
Enhancing Apprentice-Based Learning of Java
Michael Kölling

Mærsk McKinney Moller Institute
University of Southern Denmark

mik@mip.sdu.dk

David J. Barnes
Computing Laboratory

University of Kent

D.J.Barnes@kent.ac.uk

ABSTRACT
Various methods have been proposed in the past to improve
student learning by introducing new styles of working with
assignments. These include problem-based learning, use of case
studies and apprenticeship. In most courses, however, these
proposals have not resulted in a widespread significant change of
teaching methods. Most institutions still use a traditional
lecture/lab class approach with a strong separation of tasks
between them. In part, this lack of change is a consequence of the
lack of easily available and appropriate tools to support the
introduction of new approaches into mainstream courses.

In this paper, we consider and extend these ideas and propose an
approach to teaching introductory programming in Java that
integrates assignments and lectures, using elements of all three
approaches mentioned above. In addition, we show how the BlueJ
interactive programming environment [7] (a Java development
environment aimed at education) can be used to provide the type
of support that has hitherto hindered the widespread take-up of
these approaches. We arrive at a teaching method that is
motivating, effective and relatively easy to put into practice. Our
discussion includes a concrete example of such an assignment,
followed by a description of guidelines for the design of this style
of teaching unit.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer & Information
Science Education - Computer Science Education
D.1.5 [Programming Techniques]: Object-Oriented
Programming.

General Terms: Pedagogy, course design.

Keywords: Pedagogy, Objects-First, Java.

1. INTRODUCTION
Most introductory computing courses follow a roughly similar
organizational structure: a sequence of weekly lectures is
complemented by laboratory classes. The lectures are used to
introduce new material to the students, and the lab classes
reinforce the material by requiring the students to work through
and discuss small exercises and somewhat larger assignments.

Intriguingly, despite numerous changes in programming
languages, and shifts in programming paradigm over the last
couple of decades, this delivery pattern has changed little and
remains the predominant one in many institutions.

For teachers and students alike, assignments are key to the success
of the learning process. In particular, learner-centred tasks [9] that
capture the interest of students are more likely to generate a sense
of excitement and motivate further investigation. Here,
programming projects with a real purpose and interesting goals
can be carried out. If done well, the results can be both
enlightening and rewarding.

However, several problems exist in providing sufficiently
motivational assignments:

• It is not easy to see how students can work on problems
large enough to be truly interesting early in the course,
while they have little experience with software
development.

• It is often hard to create an obvious connection between
the lecture and the assignment. Both often exist as fairly
separate activities, making it harder to create interest in
and motivation for the lectures.

• Programming environments are often either overly
complex, incomplete in their language support, or do not
provide good support for the teaching and learning
processes, thus hindering active assignment work early in
the course.

In this paper, we discuss a technique that can be used to integrate
assignments and lectures more tightly. This serves to better
motivate lecture content, results in the ability to carry out more
interesting assignments and allows inclusion of important
software engineering concepts into an introductory course.

Practical application of this technique for teaching introductory
Java is facilitated by the availability of the BlueJ interactive
programming environment. Unlike professional Java
programming environments, BlueJ is specifically designed for the
teaching and learning of key object-oriented concepts, but at the
same time BlueJ supports the full implementation of the Java
language and not just a subset.

2. PREVIOUS WORK
In the 1990s, several related tracks were followed in an attempt to
find more effective ways of motivating and presenting material on
introductory programming courses.

Seminal among these attempts was the work of Linn and Clancy
[8], who made a strong argument for the use of case studies to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’04, March 3–7, 2004, Norfolk, Virginia, USA.
Copyright 2004 ACM 1-58113-798-2/04/0003…$5.00.

286

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/64476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

support program design. Particularly effective in their study was
the use of expert commentary to accompany a design.

Also significant was the work of Astrachan and Reed [2, 3] whose
applied apprenticeship-approach encouraged students to read,
study, modify and extend programs written by experienced
programmers.

One of the principles of the apprentice-based approach is that it is
particular applications that are the motivation for introducing new
programming constructs or data structures, rather than studying
constructs as an end in themselves. A similar problem-driven
motivation can be found in the use of problem-based learning
environments [4, 5] which also often feature group working.

Yet, despite the progress made in the early 1990s by work such as
this, most modern introductory programming text books still tend
to exhibit mainly traditional characteristics of language-construct
driven chapters, and small example problems. Why is this?

Within the Java community, the easy availability of GUI-based
examples was seen as one of the main means to motivate students
[10]. Unfortunately, while these may well have motivational
potential, there remains the question of whether – of itself – this is
enough to deliver the broader educational and software
engineering requirements of an introductory programming course.

As a consequence, there is a good case for revisiting and
extending this earlier work in order to support a high quality
introduction to object-oriented programming.

3. PROBLEMS WITH ASSIGNMENTS
In many courses assignments tend to be somewhat removed from
the lectures in both organization and content. Usually, a lecture
introduces new programming constructs or techniques and later,
an assignment is given to practice application of these techniques.
The larger (and with it, the more interesting) the assignment is,
the more removed it tends to be from the lecture content, since it
includes material covering a longer period of time.

Another problem with early programming assignments is that it is
hard to get students to do things well. While students are
struggling with getting their program to do something at all, they
often have little time left for thinking about non-functional
aspects, such as structural software quality.

The solution in many courses is to leave software quality aspects,
such a maintainability, coupling and cohesion, to later courses,
and concentrate on getting something running first.

This is unfortunate and we would like to incorporate critical
assessment and evaluation of existing code into the curriculum
very early on.

4. OUR GOALS
Our goals are twofold: firstly, we want to use a more problem-
driven approach than the traditional style. The problem-driven
approach presents a practical programming problem first,
followed by the examination of possible solutions, possibly by
introducing new programming constructs or techniques. This both
ties the assignment and lecture close together, and provides a
motivation for the introduction of new lecture material.

In fact, the role of lecture and assignment is reversed: it is not the
lecture content that drives the assignment, but the assignment
problems that drive the lectures.

Secondly, we want to achieve the inclusion of modern software
engineering tasks into the computing curriculum early on.
Traditionally, early computing assignments often use a blank
screen approach: students start with nothing more than a problem
specification. They then start designing and coding a new
application from scratch. The essential assignment task is to write
code.

This style does not reflect realities in the contemporary computing
industry, where tasks like reading and understanding of existing
code, maintenance and refactoring, adaptation and extension are
far more common than the development of new applications.

We would like to emphasize that critical code reading and
maintenance are essential skills for any programmer let loose on
the world today.

Thus, this proposal affects both the form and the content of the
material used in lectures and assignments. While our discussion of
previous work shows that neither of these goals is new in itself,
experience shows that implementation of them has been slow.

In part, this is because it has often remained difficult to put these
ideas into practice. Linn and Clancy [8] noted, for instance, that
students often found lengthy expert commentaries difficult to
read, while the familiar syntactic hurdle of Java’s main method
almost forces an early focus on syntax that may be hard to break
away from.

With the wide acceptance of Java, libraries and tools are now
available that may help in supporting these approaches and make
it worthwhile to revisit these issues. We hope to present a very
practical, easily realizable example of how these goals can be
achieved.

We aim to do this on two levels: firstly, by presenting one
concrete example; and secondly, by presenting abstract guidelines
for the development of such teaching units in general.

5. A CONCRETE EXAMPLE
5.1 Exploration
The example we discuss here to illustrate our approach is called
The World of Zuul. When introduced to the students, the
application compiles and executes.

The first student activity is to explore and describe the
application. This exploration takes place within the BlueJ
environment (Figure 1) and includes discussion of functional
aspects (What does the program do?) and implementation aspects
(What is the role of each class in the application?).

Interactive exploration is enhanced significantly by the features
provided by BlueJ, such as the UML visualisation of the
application structure, interactive object creation and method
calling, object-state inspection and source-code exploration.

Students quickly find out that the application implements a
framework for an adventure game [1] that allows the player to
enter text commands and move around between a small number of
locations (using commands such as go east).

287

Exploration of the implementation is done as a group activity, in
which students examine the classes’ source code and explain each
class in turn to other group members. The classes are well
commented, so that most of the important information is easily
accessible without the need to understand all details of the code.

Figure 1: The World of Zuul project within BlueJ

5.2 The first tasks
It is clear to the students from their exploration that the game in
its current form is rather limited in its functionality, and that it
needs to be extended to turn it into a real game.

The next thing the students do is to invent an alternative game
scenario. This can be done using a large variety of interactive or
group activities, in which students develop and discuss ideas,
finishing with every student selecting and describing a game plan.
The explorations do not need to be constrained by implementation
considerations. Topics can be anything: blood cells travelling
through the human body; “you are lost in the shopping mall”
themes; or the typical dungeon and dragon style scenarios.

Next, a number of small improvements to the given application
are discussed. These are the addition of new movement directions
(up and down), introduction of items in rooms (initially only one
item per room) and appropriate new commands, such as ‘take’
and ‘drop’.

5.3 Discussion
These first small tasks are discussed in detail in a lecture,
including interactive development of an improved solution from
the original limited version.

Even without the students having written a single line of code, it
is clear that a number of important topics have been explored and
practiced, such as code reading, and abstracting from the details
of a particular game to its general characteristics.

Discussion of the necessary changes to the source code to attempt
the first extension fits the model of learning from experts [2, 8]
but with an important difference. Discussion quickly moves to
code quality and it becomes obvious that the given code makes
these simple extensions quite hard, because it is badly structured.
This gives us the opportunity to discuss aspects of code that make
maintenance easy or difficult.

We discover cases of code duplication, broken encapsulation and
bad distribution of responsibilities, and we see how these make
our life harder. Developing an ability to evaluate code critically is
key here.

This gives us the further opportunity to discuss the fact that the
functional view does not tell us about the quality of the
underlying code (the program ‘worked’, after all).

Students often struggle with the idea that they received a low
mark because their program appeared to do all that was required
of them, but it was badly implemented. From here, we can
illustrate refactoring, introduce concepts of coupling and
cohesion, and goals such as localization of change.

We improve the design first by refactoring relevant bits of code,
and then we find that making our intended extensions can become
quite easy.

Thus, the first task (adding up and down movement) is solved
completely in the lecture, with extensive discussion about
considerations of code quality while making modifications to the
given source.

5.4 Exercises
A second group of tasks (e.g., adding items to rooms) is done as a
series of exercises. The problem and some aspects of a solution
are discussed, and then students are expected to implement the
detailed solution on their own.

The discussion contains a hint to the solution, and asks the
relevant questions to make students consider important aspects;
‘We have discussed responsibility-driven design – which class
should be responsible for printing out the details of the items
present in a room? Why?’

The exercises are organised in a sequence of manageable steps in
increasing complexity. Adding items to rooms, for example, is
initially done by supporting at most a single item being placed in
each room, and then extended in a separate exercise to rooms
holding an arbitrary number of items. Accordingly, the player can
initially pick up and carry a single item, which is later extended to
a set of items. The number of items carried can later be limited by
a maximum possible weight that a player can carry.

5.5 Assignment
The exercises then lead into a larger assignment. In this
assignment phase students implement their own game scenario
including their own ideas for making the game interesting.

Typical elements students implement include forms of time limits,
magic transporter rooms, trap doors, locks, talking characters,
moving characters, and more.

At this stage, students receive less help and guidance in
developing their solutions than during the exercise phase. They
are expected to develop solutions on their own, with the
possibility to ask a tutor for support.

During this phase, tutors frequently discuss the quality of
students’ solutions under maintainability and extendibility aspects
with the student.

288

It is known that code quality, reviewed under the aspects
discussed in the lecture, will be a major component in the marking
scheme for the assignment.

6. THE THREE STEPS
The previous section described a specific example of an
assignment following our approach. In this section, we discuss the
ideas behind this structure in a more general form.

On the first level, the assignment approach can be divided into
three steps: Observation, Application and Design.

(Note that the order of activities is exactly reversed compared to
classical, clean slate assignments: there, students typically have to
start with design, followed by application, before they observe
behaviour.)

6.1 Step 1: Observation
In this step, the instructor demonstrates a software engineering
task actively in the lecture. This part is modelled on the apprentice
approach: students observe the instructor performing a relevant
task and listen to the instructor’s commentary, while having the
opportunity to interrupt and ask questions.

Aspects of this phase are typically the analysis of given code and
the discovery of problems and ideas for solutions. It gives an
opportunity to reflect on existing code and to evaluate critically
before making changes.

Typically, the problems discovered during the evaluation of the
code lead to a motivation for new course material, which can then
be introduced and discussed. Students then observe the
application of the new material in a well-chosen example, with the
opportunity to discuss alternatives.

6.2 Step 2: Application
The educational goal of the second step is the application of new
material under guidance.

Teachers discuss selected problems, chosen to display similar
challenges to those demonstrated in step one, and give hints to
solutions. Problems are chosen so that variations of the material
from step one are applicable for the solution.

Students are expected to mirror the critical analysis and evaluation
activities of their teacher and actively reason about the given code
and argue about intended solutions.

This phase usually spans an arbitrary mix of lecture and lab
classes, and alternates repeatedly between active coding activities
and reflective discussion.

6.3 Step 3: Design
In the third step, students design their own tasks as extensions of
the project at hand. It is a free programming assignment that
allows students to apply all the techniques they are familiar with
at that stage.

Typically, students are given a minimum of guidance on expected
tasks, simply to communicate the required amount of work for
marking purposes. At this stage, this only includes the description
of sample tasks, not usually pointers to solutions.

One of the advantages of doing an assignment task in this context
is that students are familiar with the framework they are expected
to extend. Since steps one and two have served to familiarize the
student with a given application, larger, more complex and more
interesting applications can be used.

Extension tasks proposed by students are typically reviewed and
guided by a tutor to ensure their usefulness in applying interesting
course material, and their suitability in workload and level of
difficulty.

7. IMPORTANT ASPECTS OF THIS
APPROACH

7.1 Problem driven
The introduction of new material is driven by a concrete problem.
The motivation for introduction of new concepts comes from a
concrete task at hand.

This can easily be combined with additional problem-based
learning approaches, such as student-controlled discovery of new
material. Instead of presenting all new constructs in a lecture,
students can be guided towards resources that enable them to
discover new material as part of a student activity.

7.2 Apprentice approach
Our approach is an extension of the apprentice approach. Students
start by studying expert written code: both well-written code and
code to be critically evaluated and improved under expert
guidance.

An important part of students’ learning comes from experiencing
an expert in action, hopefully imitating some of the activities
considered good practice in their own work. This activity should
be facilitated by a Java environment that supports incremental
development and testing.

One of the important additions to the original apprentice approach
as described in [2] is that students can also observe the process of
the expert’s work, in addition to the created artefact.

7.3 Open / closed
It is important to have characteristics of both open and closed
assignments. The task should be well enough described so that
weaker or less enthusiastic students have clear guidance as to
what is expected of them, and how much they have to accomplish
to receive a satisfactory mark in the assessment.

On the other hand, the task should be open enough that students
can incorporate their own ideas and progress much further than
the minimum required pass level.

It is common in computing classes that student groups display a
wide variety of skills, and making the task challenging and
interesting for even the best students is an important goal. This
encourages both creativity and innovation.

7.4 Ownership
Whenever possible, the problem should be set in such a way that
the student can take ownership of the task. In the Zuul example,
this is achieved by letting students invent and design their own
game scenarios and individual extension tasks. This, in turn, is the

289

result of their abstracting from a particular example to the general
principles it embodies, and on to a further instantiation.

From that moment on, when students work on the implementation
of the task, they don’t view it so much as work on a problem
outside their control, but as implementing their game.

7.5 Student controlled
Another related (but distinct) issue is the ability of a student to
take control over significant parts of the task.

Game-based assignments have been discussed in the past in the
context of gender bias [6]. Studies have found that female
students are often interested in different kinds of computer games
than male students, and that games without any social component
or relevance are less likely to engage female students.

While The World of Zuul is clearly a game-based example, we
have not observed the described gender effect in its use. (While
we have not carried out a formal investigation, we have
consciously monitored this aspect and held informal talks with
students about it.)

We speculate that the reason for this is that students can
individually decide the context of their tasks by inventing their
own scenarios. Giving students this degree of control might lead
to higher acceptance of the relevance of the task.

8. SUMMARY
Despite the evident educational and motivational value of
problem-based approaches to introductory computer science, the
traditional delivery style involving separation of lecture material
and lab material continues to dominate in many places.

In this paper we have described a concrete example of a more
integrated approach that can be used in introductory Java courses.
It includes problem-driven aspects, but is easier to realise than a
complete problem-based learning model.

In addition, we have provided guidelines to assist others to apply
this approach to their own material – perhaps in an even broader
context than simply introductory Java teaching. This approach
fosters a concept-driven approach to delivery of new material, and
encourages ownership of these concepts by the students.

REFERENCES
[1] Adams, R., The Colossal Cave Adventure, web site,

accessed 12 September 2003,
http://www.rickadams.org/adventure/.

[2] Astrachan, O. and Reed, D., AAA and CS 1: The Applied
Apprenticeship Approach to CS 1, Proceedings of SIGCSE
27 (March 1995).

[3] Astrachan, O., Smith, R., and Wilkes, J., Application-based
Modules using Apprentice Learning for CS 2, Proceedings
of SIGCSE 1997 (March 1997), 233-237.

[4] Barg, M., Fekete, A., Greening, T., Hollands, O., Kay, J.,
Kingston, J.H., Problem-based learning for foundation
computer science courses, Computer Science Education 10
(2000), 1-20.

[5] Ellis, A., Carswell, L., Bernat, A., Deveaux, D., Frison, P.,
Meisalo, V., Meyer, J., Nulden, U., Rugelj, and J., Tarhio,
J., Resources, Tools, and Techniques for Problem Based
Learning in Computing, Proceedings of ITICSE ‘98 (August
1998), 46-50.

[6] Inkpen, K., Upitis, R., Klawe, M., Lawry, J., Anderson, A.,
Ndunda, M., Sedighian, K., Leroux, S., Hsu, D., “We Have
Never Forgetful Flowers in Our Garden:” Girls’ Responses
to Electronic Games, Journal of Computers in Math and
Science Teaching 13 (1994), 383-403.

[7] Kölling, M., Quig, B., Patterson, A. & Rosenberg, J., The
BlueJ system and its pedagogy. In Journal of Computer
Science Education, Special issue on Learning and Teaching
Object Technology, Vol 13, Nr 4, December 2003

[8] Linn, M.C., and Clancy, M.J., The Case for Case Studies of
Programming Problems, Communications of the ACM
(March 1992), 121-132.

[9] Norman, D.A., and Spohrer, J.C., Learner-Centered
Education, Communications of the ACM 39 (April 1996),
24-27.

[10] Reges, S., Conservatively Radical Java in CS1, Proceedings
of SIGCSE 2000 (March 2000), 85-89.

290

