210 research outputs found

    A gentle transition from Java programming to Web Services using XML-RPC

    Get PDF
    Exposing students to leading edge vocational areas of relevance such as Web Services can be difficult. We show a lightweight approach by embedding a key component of Web Services within a Level 3 BSc module in Distributed Computing. We present a ready to use collection of lecture slides and student activities based on XML-RPC. In addition we show that this material addresses the central topics in the context of web services as identified by Draganova (2003)

    Enhancing apprentice-based learning of Java

    Get PDF
    Various methods have been proposed in the past to improve student learning by introducing new styles of working with assignments. These include problem-based learning, use of case studies and apprenticeship. In most courses, however, these proposals have not resulted in a widespread significant change of teaching methods. Most institutions still use a traditional lecture/lab class approach with a strong separation of tasks between them. In part, this lack of change is a consequence of the lack of easily available and appropriate tools to support the introduction of new approaches into mainstream courses.In this paper, we consider and extend these ideas and propose an approach to teaching introductory programming in Java that integrates assignments and lectures, using elements of all three approaches mentioned above. In addition, we show how the BlueJ interactive programming environment [7] (a Java development environment aimed at education) can be used to provide the type of support that has hitherto hindered the widespread take-up of these approaches. We arrive at a teaching method that is motivating, effective and relatively easy to put into practice. Our discussion includes a concrete example of such an assignment, followed by a description of guidelines for the design of this style of teaching unit

    Meaningful Categorisation of Novice Programmer Errors

    Get PDF
    The frequency of different kinds of error made by students learning to write computer programs has long been of interest to researchers and educators. In the past, various studies investigated this topic, usually by recording and analysing compiler error messages, and producing tables of relative frequencies of specific errors diagnostics produced by the compiler. In this paper, we improve on such prior studies by investigating actual logical errors in student code, as opposed to diagnostic messages produced by the compiler. The actual errors reported here are more precise, more detailed and more accurate than the diagnostic produced automatically

    An ultra-lightweight Java interpreter for bridging CS1

    Get PDF

    Tool support for implementation of object-oriented class relationships and patterns

    Get PDF

    A Novice's Process of Object-Oriented Programming

    Get PDF
    Exposing students to the process of programming is merely implied but not explicitly addressed in texts on programming which appear to deal with 'program' as a noun rather than as a verb.We present a set of principles and techniques as well as an informal but systematic process of decomposing a programming problem. Two examples are used to demonstrate the application of process and techniques.The process is a carefully down-scaled version of a full and rich software engineering process particularly suited for novices learning object-oriented programming. In using it, we hope to achieve two things: to help novice programmers learn faster and better while at the same time laying the foundation for a more thorough treatment of the aspects of software engineering

    Evaluation of a tool for Java structural specification checking

    Get PDF
    Although a number of tools for evaluating Java code functionality and style exist, little work has been done in a distance learning context on automated marking of Java programs with respect to structural specifications. Such automated checks support human markers in assessing students’ work and evaluating their own marking; online automated marking; students checking code before submitting it for marking; and question setters evaluating the completeness of questions set. This project developed and evaluated a prototype tool that performs an automated check of a Java program’s correctness with respect to a structural specification. Questionnaires and interviews were used to gather feedback on the usefulness of the tool as a marking aid to humans, and on its potential usefulness to students for self-assessment when working on their assignments. Markers were asked to compare the usefulness of structural specification testing as compared to other kinds of support, including syntax error assistance, style checking and functionality testing. Initial results suggest that most markers using the structural specification checking tool found it to be useful, and some reported that it increased their accuracy in marking. Reasons for not using the tool included lack of time and the simplicity of the assignment it was trialled on. Some reservations were expressed about reliance on tools for assessment, both for markers and for students. The need for advice on incorporating tools in marking workflow is suggested

    Design Early Considered Harmful: Graduated Exposure to Complexity and Structure Based on Levels of Cognitive Development

    Get PDF
    We have recognized that the natural tendency to teach according to the structure of one’s own understanding runs contrary to established models of cognitive development. Bloom’s Taxonomy has provided a basis for establishing a more efficacious pedagogy. Emphasizing a hierarchical progression of skill sets and gradual learning through example, our approach advocates teaching software development from the inside/out rather than beginning with either console apps or monolithic designs

    Interviews With College Students: Evaluating Computer Programming Environments For Introductory Courses

    Get PDF
    Different methods, strategies, or tools have been proposed for teaching Object Oriented Programming (OOP). However, it is still difficult to introduce OOP to novice learners. The problem may be not only adopting a method or language, but also use of an appropriate integrated development environment (IDE). Therefore, the focus should be on the needs of learners when selecting an IDE and the evaluations for instructional purposes may allow making objective decisions for an introductory course design. There are different methods or frameworks for evaluating IDEs and the majority focuses on the experts’ needs. Unfortunately, studies done on instructional appropriateness of IDEs are insufficient. In this study, an evaluation framework is initially proposed, then the candidate IDEs are evaluated, and finally, the perceptions of college students are explored by conducting semi-structured interviews. The data are analyzed by the Verbal Analysis technique, and the results are discussed in view of the evaluation criteria. The results imply that the learners view one of the criteria relatively more supportive for learning
    • …
    corecore