixTM SYBR No-ROX Kit (Bioline
Reagents Ltd). Each reaction was done in triplicate in
12 μL total reaction mixture using 2 μL of 50 ng of
the DNA sample except for BK where 2 μL of un-
diluted DNA was used. All qPCR results were
expressed as gene copies per g of fresh faeces. The
primer sets used in this study are listed in Table 2. A
melting curve analysis was done after amplification to
confirm specificity of the reaction. Quantification was
done by using standard curves made from known
concentrations of plasmid DNA containing the re-
spective amplicon for each set of primers.

Statistical analyses
Statistical analyses were performed with RStudio (The R
Foundation for Statistical Computing, version 3.1.0)
using the gamm4 package for R (version 0.2–2).
To test the effect of both dietary protein levels on

composition and functionality of microbiota in lean and
obese dogs and their effect on host metabolism, a gen-
eral additive mixed model was used: Y = μ + dog + diet +
BC + group + D × BC + ε, where μ is the overall mean,
Dog a random effect; diet refers to HP or LP; BC is the
body condition of the dogs (lean vs. obese), group is the
order by which dogs received the diets (groups 1–4) and
refers to the carry-over effect, D × BC is the interaction
between diet and body condition and refers to the direc-
tion or size of the effect of dietary protein on lean and
obese animals; and ε is the error term.
Faecal concentration of valerate and p-cresol were

only detected in three and one samples, respectively, and
hence these parameters were not taken into consider-
ation when performing the statistical analysis.
For the D × BC, the nparcomp package of R was used

(version 2.0) for post-hoc test by creating dummy vari-
ables and an own contrast matrix.
Statistical significance was accepted at P < 0.05.

Results
Food, energy and protein intake
Two obese dogs (one from group 3 and one from group
4) were excluded from the study due to injuries not as-
sociated with the present study. Significant D × BC inter-
actions were observed on BW and BCS, and post hoc
analysis could only detect the differences between lean
and obese dogs (Table 3). No difference was observed on
food and energy intake between diets and BC (Table 3).

Table 2 Ingredient composition and nutrient analysis of the
experimental diets

Items LP HP

Ingredients

As-is basis (g/100 g)

Pork greaves 11.0 53.3

Brewers rice 50.9 20.0

Lard 11.0 8.50

Rice meal 15.0 6.00

Beet pulp 3.70 5.00

Dicalcium phosphate 3.00 2.10

Yeast 1.00 1.00

Salmon Oil 1.00 1.00

Animal digest1 0.89 0.89

Calcium carbonate 0.40 0.50

Bentonite clay 0.50 0.50

Salt 0.81 0.42

Vitamin mix 0.26 0.23

Mineral mix 0.22 0.22

Chorine chloride 0.14 0.14

Lecithine 0.10 0.10

Nutrient Analysis

DM (g/100 g) 92.7 96.2

g/100 g DM

Ash 5.35 4.75

CP 17.8 50.0

EE 13.6 12.2

CF 1.05 0.91

NFE2 62.3 32.2

Insoluble fibre 2.64 8.28

Soluble fibre 2.15 0.27

TDF 4.79 8.56

ME, kJ/100gDM3 1850 1833

LP: low protein diet; HP: high protein diet; CP: crude protein; DM: dry matter;
EE: ether extract; CF: crude fibre; ME: metabolizable energy; NFE: nitrogen-free
extract; TDF: total dietary fibre
1Animal digest: a material which results from chemical and/or enzymatic
hydrolysis of clean and undecomposed animal tissue [66]
2Calculated %NFE =% DM – (% EE+ % CP +% ash + % CF)
3Calculated ME = 16.7×g CP + 37.7×g Fat +16.7×g NFE [27]
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Protein intake was significantly higher in HP compared
to LP (P < 0.001).

Faecal metabolites
Faecal concentrations of ammonia (P < 0.001), isovale-
rate (P < 0.001), isobutyrate (P < 0.001), phenol (P =
0.004) and indole (P = 0.002) were higher in dogs on HP
compared to LP (Table 3). In addition, faecal isovalerate
(P = 0.010) and isobutyrate (P = 0.009) concentrations
were higher in obese than lean dogs. A significant D ×
BC interaction was observed on faecal propionate (P =
0.017), however, a carry-over effect was observed for fae-
cal propionate (P = 0.049, data not shown). No differ-
ences in faecal concentrations of acetate, butyrate, and
total SCFA were observed between diets or BC (Table
3).

Blood parameters
Serum indoxyl sulphate concentration was higher in
dogs fed HP than LP (P = 0.027) (Table 4). Within the
plasma acylcarnitine profile, only 3-OH isovalerylcarni-
tine (3OH-C5) was higher (P = 0.012) for dogs fed HP
compared to LP (Table 4).

Microbial ecology and populations
Neither the type of diets nor the individual played an
important role in the clustering of the microbial com-
munity (Fig. 1). Although seven out of ten dogs had
greater richness when fed HP compared to LP irrespect-
ive of BC, no significant difference was observed be-
tween diets and between lean and obese dogs. The
average value of faecal microbial richness was 17.0 in
this study (Fig. 2). The order of the diet (effects of
group) did not affect the similarity coefficient of faecal
microbiota (Fig. 3a). However, faecal microbiota of obese
dogs had a lower similarity value compared to lean dogs
(52% vs. 76%) when the two diets were switched (P =
0.050) (Fig. 3b).
Higher faecal abundances of clostridial cluster IV

(P = 0.025), XIVa (P = 0.001) and of the BK gene (P =
0.019) were observed when dogs were fed HP com-
pared to LP (Table 5). In addition, a significant D ×
BC interaction was observed for Firmicutes (P =
0.007), Lactobacillus (P = 0.017) and clostridial cluster
I (P = 0.022). Compared to LP, HP increased the
abundance of Firmicutes in lean dogs (P < 0.05), while
no changes were observed in obese dogs. Clostridial
cluster I was more abundant in lean dogs when fed

Table 3 Body weight, body condition score, food intake, protein intake, energy intake and faecal metabolites of lean (n = 6) and
obese (n = 4) dogs fed low protein diet and high protein diet in a crossover design

Item LP HP P

Lean Obese Lean Obese Diet BC D ×
BCMean SD Mean SD Mean SD Mean SD

BW (kg)1 10.6a 1.6 15.0b 1.8 10.6a 1.6 14.1b 1.5 0.869 0.219 0.008

BCS 4.7a 0.5 8.5b 0.6 4.7a 0.5 8.0b 1.2 1.000 <0.001 0.045

FI(g/d.kg-1.BW0.75) 37.6 9.4 39.8 6.4 32.3 6.8 27.8 13.3 0.126 0.101 0.211

PI (g/d.kg-1.BW0.75) 6.2 1.6 6.6 1.1 15.5 3.3 14.1 5.4 <0.001 0.176 0.415

EI (kJ/d.kg-1.BW0.75) 626 159 666 108 535 113 461 221 0.118 0.094 0.203

Faecal parameters

pH 6.8 0.2 6.6 0.3 6.8 0.5 6.6 0.2 0.731 0.061 0.846

Ammonia (μmol/g)2 181 45 194 45 330 57 327 107 <0.001 0.066 0.779

Acetate (μmol/g) 87.4 12.1 86.7 12.1 101.4 18.9 86.2 32.3 0.230 0.403 0.423

Propionate (μmol/g) 26.8a 8.8 35.5ab 21.0 40.0b 6.9 30.5ab 15.1 0.008 0.027 0.017

Butyrate (μmol/g) 27.9 13.8 23.0 2.1 24.2 2.8 21.0 6.8 0.454 0.824 0.821

Isovalerate (μmol/g) 3.2 0.9 4.8 1.0 8.3 1.8 8.7 3.7 <0.001 0.010 0.443

Isobutyrate (μmol/g) 2.0 0.5 2.8 0.9 4.8 1.4 4.9 1.9 <0.001 0.009 0.435

Total SCFA (μmol/g)3 151 31 153 12 179 28 151 57 0.164 0.098 0.373

Phenol (μmol/kg) 199 105 208 73 478 142 563 273 0.004 0.097 0.565

Indole (μmol/kg) 585 227 480 108 1233 110 1193 603 0.002 0.260 0.787

BC: body condition; BCS: body condition score; BW: body weight; D × BC: interaction between diet and body condition; EI: energy intake; FI: food intake, g/d: g per
day; PI: protein intake, SCFA: short-chain fatty acids
1Values within a row not sharing a common superscript are significantly different
2μmol/g and μmol/kg is expressed as the concentration to 1 g and 1 kg faecal samples, respectively
3Total SCFA = acetate + propionate + butyrate + isobutyrate + isovalerate + valerate
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HP than LP (P < 0.05), whereas post-hoc test did not
reveal any differences between the four groups for
Lactobacillus. No effects of diet or BC were found for
faecal concentrations of total bacteria, Bacteroidetes,
Enterobacteriaceae and gene express of BCoAT.

Discussion
Understanding how dietary components alter the com-
position and activity of gut microbiota direct nutritional
interventions and disease prevention strategies. The
present study has demonstrated an impact of dietary

Fig. 1 Dice cluster analysis of the DGGE gel profile of lean (L, n= 6) and obese (O, n= 4) dogs fed low protein diet (LP) and high protein diet (HP) in a
crossover design. DGGE: denaturing gradient gel electrophoresis; LP: low protein diet; HP: high protein diet; L: lean dog; O: obese dog (Additional file 1)

Table 4 Blood parameters of lean (n = 6) and obese (n = 4) dogs fed low protein diet (LP) and high protein diet (HP) in a crossover
design

Item LP HP P

Lean Obese Lean Obese Diet BC D ×
BCMean SD Mean SD Mean SD Mean SD

Cobalamin (pmol/L) 416 78 357 112 400 57 406 70 0.635 0.139 0.262

Folate (nmol/L) 26.2 6.3 29.7 5.1 28.2 6.7 20.0 6.7 0.588 0.817 0.061

Indoxyl sulphate (mg/dL) 154 106 118 74 362 351 223 128 0.027 0.841 0.454

SCAC (μmol/L)

C0 19.2 6.9 19.3 10.8 21.5 8.7 21.6 12.8 0.242 0.998 0.996

C2 3.04 0.94 3.64 1.62 4.18 2.40 4.33 2.95 0.198 0.742 0.742

C3 0.138 0.047 0.165 0.070 0.147 0.038 0.203 0.103 0.690 0.918 0.382

C4 0.080 0.030 0.085 0.052 0.100 0.016 0.085 0.029 0.114 0.531 0.305

C5 0.075 0.023 0.143 0.118 0.100 0.036 0.150 0.114 0.060 0.908 0.381

3OH-C4 0.023 0.005 0.028 0.017 0.035 0.026 0.038 0.029 0.191 0.948 0.903

3OH-C5 0.030 0.006 0.040 0.022 0.047 0.008 0.055 0.021 0.012 0.356 0.859

C3DC 0.023 0.008 0.025 0.013 0.020 0.009 0.023 0.005 0.429 0.761 0.900

BC: body condition; D × BC: interaction between diet and body condition; SCAC: short-chain acylcarnitines; C0: free carnitine; C2: acetylcarnitine; C3: propionylcarni-
tine; C4: butyryl- and isobutyrylcarnitine; C5: isovalerylcarnitine, 3OH-C4: 3-OH butyrylcarnitine; 3OH-C5: 3-OH isovalerylcarnitine; C3DC: malonylcarnitine
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protein content on both composition and activity of fae-
cal microbiota in dogs. In particular, the major butyrate
producing bacterial groups, Clostridial cluster IV and
XIVa, and BK, the terminal gene of butyrate production
were increased in dogs fed HP. Interestingly the present
study has also shown a different response to dietary

protein content in lean and obese dogs, which to the au-
thor’s knowledge has not yet been reported. In previous
studies, human obesity has been associated with a
number of changes in faecal microbial groups, such as
consistently reported changes in two predominant phyla
Firmicutes and Bacteroidetes, which have been sug-
gested to be important for energy harvest [5, 6]; and an
increase in the family Enterobacteriaceae, an important
producer of inflammatory lipopolysaccaride [37]. In
addition, decreases in butyrate producing bacteria have
been reported in obese humans with reduced carbohy-
drate intake [24]. Therefore, these bacterial groups were
selected and measured in the present study. Surprisingly,
in contrast to humans, increases in the abundance of
major butyrate-producing bacterial groups, clostridial
clusters IV and XIVa were observed in this study.
However, clostridial clusters IV and XIVa still harbour
non-butyrate-producing bacteria and some butyrate-
producing strains within these clusters (eg. Coprococcus
catus and Roseburia inulinivorans) can switch from
butyrate to propionate production [38, 39]. When
measuring the terminal genes of the two butyrate
production pathways, the BK gene was increased
whereas BCoAT remained unchanged in dogs fed HP.
This is in contrast to humans where the BCoAT
pathway has been found to be the dominant pathway
for butyrate formation [23]. Possible reasons for dogs
utilizing a different butyrate synthesis pathway com-
pared to humans are explained below.
The accumulation of butyrate-producing bacteria is

often associated with intake of fibre. In this study, TDF
in HP was two-fold higher compared to LP. Generally,
TDF is comprised of plant fibre which in this study was
provided by brewer’s rice, rice meal, and beet pulp
(Table 1), with TDF ranging from 1.6–16.4% [40, 41],
2.4–4.6% [27], and 60–80% [42], respectively. However,
TDF does not clearly differ from HP to LP in terms of
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Fig. 3 Similarity coefficients of DGGE band patterns from
comparison of microbial communities of (a) dogs consuming low
protein diet (LP) then high protein diet (HP) vs. dogs consuming HP
then LP; (b) obese dogs vs. lean dogs. DGGE: denaturing gradient
gel electrophoresis
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plant fibre content. Therefore, the higher TDF content
in HP vs. LP could be of animal origin [31, 43], where
the content of pork greaves was clearly higher in HP vs
LP. TDF in the pork greaves was thus analyzed and ob-
served to be 7.0% on DM basis.
Although TDF was higher, soluble fibre was much

lower in HP compared to LP. In contrast to insoluble
fiber which cannot be fermented, soluble fibre is readily
fermentable [44]. Thus, it is unlikely that the dietary
fibre contributed to the increase in butyrate producing
bacteria. Importantly, butyrate can be formed by fermen-
tation of amino acids, such as glutamate and leucine
[45]. Thus, in the present study, amino acids might be
the important substrates for the growth of butyrate pro-
ducing bacteria. This is supported by increased BK gene
expression because BK pathway might be associated
more with protein-rich environment, whereas BCoAT
pathway is depending on a consistent supply of acetate
that is derived from carbohydrates [46]. Recent studies
have found that the BK gene was more abundant in
carnivorous animals and BCoAT gene was enriched in
omnivores and herbivores [46].
As dogs may use a different pathway for butyrate pro-

duction, it raises the question whether dogs possess the
same predominant butyrate producers as humans (clos-
tridial clusters IV and XIVa). The butyrate kinase gene
pathway is linked to C. perfringens dominated in many
Carnivores (e.g. ferret, tiger, African lion) and non-
carnivorous Carnivora (e.g. red panda and giant panda)
[46]. In this study C. perfringens was not measured, but
it is the major component of clostridial cluster I. The
clostridial cluster I was increased when dogs were fed

HP, however, it still needs to be confirmed if increased
clostridial cluster I abundance is due to increases in C.
perfringens numbers. Nevertheless, other canine studies
have also shown that high protein diets promoted the
growth of C. perfringens [12]. Thus, closteridial cluster I
might also be important for butyrate production in dogs.
Further studies are warranted to investigate the diversity,
metabolism and microbial ecology of butyrate-producing
bacteria from the dog gut.
In contrast to our results, another study reported

high dietary protein decreased the abundance of clos-
tridial cluster XIVa in dogs [47]. This contradiction
might be due to the different quality/components in
the greaves meal (e.g. bone and cartilage), and/or
different level of greaves meal included in the diet,
80.0% in that study vs. 53.4% in our study, in particu-
lar, diarrhea has been observed in that study, which
possibly indicates gut dysbiosis in those dogs fed that
diet. Furthermore, faecal butyrate concentrations and
plasma C4 concentrations did not differ between the
two diets, this could be due to the fact that faecal
concentrations may not necessarily reflect SCFA pro-
duction in the proximal colon because more than
95% of SCFA are absorbed rapidly [39]. Nevertheless,
a recent study observed an increased butyrate con-
centration in a high minced beef diet compared to
commercial dry food, whereas protein content was
46.2% versus 27.1% on dry matter basis [48]. More-
over, the technique used to measure acylcarnitines
could not separate butyrylcarnitine and isobutyrylcar-
nitine. Therefore, the accurate estimation of in vivo
butyrate production is hardly feasible in dogs.

Table 5 The abundance of different bacterial groups and functional genes in lean (n = 6) and obese (n = 4) dogs fed low protein
diet (LP) and high protein diet (HP) in a crossover design1,2

Item LP HP P

Lean Obese Lean Obese Diet BC D ×
BCMean SD Mean SD Mean SD Mean SD

Total bacteria 10.76 0.15 10.64 0.35 11.01 0.08 10.61 0.23 0.126 0.557 0.285

Firmicutes 9.49a 0.26 9.60ab 0.37 9.88c 0.08 9.61b 0.17 0.006 0.976 0.007

Bacteroidetes 10.66 0.41 9.54 1.50 11.07 0.43 10.22 0.43 0.287 0.795 0.648

Enterobacteriaceae 7.58 0.95 8.23 0.36 7.30 1.03 8.36 0.74 0.488 0.597 0.526

Lactobacillus 7.48 1.00 8.00 1.43 7.84 1.31 6.92 1.22 0.306 0.402 0.017

Clostridial cluster I 8.76a 0.13 9.33ab 0.72 9.29b 0.29 9.01ab 0.17 0.025 0.954 0.022

Clostridial cluster IV 7.65 0.28 7.61 0.39 8.17 0.19 7.86 0.44 0.025 0.354 0.432

Clostridial cluster XIVa 8.80 0.20 9.20 0.30 9.60 0.30 9.40 0.20 0.001 0.160 0.095

Butyryl-CoA acetate-CoA transferase 6.82 0.72 6.59 0.73 7.16 0.50 6.74 0.20 0.139 0.988 0.426

Butyrate kinase 5.79 0.24 6.81 0.25 6.34 0.77 6.67 0.24 0.019 0.877 0.334

BC: body condition; D × BC: interaction between diet and body condition
1The abundance of bacterial groups was expressed as log10 16S rRNA gene copies / g of fresh faeces and of functional gene was expressed as log10 gene copies
of total DNA / g of fresh faeces
2Values within a row not sharing a common superscript are significantly different
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Although several studies have shown that high pro-
tein diets can alter faecal microbiota in obese human
subjects [24], whether the diet independent of the
obese phenotype is responsible for the changes re-
mains largely unknown. One study reported an in-
crease in Enterobacteriales in the faecal microbiota of
obese but not of lean rats [49]. In the present study,
the similarity coefficient of faecal microbiota between
the two diets was lower in obese dogs than in lean
dogs (Fig. 2b), suggesting faecal microbiota in lean
dogs might be more resilient to dietary protein
changes than in obese dogs. This is in accordance
with another study that found dietary protein and
carbohydrate ratios have more significant impacts on
gut microbial compositions in obese dogs than in lean
dogs [50]. In addition, within the quantified bacterial
groups, a high protein diet promoted bacterial
growth, i.e. Firmicutes, Lactobacillus and clostridial
cluster I in lean dogs whereas no changes were ob-
served obese dogs (Table 5). Therefore, dietary modu-
lation on faecal microbiota was also affected by body
condition in dogs.
As expected, colonic protein fermentation was in-

creased in dogs fed HP as indicated by higher faecal
concentrations of putrefactive compounds (ammonia,
indole and phenol) and branched-chain fatty acids (iso-
valerate and isobutyrate) compared to dogs consuming
LP. These results are in agreement with previous studies
in dogs fed high protein diets [11, 51]. In addition,
higher serum concentrations of indoxyl sulphate and 3-
OH isovalerylcarnitine in dogs fed HP were observed,
supporting colonic production and absorption of protein
fermentation metabolites [45]. To date, no toxicity or
tolerance tests have been performed on the effects of
protein fermentation metabolites on canine gut health,
and the only studies available concerning the link be-
tween protein fermentation and canine gut health have
evaluated the effects of prebiotics, probiotics and synbio-
tics [52, 53]. Studies have found Novosphingobium sp.
and Haliangium ochraceum, which are capable of brea-
king down aromatic putrefactive substances were in-
creased in cats fed a high protein diet [54]. Therefore,
whether the increased protein fermentation metabolites
are harmful for dogs needs to be further investigated, es-
pecially the beneficial effects of indole that have been
proposed by in vitro studies, such as the increase in the
expression of anti-inflammatory genes and strengthening
of epithelial cell barrier properties [55].

Conclusions
In our study, high protein diet promoted the growth of
butyrate-producing bacteria which includes clostridial
clusters I, IV and XIVa in dogs independent of body
condition, and importantly this butyrate synthesis is

suggested to relate to the BK pathway as compared to
BCoAT pathway in humans. Thus, the different meta-
bolic pathway used for butyrate production provides
valuable information for modulation of gut microbiota
and their fermentation metabolites in dogs. In addition,
HP induced several bacterial changes (including Firmi-
cutes, Lactobacillus and clostridial cluster I) that are
body condition dependent. Further, faecal microbiota in
obese dogs seemed to be less stable compared to that of
lean dogs. Together, the results of the present study sug-
gest that diet composition per se had an important effect
on the faecal microbiota, however, body condition also
affected microbiota composition in dogs. This should be
taken into consideration in future nutritional interven-
tions and disease prevention.
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