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Abstract: Oligosaccharides offer beneficial effects on immune system and gut health, such 18 

as anticancer activity, immunomodulatory activity, and complement activation. Functional 19 

oligosaccharides are widely found in plants, algae, bacteria and higher fungi. Milk 20 

oligosaccharides, especially human milk oligosaccharides, have considerable health 21 

benefits, such as the growth-promotion of the beneficial bacterial flora in the intestines, and 22 

developing resistance to bactertial and viral infections. Recent developments in high 23 

performance liquid chromatography, mass spectrometry, nuclear magnetic resonance and 24 

capillary electrophoresis techniques contribute to the analysis of the oligosaccharide 25 

identification and mixture quantification. Synthesis of oligosaccharides is becoming 26 

increasingly important to pharmaceutical industries, in which chemo-enzymatic synthesis 27 

is considered as an effective method. This article gives a brief summary of structures, 28 

accessible sources, physiological and chemical characteristics, and potential health benefits 29 

of functional oligosaccharides. 30 
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1. Introduction 36 

Personal health has become an ever-increasing important issue for consumers. Identification 37 

and characterization of functional food components have advanced nutrition science. 38 

Non-digestible dietary fibers and functional oligosaccharides are functional carbohydrates 39 

with various benefits (Bland, Keshavarz, & Bucke, 2004). According to the IUPAC-IUBMB 40 

Joint Commission on Biochemical Nomenclature, naturally occurring carbohydrates that 41 

consist of 3–10 monosaccharide units, linear or branched, connected by α- and/or 42 

β-glycosidic linkages, are defined as oligosaccharides (or glycans). However, the 43 

physiological or rational chemical reasons for setting these limits remains unclear. 44 

Carbohydrates, whose monosaccharide units are fructose, galactose, glucose and/or xylose, 45 

are recognized as the main classes of functional oligosaccharides available at present or 46 

under development (Mussatto & Mancilha, 2007) (Fig. 1). These molecules are well-known 47 

as prebiotics, because they promote the growth of beneficial bacteria, particularly 48 

Bifidobacteria species. These functional oligosaccharides have shown advantageous 49 

physicochemical and physiological properties that contribute to the improvement of 50 

consumer health. Thus, application of oligosaccharides as ingredients in functional foods has 51 

great potential for improving the quality of foods in relation to consumers’ health. 52 

 53 

2. Health benefit of functional oligosaccharides 54 

Functional oligosaccharides have been applied for many purposes, such as nutrients, 55 

pharmaceuticals, feeds, cosmetics, immunostimulating agents and prebiotic compounds 56 

(Patel & Goyal, 2011; Sako, Matsumoto, & Tanaka, 1999), which incorporate 13 classes of 57 

commercially produced non-digestible oligosaccharides showing bifidogenic functions. In 58 

addition, known functional oligosaccharides also include arabino-oligosaccharides, 59 

arabinogalacto-oligosaccharides, arabinoxylo-oligosaccharides, galacturono- 60 

oligosaccharides, rhamnogalacturonoligosaccharides, and human milk oligosaccharides 61 

(HMOs) (Table 1). In particular, cyclodextrins produced from starch through enzymatic 62 

conversion in nature is a family of macrocyclic oligosaccharides (Astray, Gonzalezbarreiro, 63 

Mejuto, Rial-Otero, & Simal-Gandara, 2009; Radu, Parteni, & Ochiuz, 2016). Cyclodextrins 64 

(α, β, and γ) are cyclic α-(1→4)-glucans with degrees of polymerization of 6, 7, and 8 65 

monosacharide units, respectively. Macrocyclic carbohydrates have been widely applied as 66 

building-blocks in supramolecular chemistry, drug carriers, molecular reactors, and artificial 67 

receptors (Muthana, Yu, Cao, Cheng, & Chen, 2009). The use of functional oligosaccharides 68 

improves the balance of the intestinal microflora and greatly decreases the gastrointestinal 69 
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infections (Xu, Chao, & Wan, 2009). Additionally, the consumption of functional 70 

oligosaccharides can reduce the risk of lifestyle-related diseases, such as cardiovascular 71 

disease, cancer, obesity and type 2 diabetes, which are related to obesity (Mussatto & 72 

Mancilha, 2007) (Table 2). Thus, functional oligosaccharides are widely cited to be 73 

important dietary fibers in nutritional advice for metabolic syndromes induced specific 74 

disorders. 75 

 76 

3. Sources of functional oligosaccharides 77 

Plants and algae are the richest sources of functional oligosaccharides (Van Laere, 78 

Hartemink, Bosveld, Schols, & Voragen, 2000) (Table 2). Depolymerization of suitable raw 79 

materials or partial enzymatic hydrolysis of purified pectins can produce the pectic 80 

oligosaccharides (Gullón, Gómez, Martínez-Sabajanes, Yáñez, Parajó, & Alonso, 2013). 81 

Some typical feruloylated oligosaccharides could be prepared from plant sources, e.g., 82 

wheat, maize bran, sugarcane bagasse and rice (Qu & Sun, 2014). Particularly, marine 83 

oligosaccharides have attracted attention in drug development (Zhao, Wu, Yang, Liu, & 84 

Huang, 2015). Carrageenans, extracted from marine red algae, belong to an anion polymers 85 

family and share a common backbone of alternating (1→3)-linked β-D-galactopyranose and 86 

(1→4)-linked α-D-galactopyranose (Yao, Wu, Zhang, & Du, 2014). Carrageenans are 87 

well-known for their valuable biological activities, mainly attributed to the presence of 88 

sulphates (Kim & Rajapakse, 2005). Chitosan and its derivatives show potential in various 89 

fields such as food, cosmetics, biomedicine and agriculture. Chitosan oligosaccharides have 90 

low viscosity and high solubility in water, particularly at neutral pH. Recent studies have 91 

focused on the health benefits of chitosan oligosaccharides, such as decreasing blood 92 

cholesterol, controlling of high blood pressure, protecting from infections, and improving the 93 

antitumor properties (Zou et al, 2015). 94 

  95 

4. Milk oligosaccharides 96 

Milk has evolved as a complete food for mammalian nourishment during infancy. Milk 97 

oligosaccharides are the most relevant prebiotic components (Mills, Ross, Hill, & Stanton, 98 

2011; Boehm & Stahl, 2007). The concentration of total oligosaccharides in the milk of most 99 

mammals is much too low. Moreover, the major type of oligosaccharides in human milk, 100 

fucosylated oligosaccharides, was not detected in mammalian milk (Mehra & Kelly, 2006). 101 

The concentration of human milk oligosaccharides (HMOs) in mature human milk is 10–15 102 

g/L, which is 100- to 1000-fold higher than that in bovine milk, and the content of HMOs 103 
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often exceeds the total amount of protein in mature human milk (Table 3). Complex 104 

oligosaccharides, particularly unconjugated complex glycans, HMOs, make up a high 105 

percentage of the total solids in human milk. Nearly 200 HMOs have been identified, among 106 

which more than 80 have been fully characterized from a structural perspective. The 107 

biological functions of HMOs are closely associated with their structural conformation 108 

(Bode, 2015). Galactose, glucose, fucose, N-acetylglucosamine, and the sialic acid 109 

derivative, N-acetyl-neuraminic acid are the five monosaccharide building blocks that can 110 

constitute HMOs (Kobata, 2010). These glycans can be fucosylated and/or sialylated (Fig. 111 

2). All HMOs carry lactose (Galβ1–4Glc) at the reducing end, which can be elongated in a 112 

β-1,3 or β-1,6-linkage by two different disaccharides, either type 1 carbohydrate structures 113 

(containing Galβ1–3GlcNAc units) or type 2 structures (containing Galβ1–4GlcNAc units). 114 

HMOs with more than 15 disaccharide units can form complex structural backbones and be 115 

further modified by adding fructose and/or sialic acid. Studies have demonstrated that HMOs 116 

can induce increased levels of bifidobacteria in the colonic flora of breast-fed infants, 117 

accompanied by a great reduction in pathogenic potential bacteria, by the bifidogenic 118 

activity of HMOs (Jin, Joo, Li, Choi, & Han, 2016). HMOs were shown to greatly affect the 119 

composition of the gut microflora. The HMOs lacto-N-fucopentaose I could be selectively 120 

utilized by Bifidobacterium longum subsp. infantis, but not B. animalis subsp. lactis, making 121 

it a promising potential prebiotic (Zhao et al., 2016). HMOs protect from viral, bacterial, or 122 

protozoan pathogens and affect fungal–host interactions (Hong, Ninonuevo, Lee, Lebrilla, 123 

& Bode, 2009; Shoaf-Sweeney & Hutkins, 2009). 124 

 125 

5. Structural analysis of glycan oligosaccharides 126 

Because of the complexity and heterogeneity of oligosaccharides, characterization 127 

technologies for oligosaccharides are not as advanced as the technologies for characterizing 128 

nucleic acids and proteins. Moreover, oligosaccharides are particularly difficult to separate, 129 

analyze and obtain detail structural information due to the coexisting isomeric structures and 130 

multiple connectivity sites. Many techniques have been developed to elucidate 131 

oligosaccharide structural characterization in order to understand their specific functions, 132 

however there is no legal method for analyzing and quantifying oligosaccharides (Table 4). 133 

The sensitive method of high-resolution mass spectrometry (HR-MS), which can provide a 134 

good breadth of information, has become a main tool for oligosaccharide analysis (Bao, 135 

Chen, & Newburg, 2013). Oligosaccharides fractionation attained by gel permeation 136 

chromatography (GPC) followed by analysis of high-molecular mass fractions by 137 
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matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 138 

(MALDI-TOF/MS) and electrospray ionization ion trap mass spectrometry (ESI-ITMS) 139 

indicated that complex oligosaccharides have a larger mass range compared to previous 140 

techniques (Hsu, Chang, & Franz, 2006). Although MALDI-MS has been used successfully 141 

to characterize underivatised oligosaccharides, MALDI-TOF/MS and MALDI post-source 142 

decay TOF/MS analysis are ten-fold more sensitive than MALDI-MS (Park, Yang, Kim, & 143 

Kim, 2012). Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) 144 

can be used to analyze oligosaccharides directly or with analytical derivatization (Wang, 145 

Chu, Zhao, He, & Guo, 2011). A combination of negative-ion electrospray tandem mass 146 

spectrometry (ES-MS/MS), methylation analysis, and 1H nuclear magnetic resonance 147 

spectroscopy (1H-NMR) has been applied to identify new oligosaccharides. 13C- and 148 
1H-NMR, together with ES-MS, have been applied to determine the structures of complex 149 

sulfated oligosaccharides isolated from human milk (Balogh, Szarka, & Béni, 2015). 150 

FT-ICR has been used to detect oligosaccharides recently (Lee, An, Lerno, German, & 151 

Lebrilla, 2011). Additionally, the efficient method of nano-electrospray ionization mass 152 

spectroscopy (nESI-MS) with quadruple ion trap has been used to identify the position of 153 

fucose, types of linkages, and differentiation of linear and branched structures of isomeric 154 

oligosaccharides from a complex mixture of native underivatised neutral oligosaccharides 155 

(Pfenninger, Karas, Finke, & Stahl, 2002). Detect interactions of proteins with glycans or 156 

glycoconjugates by nESI-MS. The development of additional techniques may result in 157 

structural characterization of isolated oligosaccharides. The structures of HMOs are quite 158 

complex and novel techniques such as porous graphitic carbon (PGC) LC-MS are now 159 

available to perform the separation and identification of most isomers (Ruhaak, Lebrilla, 160 

Weimer, & Slupsky, 2013). Oligosaccharides studies will benefit from the application of the 161 

most advanced analytical methods, such as high performance anion exchange 162 

chromatography (HPAEC) with pulsed amperometric detection (PAD) or capillary 163 

electrophoresis (CE), which can be used to measure samples at picomole and femtomole 164 

levels, respectively (Monti, Cattaneo, Orlandi, & Curadi, 2015; Morales, Corzo, & Sanz, 165 

2008).  166 

 167 

6. Chemo-enzymatic synthesis of bioactive oligosaccharides 168 

Since the nature cannot always provide enough amounts of such functional carbohydrates for 169 

scientific research or clinical applications, development of new techniques to improve the 170 

production of such carbohydrates has become a new challenge in glycoscience. The 171 
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development of automated methods can meet the demand for molecular tools for rapid 172 

analysis of glycobiology. A few major advances in carbohydrate synthesis have been 173 

observed in recent years (Bartolozzi & Seeberger, 2001). Current methods for obtaining 174 

synthetic oligosaccharides are chemical synthesis or chemo-enzymatic synthesis (Muthana, 175 

Yu, Cao, Cheng, & Chen, 2009). The chemical synthetic pathway is challenging due to the 176 

numerous protection and deprotection steps; the large amounts of reagents and organic 177 

solvents that are often toxic; and carrying out the reactions under harsh conditions. The 178 

laborious chemical synthetic pathway frequently results in low yields. The chemo-enzymatic 179 

method involves glycosyltransferases (GT) and glycosidases (GH), which are the enzymes 180 

naturally involved in oligosaccharide synthesis in prokaryotes and eukaryotes (Yu & Chen, 181 

2016). By exploiting these enzymes in the laboratory for the synthesis of oligosaccharides, 182 

many of the challenges faced when using chemical synthesis could be overcome. Some 183 

diferent complex oligosaccharides and derivatives with 3–11 monosaccharides units have 184 

been reported by preparative-scale and improved large-scale productions (Table 5). 185 

  Chemo-enzymatic methods can be applied in the synthesis of virtually any complex 186 

oligosaccharide (Hanson, Best, Bryan, & Wong, 2004). Enzymatic coupling has some 187 

advantages over its chemical counterpart. The use of enzymes in the synthesis of 188 

oligosaccharides has attracted growing interest as an alternative to chemical synthesis 189 

(Koeller & Wong, 2001). Glycosyltransferase-catalyzed enzymatic and chemo-enzymatic 190 

syntheses are widely considered to be effective ways for oligosaccharides production (Fig. 191 

3). Enzymatic glycosylation occurs stereo- and regioselectively under mild conditions 192 

without protecting group manipulation. Functional enzymes enable the large-scale synthesis 193 

of difficult-to-produce saccharide linkages and complex molecules. An efficient one-pot 194 

multienzyme fucosylation system used for the gram-scale synthesis of lacto-N-fucopentaose 195 

I has been reported recently (Zhao et al., 2016). The development of one-pot 196 

multienzyme-catalysed syntheses reduces the substrate costs for in vitro production of 197 

fucosylated carbohydrates (Yu & Chen, 2016). Additionally, cost-effective large-scale 198 

production of HMOs may be conducted using whole cell systems; thus in vitro synthesis 199 

offers the unique advantage of flexibility. Moreover, small-scale enzymatic synthesis of 200 

structurally complex HMOs, which cannot currently be produced in engineered cells, is an 201 

invaluable tool for supporting studies on biological function and possible applications of 202 

these oligosaccharide structures.  203 

GT’s and GH’s are stereo- and regioselective, therefore circumventing the tedious 204 

protection/deprotection steps. The reaction conditions are generally mild and can be carried 205 
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out in physiological buffers and temperatures eliminating the use of harsh conditions and 206 

toxic chemicals. In addition, enzymes are highly efficient and have flexibility on the 207 

substrates, which often result in great yields of oligosaccharide products. A disadvantage to 208 

the chemo-enzymatic method is identifying active GT and GH using recombinant expression 209 

systems and determining the enzyme’s preferred substrate. Obtaining good expression levels 210 

in recombinant expression systems can be challenging. For example, proteins expressed in 211 

Escherichia coli systems may aggregate due to misfolding and many eukaryotic proteins 212 

require post-translational modifications for activities. With the advent of whole genomic 213 

sequences across species, putative GT’s and GH’s have been inferred by sequence homology 214 

studies. 215 

 216 

7. Conclusions 217 

In summary, the functional oligosaccharides are associated with a variety of biological 218 

processes such as resistance against the infection of bacteria and virus, antioxidant, 219 

antimutagenicity, cancer metastasis inhibition, blood-clotting cascade and many other 220 

pharmacological activities. However, the synergistic effect of a mixture of more structurally 221 

oligosaccharides from the nature sources should also be investigated as, most likely, one 222 

single will not provide the desired function. More efforts need to be applied for the 223 

production of more complex oligosaccharides, especially the ones that are branched. The 224 

large-scale production of oligosaccharides using multiple OPME systems or engineered E. 225 

coli living-cell fermentation approaches would promote a new era for oligosaccharides 226 

synthesis. The development of universal sequencing tools for oligosaccharides with 227 

comparable speed and throughput still remains a challenge, and the most advanced 228 

analytical techniques are promising to be useful tools. The identification, production and 229 

commercialization of new functional oligosaccharides with enhanced bioactive properties 230 

offer new research and business opportunities. They are good candidates for various 231 

applications in food and pharmacological industry.  232 

 233 

Abbreviations 234 

IUPAC International Union of Pure and Applied Chemistry 

IUBMB International Union of Biochemistry and Molecular Biology 

CDs Cyclodextrins  

HMOs Human milk oligosaccharides 

GlcNAc N-acetyl-glucosamine 
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Neu5Ac N-acetyl-neuraminic aicd 

MS Mass spectrometry 

MALDI-TOF Matrix-assisted laser desorption/ionization time-of-flight  

GT Glycosyltransferases 

GH Glycosidases 
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 597 

Fig. 1 Common monosaccharides components of the functional oligosaccharides. 598 
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 611 

Fig. 2 Schematic of HMOs structures and putative HMOs active glycoside hydrolase families (GH) based on 612 

the work of Wu, Tao, German, Grimm, & Lebrilla (2010). GH2, α-galactosidase; GH18, 613 

endo-β-N-acetylglycosaminidase; GH20, β-hexosaminidase; GH29, α-1,3/4-fucosidase; GH33, sialidase; 614 

GH95, α-1,2-fucosidase. 615 
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 629 

Fig. 3 The simplest routes for glycosyltransferase-catalyzed enzymatic synthesis of mammalian glycans with in 630 

situ generation of sugar nucleotides from a monosaccharide. Enzyme abbreviations: GlyK, glycokinase (Yi et 631 

al., 2009); NucT, nucleotidyltransferase; GlyT, glycosyltransferase (Zhao et al., 2016); PpA, inorganic 632 

pyrophosphatase (Lau et al., 2010).  633 
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Table 1 Natural functional oligosaccharides and their glycosidic linkages. 641 

Type Monosaccharides Number of monosaccharides Bonds indicative of 

functions 

Arabino-oligosaccharides Arabinose 2-8 α-1,5 

Arabinogalacto-oligosaccharides Arabinose, galactose 2-9 β-1,4 

Arabinoxylo-oligosaccharides Xylose, arabinose 5-10 α-1,2, α-1,3, β-1,4 

Clycosylsucrose Glucose, fructose 3 α-1,2, β-1,4 

Cyclodextrins (CDs) D-glucopyranose 6 (α-CD),7 (β-CD),8 (γ-CD) α-1,4 

Fructo-oligosaccharides Sucrose, fructose 2–5 β-1,2 

Galacto-oligosaccharides Galactose 2–5 β-1,2, α-1,4 

Galacturono-oligosaccharides Galactosamine 2-9 α-1,4 

Gentio-oligosaccharides Glucose 2–10 β-1,6 

Glucose-oligosaccharides Glucose 2–10 α-1,2, β-1,3, β-1,6 

Human milk oligosaccharides Glucose, galactose, GlcNAc  2-8 α-1,2, α-1,3, α-1,4, α-2,3, 

β-2,6, β-1,3, β-1,4 

Isomalto-oligosaccharides Glucose 2–5 α-1,4 

Lactosucrose Galactose, fructose 2–3 β-1,4 

Lactulose Galactose, fructose 2 β-1,4 

Malto-oligosaccharides Mannitose, glucose 2–10 α-1,2, α-1,4 

Palatinose Glucose, fructose 2 β-1,6 

Raffinose Galactose, fructose, glucose 3 β-1,2, α-1,4 

Rhamnogalacturon-oligosaccharides Rhamnose, galactose 4-8 α-1,2, α-1,4, β-1,4 

Soybean oligosaccharides Fructose, galactose, glucose 2–4 α-1,6 

Stachyose Galactose, fructose, glucose 4 α-1,4 

Xylo-oligosaccharides  Xylose 2–7 α-1,4 
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Table 2 Sources and applications of natural and glycan oligosaccharides based on the work of Patel & Goyal (2011). 642 

Oligosaccharides Natural occurrence Applications References 

Isomalto-oligosaccharide Starch from wheat, barley, potato, rice, cassava, 

honey, maltose, sucrose, dextran 

Antidiabetic, prevent dental caries, stimulate the growth of colonic Bifidobacterium and 

Lactobacilli 

Basu, Mutturi, & Prapulla, 2016; Bharti et al., 

2015 

Soybean oligosaccharides Soybean seed Competitive exclusion against potential pathogenic bacteria, reduction of oxidative 

stress, cardio-protective, chronic diseases prevention, amelioration insulin resistance 

Fei, Ling, Hua, & Ren, 2014; Zhang, Cai, & 

Ma, 2015  

Fructo-oligosaccharides Antichoke, garlic, onion, asparagus, chicory, 

fermented beverage of plant extract, 

Aspergillus, Fusarium, Arthrobacter, 

Aureobasidum, Gluconacetobacter, Bacillus, 

Saccharomyces 

Prebiotic activity, prevent urogenital infections, sweetener in beverages, acariogenic 

quality, effect on lipid metabolism, reduce risk of colon cancer, immunomodulatory 

property, antidiabetic activity 

Kumar, Prashanth, & Venkatesh, 2014; Okada 

et al., 2010; Sanches Lopes et al., 2016; Wang 

et al., 2010; Wang, Li, & Wang, 2016  

Lactulose Cow milk Used in treatment of hyperammonemia and portosystemic encephalopathy Mussatto & Mancilha, 2007; Rentschler et al., 

2015 

Inulin Chicory roots, onion, asparagus, antichoke Function as dietary fiber, effect on lipid metabolism, reduction in risk of gastrointestinal 

diseases; absorption of calcium, magnesium and iron increased, stimulation of immune 

system 

Apolinario et al., 2014; Shoaib et al., 2016; 

Yun, Choi, Song, & Song, 1999 

Galacto-oligosaccharides Bifidobacterium bifidum, Kluyveromyces lactis, 

Sulfolobus solfataricus; Human milk, cow milk 

Prebiotic Goulas, Tzortzis, & Gibson, 2007; Kim, Park, 

& Oh, 2006  

Gluco-oligosaccharides Leuconostoc mesenteroides NRRL B-1299 Promote beneficial cutaneous flora Iliev et al., 2008 

Lactosucrose Pseudomonas aurantiaca Increase in Bifidobacteria population Crittenden, & Playne, 1996; Kolida, & Gibson, 

2007; Li et al., 2015; Silvério, Macedo, 

Teixeira, & Rodrigues, 2015 

Malto-oligosaccharides From starch by the action of pullulanase, 

isoamylase and amylases 

Reduce the levels of Clostridium perfringens and family Enterobacteriaceae Manas, Jonet, Murad, Mahadi, & Illias, 2015 

Xylooligosaccharides Aspergillus, Trichoderma, Penicillium, 

Bacillus, Streptomyces, hardwood, corncob, 

Prebiotic, antioxidant, gelling agent, treatment of diabetes, arteriosclerosis and colon 

cancer 

Moure, Gullón, Domínguez, & Parajó, 2006; 

Samanta et al., 2015; Singh, Banerjee, & Arora, 
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wheat straw, rice hull, barley straw 2015; Yang, 2016  

Chitosan oligosaccharides Depolymerised products of chitosan or chitin Antioxidant, anti-tumor, anti-hypertensive, anti-microbial, fat-binding and 

hypocholesterolemic effects 

Liu et al., 2010; Zou et al., 2015 

Human milk 

oligosaccharides 

Human milk Facilitate preferential growth of Bifidobacteria and Lactobacilli, inhibition of 

lippolysaccharide-mediated inflammation, enhancement of brain development 

He et al., 2016; Wang, 2009 

β-glucan oligosaccharide Curdlan Induction of monocytes to produce tumor necrosis factor alpha, stimulation of the 

secretion of interleukin 1b 

Fu et al., 2015; Kumagai, Okuyama, & Kimura, 

2016 

Gentio-oligosaccharides By digestion of starch; gentiobiose; Penicillium 

multicolor 

Prebiotic Côté, 2009; Fujimoto et al., 2009 

Pectin-derived 

oligosaccharides 

Higher plants; Sugar beet pulp Prebiotic properties, amelioration diarrhoea, adsorption of calcium ions increased, 

antibacterial, antihyperlipidemic and antioxidant effects 

Concha Olmosa & Zúñiga Hansen, 2012; 

Gómez, Gullón, Yáñez, Schols, & Alonso, 2016 

Cyclodextrins Transformation of starch by certain bacteria 

such as Bacillus macerans 

Stabilization of deliquescent or volatile compounds in foods and chemicals, 

improvement poor aqueous solubility of drug compounds  

Astray, 2009; Li et al., 2010; Radu, Parteni, & 

Ochiuz, 2016 

Arabino-oligosaccharides Sugar beet arabinan Prebiotic Westphal et al., 2010 

643 
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Table 3 Distribution of oligosaccharides in human milk and bovine milk. 644 

Abbreviation Trivial name Human milk (g L-1)* Bovine milk (g L-1)* Structure Reference(s) 

Neutral oligosaccharides 

2’-FL 2’-Fucosyllactose 0-3.8 - Fucα1–2Galβ1–4Glc Baumgärtner et 

al., 2015; 

Boehm & 

Stahl, 2003; 

Kulinich & Li, 

2016; Kunz, 

Rudloff, Baier, 

Klein, & 

Strobel, 2000; 

Miyazaki, 

Sato, 

Furukawa, & 

Ajisaka, 2010; 

Perret et al., 

2005 

3’-FL 3’-Fucosyllactose 0.04-1.1 - Galβ1–4(Fucα1–3)Glc 

DF-L Difucosyllactose    Fucα1–2Galβ1–4(Fucα1–3)Glc  

LNT Lacto-N-tetraose 0.5-1.5 Trace Galβ1–3GlcNAcβ1–3Galβ1–4Glc 

LNnT  Lacto-N-neotetraose   Galβ1–4GlcNAcβ1–3Galβ1–4Glc 

LNFP I Lacto-N-fucopentaose I 1.2-1.7 - Fucα1–2Galβ1–3GlcNAcβ1–3Galβ1–4Glc 

LNFP-II Lacto-N-fucopentaose II 0.3-1.0 - Galβ1–3(Fucα1–4)GlcNAcβ1–3 Galβ1–4Glc 

LNFP-III Lacto-N-fucopentaose III 0.01-0.2 - Galβ1–4(Fucα1–3)GlcNAcβ1–3 Galβ1–4Glc 

LNFP-V Lacto-N-fucopentaose V   Galβ1–3GlcNAcβ1–3 Galβ1–4(Fucα1–3)Glc 

LNFP-VI Lacto-N-fucopentaose VI   Galβ1–4GlcNAcβ1–3 Galβ1–4(Fucα1–3)Glc 

LNDFH-I Lacto-N-difucohexaose I 0.1-0.2 - Fucα1–2Galβ1–3(Fucα1–4)GlcNAcβ1–3Galβ1–4Glc 

LNDFH-II Lacto-N-difucohexaose II   Galβ1–3(Fucα1–4)GlcNAcβ1–3Galβ1–4(Fucα1–3)Glc 

LNnDFH Lacto-N-neodifucohexaose    Galβ1–4(Fucα1–3)GlcNAcβ1–3Galβ1–4(Fucα1–3)Glc  

Para-LNnH  Para-Lacto-N-neohexaose    Galβ1–4GlcNAcβ1–3Galβ1–4GlcNAcβ1–3Galβ1–4Glc  

LNnO  Lacto-N-neooctaose    Galβ1–4GlcNAcβ1–3Galβ1–4GlcNAcβ1–3Galβ1–4GlcNAcβ1–3Galβ1–4Glc 

LNnFP V  Lacto-N-neofucopentaose V    Galβ1–4GlcNAcβ1–3Galβ1–4(Fucα1–3)Glc 

LNH Lacto-N-neohexaose   Gal(β1,3)GlcNAc(β1,3)[Gal(β1,4)GlcNAc(β1,6)]Gal(β1,4)Glc 

Acidic oligosaccharides 

F-SL 3’Sialyl-3fucosyllactose    Neu5Acα2–3Galβ1–4(Fucα1–3)Glc  Boehm & 

Stahl, 2003; 

Jin, Joo, Li, 

Choi, & Han, 

6’-SL 6’Sialyllactose  0.3-0.5 0.03-0.06 Neu5Acα2–6Galβ1–4Glc 

3’-SL  3’Sialyllactose  0.1-0.3  Neu5Acα2–3Galβ1–4Glc 

LSTa LS-Tetrasaccharide a  0.03-0.2 Trace  Neu5Acα2–3Galβ1–3GlcNAcβ1–3Galβ1–4Glc 
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LSTc LS-Tetrasaccharide c 0.1-0.6 Trace Neu5Acα2–6Galβ1–4GlcNAcβ1–3Galβ1–4Glc 2016; Neu et 

al., 2010; Tarr 

et al., 2015  

Minor human milk oligosaccharides 

PI BGA tetraose type 5   GalNAcα1–3(Fucα1–2)Galβ1–4Glc  Kobata, 2010 

 PII BGA hexaose type 1    GalNAcα1–3(Fucα1–2)Galβ1–3GlcNAcβ1–3Galβ1–4Glc  

 BGA: Blood group A antigen; * The concentrations were compiled from previous studies (Bao, Chen, & Newburg, 2013; Gopal & Gill, 2000; Gwendolyn, Philip, Li, & Anita, 2013; Kunz & Rudloff, 2002; Sumiyoshi et al., 645 

2003). 646 

 647 
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Table 4 The main properties and applications with different methods for oligosaccharide analysis. 656 
  657 

Technique Main Properties Applications References 
HR-MS Eelucidate molecular species without standard samples;  

Multiple stages of isolation and dissociation (MSn);  
Limited ionization capacity and low sensitivity for oligosaccharide analysis. 

Chitosan oligosaccharides; 
Native and permethylated 
human milk oligosaccharides 

Cederkvist et al., 2011; Oursel, Cholet, Junot, & Fenaille, 
2017 

ESI-MS-MS or 
MSn 

Obtain information about the sequence, branching pattern and localization of modifications on 
oligosaccharides;  
Be valuable in the evaluation of isomeric oligosaccharides;  
Characterization of sulfated oligosaccharides ES-CID-MS/MS in the negative-ion mode. 

Fructofuranosyl-containing 
gluco-oligosaccharides Leijdekkers, Sanders, Schols, & Gruppen, 2011; Na et al, 

2016; Tesić, Wicki, Poon, Withers, & Douglas, 2007; Veros, 

& Oldham, 2007; Zhang, Zhu, Zhang, Zhan, & Lin, 2014 
 

NMR-ES-MS Primary method for structural analysis of sulfated polysaccharide and derived oligosaccharides by 
NMR; 
Gain information about possible non-ionizable constituents;  
Large amounts of sample at milligram scale, quite time consuming, and a high level of expertise 
for NMR data interpretation. 

Galactooligosaccharides van Leeuwen, Kuipers, Dijkhuizen, & Kamerling, 2014 

FT-ICR-MS Ultra-high mass resolution and mass accuracy, non-destructive detection, high sensitivity and 
multistage MSn;  
Identification at molecular-level analyses of organic mixtures without prior extraction or 
separation steps. 

Thioxylo-oligosaccharide  Cederkvist et al., 2011; Jänis et al, 2005 

MALDI-MS Short analysis time, low fragmentation, wide mass range, salt and impurity tolerance of 
oligosaccharide analysis;  
Be difficult in sulfated oligosaccharides analysis due to the labile nature of the sulfate group. 

Olive xylo-oligosaccharides Reis, Coimbra, Domingues, Ferrer-Correia, & Domingues, 
2002;, Kim et al, 2016 

MALDI-TOF-MS Determination of the molecular masses of neutral and acidic oligosaccharides; 
Process of soft-ionization causes little or no fragmentation of analytes; 
A qualitative profile of the solubilized oligosaccharides; 
Not directly distinguish anomerity or branching configuration of oligosaccharides. 

Arabinoxylo-oligosaccharides; 
Fructans; Chitosan 
oligosaccharides 

Yang, Lee, Lee, Kim, & Kim, 2010; Sørensen, Pedersen, &  
Anastyuk, Shevchenko, Nazarenko, Dmitrenok, & 
Zvyagintseva, 2009; Chen, Zhu, Li, Guo, & Ling, 2010; 
Meyer, 2007; Park, Yang, Kim, & Kim, 2012; Suzuki et al., 
2011 

GPC-MALDI-TO
F-MS 

Determining the molecular weight of polymers by GPC; 
Less accurate molecular weight results for cationic polymers due to aggregation and ion exclusion. 

High molecular weight 
oligomers 

Liu, Maziarz, Heiler, & Grobe, 2003 

GPC-ESI-ITMS Detection of mono-disperse oligomers;  
Higher chromatographic resolution compared to GPC-MALDI-TOF-MS. 

Low molecular weight 
oligomers 

Liu, Maziarz, Heiler, & Grobe, 2003 

HILIC-ELSD-MS
n 
 

Suitable for separation of highly polar carbohydrates;  
Detection of optical properties or functional groups of the analytes and compounds lacking 
chromophores.  

Maltooligosaccharides; 
Labelled xyloglucans and 
xylan-derived 
oligosaccharides;  

Leijdekkers, Sanders, Schols, & Gruppen, 2011 

HILIC-TOF-MS Faster separations with high fraction of organic solvent used in HILIC mobile phases, and higher 
desolvation within the MS source. 
 

Xylo-oligosaccharides; Sake 
oligosaccharides 

Ma, Sun, Chen, Zhang, & Zhu, 2014; Sastre, Ferreira, & 
Pedreschi, 2016; Tokuoka, Honda, Totsuka, Shindo, & 
Hosaka, 2017 

HPAEC-PAD Hydroxyl groups deprotonated to oxyanions under high pH for normal phase separation of 
oligosaccharides; 
Compatibility with gradient elution and picomolar sensitivity for oligosaccharide detection. 

N-linked oligosaccharides Arfelli, & Sartini, 2014; Cataldi, Campa, & De Benedetto, 
2000; Maier et al., 2016 

HPSEC-RI Characterize the physicochemical properties of the interacting biopolymer fractions in detail; 
Be unapplied in gradient elution and sensitive to temperature by RI detector.  

Xylo-oligosaccharide  



M
ANUSCRIP

T

ACCEPTE
D

ACCEPTED MANUSCRIPT

HPAEC-CE Obtain the high resolution under physiological conditions; 
Minute quantities of samples with short analysis time;  
Require simple preparation and fluorescent derivatization of sample. 

Sialylated oligosaccharides; 
Glycoprotein-derived 
oligosaccharides 

Monti, Cattaneo, Orlandi, & Curadi, 2011 

HR-MS, high-resolution mass spectrometry; ES-MS-MS, electrospray tandem mass spectrometry; NMR, nuclear magnetic resonance spectroscopy; FT-ICR-MS, fourier transform-ion cyclotron resonance-mass spectrometry; 658 

GPC, gel permeation chromatography; MALDI-TOF-MS, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry; nESI-MS nano-electrospray ionization mass spectroscopy; ITMS, ion trap mass 659 

spectrometry; HPAEC, high performance anion exchange chromatography; PAD, pulsed amperometric detection; CE, capillary electrophoresis, 660 

HILIC, hydrophilic interaction liquid chromatography; HPSEC, high performance size exclusion chromatograph. 661 
662 
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Table 5 Chemoenzymatic synthesis of oligosaccharides. 681 

Product Enzyme(s) Yield (mg)  Yield (%) Reference 

One-pot chemoenzymatic synthesis of α1–2-linked fucosides 

Fucα1–2Galβ1–3GlcNAcβProN3 α1–2Te2FT, Fkp, PmPpA  50.5 96 Zhao et al., 2016 

Fucα1–2Galβ1–3GlcNAcαProN3 α1–2Te2FT, Fkp, PmPpA 51.3 95 Zhao et al., 2016 

Fucα1–2Galβ1–3GalNAcαProN3 α1–2Te2FT, Fkp, PmPpA 35.7 95 Zhao et al., 2016 

Fucα1–2Galβ1–3GalNAcβProN3 α1–2Te2FT, Fkp, PmPpA 43.8 98 Zhao et al., 2016 

LNFP I, Fucα1–2LNT α1–2Te2FT, Fkp, PmPpA 1146  95 Zhao et al., 2016 

2’-Fucosyllactose, Fucα1–2Galβ1–4Glc GST-α1–2-HpFucT 18 65 Albermann, Piepersberg, & 

Wehmeier, 2010 

2’-Fucosyllactose-N3 GST-WbsJ 5.2 78 Li et al., 2008a,b 

Fucα1–2Galβ-OMe GST-WbsJ 4.4 71 Li et al., 2008a,b 

T-antigen-OMe, β-D-Gal-(1–3)-α-D-GalNAc-OMe GST-WbiQ 19  100 Pettit et al., 2010 

Lewisy-tetrasaccharide α1–2-HpFucT, α1–3-HpFucT1–433 4  45 Stein, Lin, & Lin, 2008 

One-pot chemoenzymatic synthesis of α1–3/4-linked fucosides 

Lewisa-O-(CH2)8CO2CH3 or Lewisx-O-(CH2)8CO2CH3 α1–3/4-HpFUCT1–428, α1–3-FucT1–441 - 87–94 Ma et al., 2006; Ma, 

Simala-Grant, & Taylor, 2006 

Lewisx α1–3-HpFucT ∆52 FutA - 95 Choi, Kim, Park, & Kim, 2016 

3’-Fucosyllactose, Galβ1–4-(Fucα1–3-)Glc α1–3-HpFucT ∆52 FutA - 96 Choi, Kim, Park, & Kim, 2016 

Lewisx-ProN3 HhFT1, Fkp 25  63 Zhang et al., 2010 

Sialyl Lewisx-ProN3 α1–3-HpFucT1–433, Fkp, iPPase 18.6 83 Soriano del Amo et al., 2010 

LNFPIII-ProN3 α1–3-HpFucT ∆52 FutA, FKP 109 92 Chen et al., 2015 

LNDFH I, lacto-N-difuco-hexoase I Commercial fucosyltransferase III (FUT3) 1.7 85 Miyazaki, Sato, Furukawa, 

Ajisaka, 2010 

One-pot chemoenzymatic synthesis of carbohydrates     

LNT, Galβ1–3GlcNAcβ1–3Galβ1–4Glc Aureobacterium sp. L-101 lacto-N-biosidase 7.1 19-26 Murata, Inukai, Suzuki, 
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Yamagishi, & Usui, 1999 

LNT2, GlcNAcβ1–3Galβ1–4Glc NmLgtA, NmLgtB 1360 95% Johnson, 1999 

LNnT, Galβ1–4GlcNAcβ1–3Galβ1–4Glc NmLgtA, NmLgtB 1190 92 Johnson, 1999 

LSTd, Neu5Acα2-3LNnT Trypanosoma cruzi α2–3-trans-sialidase 138 98 Yu et al, 2014 

     

3’-SL, Neu5Acα2–3Galβ1–4Glc EcNanA, NmCSS, PmST1 68  68 Schmolzer, et al, 2015 

DSLNnT NmCSS, Pd2,6ST 236  99 Yu, et al, 2014 

DSLac, Neu5Acα2–3(Neu5Acα2–6)Galβ1–4Glc NmCSS, Pd2,6ST 112  93 Yu, et al, 2014 

DS’LNT, Neu5Acα2–6Galβ1–3GlcNAcβ1–3(Neu5Acα2–6)Galβ1–4Glc NmCSS, Pd2,6ST 268  98 Yu, et al, 2014 

Gb3 trisaccharide, Neu5Acα2–8Neu5Acα2–3Galβ1–4Glc NgLgtC 5000 75 Johnson, 1999 

Gb4 tetrasaccharide NgLgtD 1500 60 Johnson, 1999 

A whole-cell approach or engineered E. coli living-strategy 

3’-SL, Neu5Acα2–3Galβ1–4Glc Corynebacterium ammoniagenes DN510 cells, E. Coli K12 CTP 

synthetase, E. coli K1 CMP-Neu5Ac synthetase, N. gonorrhoeae 

α2–3-sialyltransferase 

72,000 44 Endo, Koizumi, Tabata, & Ozaki, 

2000 

LNT-2, GlcNAcβ1–3Galβ1–4Glc E. coli JM109 (lacY+ lacZ–) with lgtA gene 6000 73 Priem, Gilbert, Wakarchuk, 

Heyraud, & Samain, 2002 

LNnDFH, lacto-N-neodifucohexaose NmLgtA, NmLgtB, H. pylori 26695 α1–3-fucosyltransferase 

FutA and RcsA 

1700 70 Dumon, Priem, Martin, Heyraud, 

Bosso, & Samain, 2001 

LNFP II, lacto-N-neofucopentaose II NmLgtA, NmLgtB, H. pylori 26695 α1–3-fucosyltransferase futB 

gene 

260 - Dumon, Samain, & Priem, 2004 

LNnFP V, Lacto-N-neofucopentaose V 

Gal-(β1–4)GlcNAc(β1–3)Gal(β1–4)[Fuc(α1-3)]Glc 

NmLgtA, NmLgtB, H. pylori 26695 α1–3-fucosyltransferase futB  280 - Dumon, Samain, & Priem, 2004 

LewisX trisaccharide Helicobacter pylori α1–3-fucosyltransferase 2100 32 Koizumi, Endo, Tabata, Nagano, 

Ohnishi, & Ozaki, 2000 

GM2, GalNAcβ1–4(NeuAcα1–3)Galβ1–4Glc CMP-NeuAc synthase, α2–3-sialyltransferase, UDP-GlcNAc C4 1250 - Antoine, et al, 2003 
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epimerase, β1–4-GalNAc transferase 

GM1, Galβ1–3GalNAcβ1–4(NeuAcα1–3)Galβ1–4Glc β1–3-galactosyltransferase 890 - Antoine, et al, 2003 

Galβ1–4(Fucα1–3)GlcNAcβ1–4GlcNAc Rhizobium leguminosarum chitin-synthase NodC and Bacillus 

circulans chitinase A1 

620 - Dumon, Bosso, Utille, Heyraud, 

& Samain, 2006 

Galβ1–4(Fucα1–3)GlcNAcβ1–3Gal NmLgtA 1840 - Dumon, Bosso, Utille, Heyraud, 

& Samain, 2006 

EcNanA, E. coli sialic acid aldolase; FucT, fucosyltransferase; NmCSS, Neisseria meningitidis CMP-sialic acid synthetase; Pd2,6ST, Photobacterium damselae α2–6-sialyltransferase; PmPpA, Pasteurella multocida inorganic 682 

pyrophosphatase; PmST, Pasteurella multocida α2–3-sialyltransferase; PmST1, Pasteurella multocida α2–3-sialyltransferase 1; Psp2,6ST, Photobacterium sp. JT-ISH-224 α2–6-sialyltransferase; NmLgtA, Neisseria 683 

meningitidis β1–3-N-acetylglucosaminyltransferase ; NmLgtB, Neisseria meningitidis β1–4GalT; NgLgtC, Neisseria gonorrhoeae α1–4-galactosyltransferase; NgLgtD, Neisseria gonorrhoeae 684 

β1–3-Nacetylgalactosaminyltransferase; Pd2,6ST, Photobacterium damselae α2–6- sialyltransferase; HhFT1, Helicobacter hepaticus α1-3-fucosyltransferase. 685 
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1. The biological functions of milk oligosaccharides, especially human milk oligosaccharides. 

2. Developments in techniques for analysis of the oligosaccharide.  

3. Advances in the oligosaccharides synthesis.   

 




