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Abstract 

Intestinal health is determined by host (immunity, mucosal barrier), nutritional, microbial and environmental factors. 
Deficiencies in intestinal health are associated with shifts in the composition of the intestinal microbiome (dysbiosis), 
leakage of the mucosal barrier and/or inflammation. Since the ban on growth promoting antimicrobials in animal 
feed, these dysbiosis-related problems have become a major issue, especially in intensive animal farming. The eco-
nomical and animal welfare consequences are considerable. Consequently, there is a need for continuous monitoring 
of the intestinal health status, particularly in intensively reared animals, where the intestinal function is often pushed 
to the limit. In the current review, the recent advances in the field of intestinal health biomarkers, both in human and 
veterinary medicine are discussed, trying to identify present and future markers of intestinal health in poultry. The 
most promising new biomarkers will be stable molecules ending up in the feces and litter that can be quantified, 
preferably using rapid and simple pen-side tests. It is unlikely, however, that a single biomarker will be sufficient to 
follow up all aspects of intestinal health. Combinations of multiple biomarkers and/or metabarcoding, metagenomic, 
metatranscriptomic, metaproteomic and metabolomic approaches will be the way to go in the future. Candidate bio-
markers currently are being investigated by many research groups, but the validation will be a major challenge, due to 
the complexity of intestinal health in the field.
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1 Introduction
Intestinal health is crucial for the general health and 
well-being of animals and humans alike. In farm animals, 
feed intake and the efficient absorption of nutrients are 
very much determined by the health status of the gastro-
intestinal (GI) tract. Particularly in poultry, more than 
50 years of intensive selection for higher daily weight gain 
and lower feed conversion ratio has generated breeds 
that are characterized by an extremely high feed intake. 
Excessive amounts of feed, but also certain feed ingredi-
ents [1] may put considerable stress on the digestive sys-
tem. Passed a certain threshold, even in the absence of 
any specific pathogens, this may damage the health status 
of the GI tract, leading to partial loss of function (malab-
sorption/diarrhea). Three different, but interconnected, 
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mechanisms appear to be involved, each of which is the 
focus of intensive current research: dysbiosis, leakage of 
the mucosal barrier, and inflammation.

Dysbiosis is an ill-defined term referring to disrup-
tion of the gut microbiota composition accompanying 
intestinal inflammation [2]. Delineating when a shift in 
microbiota composition should be considered as dysbio-
sis is probably the biggest current challenge for scientists 
investigating the intestinal microbiome. Nevertheless, 
even if there appears to be no universal microbial signa-
ture of dysbiosis, at least some microbial signatures have 
been identified as indicative of dysbiosis in laboratory 
animals and in man [3]. Whether these signatures also 
apply to poultry is hitherto unclear.

Intestinal barrier permeability is defined as the facil-
ity with which intestinal epithelium allows molecules 
to pass through by non-mediated passive diffusion [4]. 
The passive diffusion of potentially harmful small mol-
ecules from the intestinal lumen into the epithelial cells 
is counteracted by a family of plasma-membrane bound 
efflux pumps, called ATP-binding cassette transporters 
or multi-drug resistance (MDR) pumps [5]. These MDR 
pumps seem to be expressed in the intestinal tract of 
all animal species including poultry [6]. A defect in the 
MDR pumps leads to intestinal inflammation [7]. Con-
versely, inflammation is associated with decreased MDR1 
expression in the human intestinal epithelium [8]. Intes-
tinal barrier permeability also depends on the stabil-
ity of intercellular junctions (tight junctions, adherens 
junctions and desmosomes) that control the paracellular 
transport pathway passing in between neighboring intes-
tinal epithelial cells. Intestinal barrier permeability can 
be altered by a wide range of diet-derived compounds [9] 
and by many enteric pathogen-derived toxins, as recently 
reviewed in the chicken by Awad et al. [10]. Changes in 
the molecular structure of the junctional complexes or 
reduced expression of junctional structural proteins will 
result in decreased absorption of nutrients, increased 
secretory passage of ions and water causing leak flux diar-
rhea (gut leakage), and increased passage of macromol-
ecules from the lumen which may induce inflammation 
[11]. A direct link between intestinal inflammation and 
loss of intercellular junction integrity has been repeat-
edly observed [12, 13]. In line with these observations, 
the presence of pro-inflammatory cytokines as such can 
increase epithelial permeability in  vitro [12]. As dys-
biosis has been associated also with destabilization of 
tight junctions [14], it appears that there is an intimate 
link between dysbiosis, intestinal barrier disruption and 
inflammation. Although an exhaustive review of the dif-
ferent host, environmental and nutritional factors that 
may act as primary triggers of these disturbances of the 
intestinal ecosystem is outside the scope of this paper, 

some may be useful biomarkers and thus will be men-
tioned in the following sections. Dysbiosis and related 
GI health problems are increasing both in animals and 
in man, to the point that this is believed to become the 
major human non-communicable inflammatory disease 
pandemic of the 21st century [15]. In poultry, dysbio-
sis, intestinal barrier leakage and intestinal inflamma-
tion have become major issues especially since the ban 
on antimicrobial growth promoters (AGP) in animal 
feed in the European Union in 2006 [Regulation (EC) N° 
1831/2003]. Prior to that date, it was thought that intes-
tinal health issues were largely kept under control by 
the widespread use of AGP. The mode of action of these 
subtherapeutic levels of antibiotics is not fully explained. 
Nevertheless, at least one of the underlying mechanisms 
for some AGPs appears to be through the suppression 
of microbial deconjugation of bile acids [16], leading to 
enhanced ileal absorption of lipids and availability of 
α-tocopherol [17]. Other possible explanations have been 
reviewed [18]. It has been reported that the ban on AGP 
in poultry feed may lead to an increase in the therapeu-
tic use of antibiotics (usually through the drinking water), 
with enteric diseases and necrotic enteritis in particular 
as major indications [19]. Administration of antibiotics at 
therapeutic dosage may, however, trigger dysbiosis. All of 
these considerations have fueled the search for biomark-
ers allowing early detection of dysbiosis-related intestinal 
health issues.

Biomarkers are defined as measurable alterations 
in biological substances that associate with normal or 
abnormal conditions [20]. There is a need for reliable, 
specific, sensitive and robust biomarkers to follow up the 
GI health status in poultry. They would not only facilitate 
studies on the pathogenesis, it would also help to moni-
tor the situation in the field, and thereby, hopefully, build 
prevention strategies and reduce the need for therapeutic 
antibiotics. The present paper is meant not only to review 
the limited currently available data on biomarkers for 
intestinal health in chickens, but also to try and identify 
potential candidate markers based on data obtained in 
other animal species and humans.

2  Biomarkers requiring invasive sampling
2.1  Biomarkers in the intestinal wall
The single layer of epithelial cells lining the intestinal 
lumen is continuously renewed from the pool of crypt-
based stem cells. The newly formed cells migrate up 
the villus, to finally enter anoikis (a special form of pro-
grammed cell death) [21] and exfoliate from the villus tip 
[22]. During migration, the cells differentiate and thus 
the cells near the villus tips are most important for nutri-
ent absorption. Some enteric pathogens such as coccidia 
will directly cause epithelial cell death. Increased loss of 



Page 3 of 9Ducatelle et al. Vet Res  (2018) 49:43 

villous epithelial cells, resulting in decreased villus length, 
appears to be very common in (severe) intestinal health 
problems [22]. It is partly compensated by increased pro-
liferation, resulting in increased crypt depth. Therefore, 
simple measurements of villus height, crypt depth and 
the villus/crypt ratio have become the gold standard in 
the evaluation of the intestinal health status in animals. 
Villus height, crypt depth and/or villus crypt ratios, 
measured at the level of the duodenum, the jejunum or 
the ileum are widely used as the standard read-out for the 
evaluation of intestinal health in poultry in studies inves-
tigating the effects of feed ingredients and feed additives 
[23]. Reference values for broilers at 23  days in duode-
num, jejunum and ileum are approximately 1400, 900 and 
700 mm for villus height, 190, 170 and 160 mm for crypt 
depth, and 8, 6 and 5 for villus height to crypt depth ratio 
[24].

There is controversy in the literature about the role 
of epithelial oxygenation in GI tract inflammation, with 
some studies showing inflammation to lead to mucosal 
hypoxia after Salmonella infection in mice [25], while 
other studies show increased epithelial oxygenation, lead-
ing to aerobic luminal expansion of Salmonella in mice 
[26]. In  vitro studies using intestinal epithelial cell lines 
provide evidence that mitochondrial respiration plays an 
essential role in the maintenance of tight junction stabil-
ity as measured by TEER [27]. Inflammation-associated 
oxidative stress can change the phenotype of the intes-
tinal epithelial cells resulting in changes in the expres-
sion of genes that could be used as biomarkers, as was 
recently shown in broilers [28]. Upregulation of expres-
sion was noted for interleukin 8, interleukin 1, transform-
ing growth factor-β4 and fatty acid-binding protein 6, 
whereas fatty acid-binding protein 2, occludin and mucin 
2 were downregulated.

Diet-related, either or not microbiota-derived, metab-
olites engage the upregulation of metabolite-sensing 
G-protein-coupled and other receptors on intestinal epi-
thelial cells, as shown in laboratory animals [29]. Such 
biomarkers have not been used in chickens so far. Never-
theless, similar receptors undoubtedly are expressed also 
on the chicken intestinal epithelium, and thus, quantifi-
cation of these receptors in intestinal biopsies could be 
useful for evaluation of intestinal health. In lab animals it 
has been shown also that dysbiosis and/or the presence 
of facultative pathogenic microorganisms may trigger a 
shift in phenotype of the epithelial cells with increased 
expression of defense molecules such as intestinal alka-
line phosphatase [30], which could represent a candidate 
negative marker of intestinal health also in poultry.

Next to the absorptive epithelial cells, a num-
ber of other cell types in the intestinal mucosa could 
also carry useful biomarkers. It has been shown that 

enteroendocrine cell density can be influenced by the diet 
in case of intestinal inflammation in humans [31]. Simi-
larly, in the chicken, increased enteroendocrine L-cell 
density in the ileal mucosa was observed in parallel to 
other positively responding intestinal health parameters 
in a study using an enzymatically treated wheat extract as 
a prebiotic [32].

The healthy propria mucosae will contain a high num-
ber of tolerogenic FoxP3-positive regulatory T-lympho-
cytes (Treg), whereas these Treg have been shown to be 
deficient in inflammatory bowel disease in humans [33]. 
Measuring Treg density in intestinal mucosal biopsies 
may represent a valuable criterion for intestinal health, 
which could be of use also in the chicken. Conversely, 
neutrophil granulocyte influx in the lamina propria has 
been shown to be increased in mouse models, but not in 
chicken models of intestinal permeability defects [34]. 
In the chicken, total T-lymphocyte counts in the lamina 
propria mucosae has been evaluated in several studies. It 
is usually found to parallel villus shortening [23, 32].

2.2  Biomarkers in blood and in liver
Increased numbers of bacteria passing through dam-
aged tight junctions of the intestinal epithelium (bacterial 
translocation) can reach the liver and induce inflam-
mation [35]. In response (the so-called acute phase 
response), the secretion of proteins by the hepatocytes 
changes. These acute phase proteins can be measured 
in serum. In man, the clinical form of chronic, non-
pathogen-induced intestinal inflammation, classified 
under the common denominator of inflammatory bowel 
disease (IBD), has been associated consistently with an 
acute phase response in the liver, resulting in a significant 
increase in acute phase proteins (especially C-reactive 
protein and lipopolysaccharide-binding protein (LBP)) in 
serum [36, 37]. In the chicken three different experimen-
tal models have been used to increase the permeability of 
the intestinal mucosal barrier, but the effect on the intes-
tinal barrier was insufficient to observe any changes in 
serum acute phase proteins [38, 39]. Moreover, an acute 
phase response in the liver can also be seen in response 
to any inflammatory process, also to one taking place in 
other parts of the body, outside the intestinal tract, so 
one can doubt about the specificity of serum acute phase 
proteins as markers of (poor) intestinal health [40].

Increased intestinal permeability is associated with 
more bacteria from the gut reaching the bloodstream 
and the liver. Therefore bacterial counts in the liver have 
been used as biomarker for increased intestinal perme-
ability in broilers [41] and in turkeys [42]. Leaking epi-
thelial junctional complexes will also allow passage of 
bacteria-derived macromolecules, such as lipopolysac-
charide (LPS) from gram-negative bacteria, as has been 
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shown in a nutritional/coccidiosis model of intestinal 
barrier leakage in broilers [28]. In the healthy intestine, 
LPS is not leaking through the paracellular pathway. It is 
internalized in the epithelial cells and detoxified by the 
epithelial cell alkaline phosphatase [43]. Consequently, 
the detection and quantification of LPS in serum could 
be an elegant indicator of increased paracellular perme-
ability. Unfortunately, most techniques to measure LPS 
are not very reliable.

d-lactate is one of the numerous metabolites pro-
duced by intestinal bacteria. Although it can be further 
metabolized by the bacteria, in animals and humans with 
increased intestinal barrier permeability, elevated d-lac-
tate concentrations can be measured in serum, probably 
as a consequence also of excess intestinal microbial pro-
duction [44]. It has been used in chickens [45] as a serum 
biomarker of intestinal permeability but also depends on 
the concentrations available in the gut and these can vary.

Finally, the damage to the epithelial cells can result in 
the release of certain intestinal epithelial cell-specific 
proteins into the blood stream. This has been reported 
for the enzymes diaminoxidase in chickens [45] and 
intestinal fatty acid binding protein 6 in an experimen-
tal broiler model of intestinal barrier disruption [28], 
although the latter was not confirmed in other experi-
mental broiler studies [38, 39]. In the latter studies, only 
tight junction protein concentrations were increased in 
plasma in a 19.5 h fasting experiment.

3  Biomarkers allowing non‑invasive sampling
3.1  Fecal microbiota as biomarkers
The advent of next generation sequencing technology 
has allowed studying the composition of the intestinal 
microbial community in different animal species includ-
ing poultry. The most widely used phylogenetic marker 
is the bacterial 16S small subunit ribosomal RNA gene, 
which has both conserved and variable regions and 
which is universally present in prokaryotes. These high 
throughput technologies allow the collection of large sets 
of data. These data, however, should be interpreted with 
care. Indeed, even if considerable efforts are being made 
to standardize analytical procedures [46], standardiza-
tion is still an issue and technical artefacts do occur. Also, 
the depth of analysis of amplicon sequencing could be 
improved and species taxonomic assignation of OTUs 
(operational taxonomic units) is far from being precise. 
Nevertheless, microbiota patterns reliably associated 
with poor intestinal health are currently being identified 
in man and in animals, including chickens.

In the chicken the microbiota is quantitatively and 
functionally most developed in the ceca. Fecal micro-
biotas are often used as proxy for the intestinal micro-
biota. Even if it has been shown in the chicken that the 

fecal and cecal microbiota are qualitatively similar, there 
are quantitative differences within the different bacterial 
groups [47]. Therefore, fecal microbiota analyses should 
be interpreted with care, not only in the chicken, but also 
in other animals and in humans. Nevertheless, in man 
much effort has been done to identify fecal microbiota 
patterns associated with IBD [48]. One characteristic 
pattern of the intestinal microbiota that appears to be 
constantly associated with many forms of poor intestinal 
health both in animals and in man is loss of species rich-
ness, and/or diversity and evenness [49]. Unfortunately, 
these parameters are very difficult to measure. Indeed, 
there is even considerable confusion about the normal 
species richness in the healthy human gut microbiota, 
with numbers varying from 100 to 1000 species [50]. 
Therefore, many research groups have been hunting 
for more specific microbial signatures of dysbiosis. One 
such signature appears to be the loss of bacterial groups 
belonging to the phylum Firmicutes, as has been shown 
in human Crohn’s disease [51]. The Firmicutes, however, 
constitute a heterogeneous phylum containing bacterial 
groups with different metabolic activities, which makes a 
change at the phylum level a less powerful indicator. Nev-
ertheless, several studies on beneficial prebiotics in broil-
ers have shown expansion of Firmicutes [32] or higher 
Firmicutes to Bacteroidetes ratios [52].

Within the butyrate-producing Firmicutes, more spe-
cific markers have been found in specific pathologi-
cal entities, such as decreases in Roseburia hominis and 
Fecalibacterium prauznitzii [53] in people with ulcerative 
colitis. The mucosa-associated Butyricicoccus genus is 
not only decreased in people with ulcerative colitis [54], it 
is also proposed as a biomarker for healthy mucosa-asso-
ciated microbiota in man [55]. This same Butyricicoccus 
was shown to support intestinal health after administra-
tion as a probiotic in broilers [56]. There appears to be 
a consensus in the literature that intestinal inflammation 
supports the expansion of facultative anaerobic bacte-
ria [57]. More specifically, the expansion of the phylum 
Proteobacteria has been proposed as a diagnostic sig-
nature of dysbiosis in man [3]. Within this phylum, the 
outgrowth of the Enterobacteriaceae family in particular 
has been denoted as signature of inflammation-associ-
ated dysbiosis in the mouse model [2]. In the chicken, a 
negative correlation between performance parameters 
(as read out for intestinal health) and Enterobacteriaceae 
expansion has been reported [56]. Therefore, quantifica-
tion of Enterobacteriaceae using Q-PCR or other means 
may be of use to measure dysbiosis in poultry. Next to 
the Enterobacteriaceae, also the expansion of the sulfate 
reducing Desulfovibrio genus has been noted as a sig-
nature of IBD in humans [48]. Both Enterobacteriaceae 
and Desulfovibrio are potential sulfate reducers. Their 
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expansion can lead to the excessive production of toxic 
concentrations of hydrogen sulfide.

In the healthy gut, flagellin-specific IgA together with 
innate immune mechanisms appear to quench expression 
of flagellin protein in lab animal experimental studies 
[58]. As a consequence, levels of flagellin protein are low 
in the healthy gut in humans [59], whereas mucosal bar-
rier breakdown and inflammation in the human gut have 
been associated with high levels of flagellin in the intesti-
nal lumen [60]. Although it was not reported to be used 
so far in the chicken, flagellin might represent a valuable 
candidate biomarker of dysbiosis in the chicken.

3.2  Fecal biomarkers of microbiota metabolism
The microbiota converts complex (non-starch) carbo-
hydrates and fibers, as well as proteins, into a range of 
terminal metabolites that can have diverse effects on 
host health [61]. Diet not only impacts on the micro-
biota composition but also on microbiota metabolism, 
which in turn can impact on host health (reviewed in the 
human host in [62]).

Terminal metabolites produced from non-starch poly-
saccharides are predominantly the short chain fatty acids 
propionate and butyrate. The multiple beneficial effects 
of butyrate have been extensively investigated (for review 
see [63]). Also propionate is known to have beneficial 
effects on host health. Thus concentrations of butyrate 
and propionate in feces or in intestinal content might be 
valuable indirect indicators of intestinal health. However, 
as butyrate and propionate are taken up by the intesti-
nal epithelium through receptor mediated processes, 
the concentration in the lumen depends on the balance 
between microbial synthesis and mucosal absorption. 
One way around this may be by quantifying the microbial 
capacity of butyrate production using Q-PCR to evalu-
ate the number of gene copies encoding a key bacterial 
enzyme in the main butyrate production pathway, the 
butyryl-CoA:acetate CoA transferase [64]. In one experi-
mental study in broilers, this biomarker was shown to be 
associated with improved intestinal health [65].

In man it is well established that high protein, low car-
bohydrate diets alter the colonic microbiota, favoring 
a potentially pathogenic and pro-inflammatory micro-
biota [66]. Terminal metabolites produced from proteins 
and peptides include a range of amines, thiols, indoles, 
phenols and branched chain fatty acids, but also a num-
ber of volatile compounds such as hydrogen sulfide and 
ammonia [61]. Most of these metabolites appear to have 
beneficial effects on the intestinal barrier when pro-
duced in low quantities, but harmful effects when pro-
duced in larger quantities, as was recently reviewed also 
in the chicken [67]. For instance, a low concentration of 
hydrogen sulfide was shown to protect from colitis in an 

experimental mouse model [68]. Conversely, reduction of 
hydrogen sulfide production in the colon by restricting 
the intake of food rich in sulfur amino acids appears to be 
beneficial in human patients with ulcerative colitis [69].

Of particular importance for intestinal health is the 
above mentioned inflammation-associated expansion of 
the Enterobacteriaceae family. In the mouse model, this 
was shown to be accompanied by elevated formate con-
centrations in the gut [2]. Further in the mouse model, 
the oxygen radicals generated during inflammation were 
shown to react with sulfur compounds present in the 
intestinal lumen to form tetrathionate, which in turn 
favors the expansion of Salmonella [70] and Campylo-
bacter [71]. To the best of our knowledge, none of these 
have been evaluated in poultry so far.

In man, changes in volume or composition of fecal pro-
tein-derived (hydrogen sulfide, ammonia) or other (hydro-
gen, carbon dioxide, methane) volatile compounds have 
been proposed as useful biomarkers of intestinal health 
[72, 73]. Changes in volumes of these compounds indi-
cate a shift in the microbiota composition. Investigations 
of poultry volatile fecal compounds so far were focusing 
on their contribution to malodourous environmental pol-
lution. Nevertheless, these biogases also hold promise as 
novel markers of intestinal health in the animals. Simple 
devices are available for analyzing biogases in air samples 
and for some biogases colorimetric assays are available. 
This is an area that merits further investigation.

4  Host factors as fecal biomarkers
All higher organisms have evolved complex interac-
tions with their gut microbiome and have developed 
mechanisms to maintain homeostasis in the gut, mostly 
by secreting factors that regulate the luminal micro-
biota but also by adapting the composition of the outer 
mucus layer where a select population of microorganisms 
is allowed [74]. When the conditions in the gut lumen 
change, or in case of dysbiosis or intestinal inflammation, 
a range of host proteins will be secreted, released or lost 
into the intestinal lumen. Especially when these proteins 
are stable and resist enzymatic degradation, they can 
be very useful biomarkers of intestinal inflammation. A 
number of these proteins have been used as biomarkers 
for early detection of flare-ups and for the follow-up of 
therapy response in human patients with IBD. Calprotec-
tin, a protein derived from the granules of neutrophilic 
granulocytes, is routinely measured in stool samples 
of these patients. Unfortunately, even if calprotectin 
is a highly conserved protein, it is not expressed in the 
chicken heterophilic granulocyte. Next to calprotectin, 
other defense molecules, such as lactoferrin, cathelicidins 
and defensins may be secreted in increased amounts in 
case of damage to the intestinal epithelial barrier [75]. 
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Many other host factors have been proposed for use in 
human patients, as reviewed by Lewis [76]. None of these 
are commonly in use for poultry.

Under conditions of intestinal epithelial damage, pepti-
dases and other enzymes secreted predominantly by 
highly differentiated epithelial cells will be reduced in 
concentration. So these could also be valuable biomarkers 
of intestinal health. Moreover, when intestinal epithelial 
cells are injured and lysed, intracellular compounds can 
be released and end up in the feces. One such parameter 
could be  Zn2+, as released from the intracellular zinc stock 
[77]. This whole area is under investigated in poultry.

5  Conclusions
There is a high demand for precocious, simple and reli-
able biomarkers of intestinal health in poultry. A number 
of quantifiable biomarkers of intestinal health are already 
available for use in poultry today (Table 1).

Most currently available biomarkers, however, have a 
number of disadvantages, so there is room for improve-
ment. In this paper, we have classified the different mark-
ers depending on their source and the sample type in 
which they can be detected (Figure 1).

Table 1 Currently available quantifiable biomarkers for 
evaluation of intestinal health in poultry 

Source Reference 
values 
available

Intestinal tissue biopsies

 Villus length Yes [30]

 Crypt depth Yes [30]

 Villus/crypt ratio Yes [30]

 L-cell density No

 T-lymphocytes in propria mucosae No

Blood and liver

 Total bacterial count in liver No

 d-lactate in blood No

 Diaminoxidase in blood No

Caecal content/faeces

 Firmicutes No

 Enterobacteriaceae No

 Acetate-CoA butyrate-CoA transferase/bisulfite reduc-
tase Q-PCR

No

 Butyrate No

lanitsetni
muilehtipe

LPS
plasma proteins

intestinal epithelial
cell-specific proteins 

lanitsetni
ne

mul
doolb

microbiota pattern

SCFA

bacterial
translocation

to the liver

Figure 1 Intestinal mucosal barrier damage. Different aspects of intestinal health defects (leakage inside-out/outside-in; dysbiosis; 
inflammation) can be evaluated in different types of samples (blood; liver; mucosal biopsies; intestinal content; faeces).
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In all cases of disturbance of intestinal health, the 
intestinal mucosa is where the damage is taking place, 
so biopsies of the intestinal mucosa provide the most 
reliable markers. Unfortunately, the processing of these 
samples and the analytical techniques are rather sophis-
ticated and slow, therefore there is a demand for alterna-
tive biomarkers. These proxies need to be benchmarked 
against the well-established biopsy-based criteria. The 
most commonly used gold standard of intestinal mucosal 
damage is the villus length, crypt depth and villus/crypt 
ratio. This morphological parameter will, however, only 
change in case of pathological epithelial cell death. Dys-
biosis and leakage of the paracellular pathway may be 
present in the absence of increased epithelial cell loss. 
Novel biomarkers thus may be more sensitive and more 
precocious than the traditional histological markers. The 
most promising new biomarkers will be stable molecules 
ending up in the feces and litter that can be easily quanti-
fied, preferably using rapid and simple pen-side tests. It 
is unlikely, however, that a single biomarker will be suffi-
cient to follow up all aspects of intestinal health and defi-
ciencies thereof. Combinations of multiple biomarkers 
will be the way to go in the future. Holistic approaches, 
such as amplicon sequencing, providing information on 
all shifts in the microbiota, will soon become sufficiently 
cost-effective and fast to be used for the follow-up of the 
intestinal health status of poultry in practice. On a longer 
term, also metagenomics, metatranscriptomic, metaprot-
eomic and metabolomic approaches in combination with 
machine learning, will be powerful tools for the design of 
algorithms that will allow continuous monitoring of the 
intestinal health status.
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