3,274 research outputs found

    Quadratic optimal functional quantization of stochastic processes and numerical applications

    Get PDF
    In this paper, we present an overview of the recent developments of functional quantization of stochastic processes, with an emphasis on the quadratic case. Functional quantization is a way to approximate a process, viewed as a Hilbert-valued random variable, using a nearest neighbour projection on a finite codebook. A special emphasis is made on the computational aspects and the numerical applications, in particular the pricing of some path-dependent European options.Comment: 41 page

    Frame Permutation Quantization

    Full text link
    Frame permutation quantization (FPQ) is a new vector quantization technique using finite frames. In FPQ, a vector is encoded using a permutation source code to quantize its frame expansion. This means that the encoding is a partial ordering of the frame expansion coefficients. Compared to ordinary permutation source coding, FPQ produces a greater number of possible quantization rates and a higher maximum rate. Various representations for the partitions induced by FPQ are presented, and reconstruction algorithms based on linear programming, quadratic programming, and recursive orthogonal projection are derived. Implementations of the linear and quadratic programming algorithms for uniform and Gaussian sources show performance improvements over entropy-constrained scalar quantization for certain combinations of vector dimension and coding rate. Monte Carlo evaluation of the recursive algorithm shows that mean-squared error (MSE) decays as 1/M^4 for an M-element frame, which is consistent with previous results on optimal decay of MSE. Reconstruction using the canonical dual frame is also studied, and several results relate properties of the analysis frame to whether linear reconstruction techniques provide consistent reconstructions.Comment: 29 pages, 5 figures; detailed added to proof of Theorem 4.3 and a few minor correction

    Pointwise convergence of the Lloyd algorithm in higher dimension

    Get PDF
    We establish the pointwise convergence of the iterative Lloyd algorithm, also known as kk-means algorithm, when the quadratic quantization error of the starting grid (with size N2N\ge 2) is lower than the minimal quantization error with respect to the input distribution is lower at level N1N-1. Such a protocol is known as the splitting method and allows for convergence even when the input distribution has an unbounded support. We also show under very light assumption that the resulting limiting grid still has full size NN. These results are obtained without continuity assumption on the input distribution. A variant of the procedure taking advantage of the asymptotic of the optimal quantizer radius is proposed which always guarantees the boundedness of the iterated grids
    corecore