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Abstract—The frequency of different kinds of error made by 
students learning to write computer programs has long been of 
interest to researchers and educators. In the past, various studies 
investigated this topic, usually by recording and analysing 
compiler error messages, and producing tables of relative 
frequencies of specific errors diagnostics produced by the 
compiler. In this paper, we improve on such prior studies by 
investigating actual logical errors in student code, as opposed to 
diagnostic messages produced by the compiler. The actual errors 
reported here are more precise, more detailed and more accurate 
than the diagnostic produced automatically. 

In order to present frequencies of actual errors, error 
categories were developed and validated, and student code 
captured at time of compilation failure was manually analysed by 
multiple researchers. The results show that error causes can be 
manually analysed by independent researchers with good 
reliability. The resulting table of error frequencies shows that 
prior work using diagnostic messages tended to group some 
distinct errors together in single categories, which can now be 
listed more accurately. 
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I.  INTRODUCTION AND PRIOR WORK 

A. The Study of Student Errors 
The study of errors made by students in their attempts to 

write programs during the early phases of learning to develop 
software has a long tradition. Various researchers (for example 
Jadud [5], Shinners-Kennedy and Fincher [9], and Marceau, 
Fisler and Krishnamurthi [8]) have investigated varying aspects 
of student errors, using different programming languages and 
environments. 

The aim of investigating student errors usually falls into 
one of two categories: 

• Some researchers aim at identifying the most common 
or most serious problems that students have when 
learning to program, including recognising difficult 
concepts [9] or misconceptions [10]. The ultimate aim 
is to improve teaching and learning through an 
awareness of the cognitive and practical challenges 
learners face. 

• Another group of researchers investigate compiler error 
messages and students' reaction to encountering them 
[5,8]. This includes wording and presentation of errors, 
with the ultimate aim at improving our educational 
programming systems by producing better messages 
that provide improved help to students. 

Both of these aspects still present interesting research 
challenges. There still is no real agreement about the most 
common problems students encounter, and how to address 
these in our teaching is an open question. Compiler error 
messages presented to students are still very obviously less 
helpful than they could be in most development systems used 
for programming education. 

The work presented here aims at addressing both these 
areas for the Java programming language. Our work includes a 
method of identifying common student problems that differs 
from those presented in previous studies, and aims at ultimately 
improving both the understanding of problems students face in 
introductory Java programming, and the messages that our 
development tools produce. 

In this paper, we present an analysis of the most common 
student errors, using a more reliable methodology than 
previous studies. This forms the basis of future work to 
improve compiler error messages. The result is also relevant 
for teachers and researchers wishing to improve programming 
pedagogy. 

B. The Problem with Investigating Error Messages 
Various studies [1,4,5] have investigated student errors in 

the past. Almost all of these studies used the compiler error 
messages as the data at the heart of their research, usually by 
recording and analysing error messages produced, and 
identifying frequent or persistent messages.  

This approach presents a significant problem. The 
relationship of the compiler error message to the logical error is 
not strong enough. 

For the purposes of more precise discussion we define the 
following terms, which we use in the remainder of this paper: 

• The Error is the nature of the problem in the source 
code that causes the compilation or execution to fail. 
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• The Diagnostic Message is the human-readable 
message presented to the programmer when execution 
or compilation fails. 

• The Programmer Misconception is the nature of the 
misunderstanding that resulted in the erroneous code 
being written. 

For the aims of their work, researchers are usually 
interested in the error (and then, following this, the 
programmer misconception), but studies usually evaluate only 
the diagnostic messages. The reason for this is simple: 
recording the diagnostic messages can easily be automated, and 
analyses can be made at a large scale. Identifying the actual 
error that causes the diagnostic is more difficult, and cannot be 
automated. 

However, this problem deserves to be taken more seriously 
than it previously has. Imprecision in the relationship between 
errors and diagnostic messages exists in both ways: 

• A single error may, in different context, produce 
different diagnostic messages. 

• The same diagnostic message may be produced by 
entirely different and distinct errors. 

C. Mismatch of errors and diagnostic messages 
It is easy to find examples of ambiguity of errors and 

diagnostic messages. Consider, for example, the following 
code fragment in Java: 

for (int i=0, i<10, i++) { 
} 

This code contains an error: The student has typed a comma 
in the loop header where Java requires a semicolon. When 
compiled1, the following diagnostic message is produced: 

';' expected 

Consider further the following code segment: 
int number of points = 0; 

This code results in exactly the same diagnostic message, 
even though the error is different (the student included spaces 
in a variable name, which Java does not allow). 

For purposes of analysing student misconceptions or 
common problems, these are two very different errors which 
should be distinguished, yet counting of diagnostic messages 
will record them as the same. 

The reverse problem – the same logical error producing 
different diagnostic messages – is also frequent. Consider: 

JFileChooser.showOpenDialog; 

and 

if(n > myList.size - 1) ... 

Both these fragments contain the same logical error (the 
student forgot to type parentheses after a method call), but the 
diagnostic message is different. The first fragment produces 

                                                             
1 For this paper, all diagnostic messages used as examples were produced with 

javac, version 1.7.0_45 
2 A full list of all categories defined can be found at 

not a statement 

while the second causes a response of 

size has private access in 
java.util.ArrayList 

This differences causes obvious problems for analyses of 
student difficulties. In fact, the situation is even worse than 
this: The exact same code (in the same context) will produce 
different error messages when compiled with different 
compilers (and sometimes even with different versions of the 
same compiler). 

Which diagnostic message is displayed is typically decided 
by the compiler writer, and usually does not take pedagogical 
considerations into account. In fact, which message is produced 
often depends on the internal structure of the compiler, and is 
to a significant extent an artefact of its implementation details. 
This introduces a significant random factor into research based 
on diagnostic messages, and imposes a limited utility on such 
studies. 

D. Identifying Errors 
For the study presented here, we identify and analyse errors 

(as opposed to diagnostic messages). The potential benefits are 
clear – we can see the actual logical errors made by students, 
and speculate on programmer misconceptions – but the 
problems are also apparent: identification of errors cannot be 
easily automated, and thus involves manual classification. For 
each error, a researcher has to look at the source code and make 
a judgement about the actual cause of the error. This 
classification is more work intensive, so it is difficult to reach 
the same scale, and necessarily involves a degree of 
subjectivity. 

It is not immediately clear whether actual errors can 
reliably be identified by researchers with sufficient accuracy 
and objectivity. This leads to the following research questions: 

1. Can a manageable set of error categories be 
developed to group student errors? 

2. Can student errors be categorised objectively and 
reliably? 

If the answer to these two questions is 'yes' (and the 
categorisation is produced), then we can ask a third question: 

3. Which are the most common errors that beginning 
student make? 

In order to be useful, the number of different error 
categories used must be neither too small nor too large. This is 
expressed in question 1. If nearly every error produces its own 
category, the analysis would have no value, as is also true if too 
many errors fall into the same category. We consider a number 
of categories in the dozens (rather than single figures or 
hundreds) to be desirable.  

A second question is whether a meaningful classification 
can be done that is sufficiently independent of individual 
researchers' judgement. If this is the case, the analysis of the 
data presents more useful results than analyses of diagnostic 
messages. 



In this paper we present work to address all three of the 
above research questions. We present a set of error categories, 
a method to validate them for objectivity, and an analysis of a 
set of errors using these categories. 

E. Providing Better Diagnostics 
As a side effect of this study, when researchers classify 

errors they can also record the contextual information used 
when making a judgement about the actual cause. It can then 
be investigated whether (or in which cases) use of this 
contextual information can be automated, and whether this 
analysis can be used to ultimately produce better automated 
diagnostic messages. 

This paper does not include such an analysis, but the work 
presented here forms the basis of this work in future. 

II. METHOD 
To perform the analysis described above, student error data 

was collected, error categories have been developed and 
checked for inter-coder reliability, student data was categorised 
and an analyses of this categorisation has been performed. 

A. Data Collection 
Two separate collections were performed. Both sets of data 

collection used the BlueJ IDE [6] to collect data from 
programmers using that environment. Thus, the data presented 
here is specific to the use of Java within BlueJ. 

The first data collection exercise augmented BlueJ with an 
extension that captured snapshots of the students' source code 
at compilation times as they performed their coursework in a 
university course. Participants were students of two 
introductory Java programming courses, one of the University 
of Kent, UK, and one at the University of Puget Sound in 
Washington, USA, in autumn 2013. Participation in the data 
collection was voluntary. Overall about 240 students 
participated in the data collection. (Determining the exact 
number is difficult since the data was anonymised, and for 
technical reasons some participants may have received two 
anonymous ID numbers.) 

Included in the collected data were details of each 
compilation event, consisting of a time stamp, outcome of the 
compilation (success, or error message) and the source code at 
the time of the event. 

Overall, 37,432 compilation events were recorded, with 
21,623 of these associated with a compilation error (the 
remainder being successful compilations). 197 of these were 
subsequently analysed. 

This first data set was used for the first phase of the 
analysis, the category development (see section II-B). 

A second data collection exercise was then performed to 
gather a larger data set for more large-scale and more varied 
(and therefore more reliable) analysis. For this collection, the 
Blackbox [3] project data was used. Blackbox is a data 
collection project initiated by the authors and others to support 
this work and other educational studies, by multiple 
researchers.  

Blackbox provides educational programmer user data at a 
large scale by collecting the data from BlueJ users worldwide. 
All users of a recent version of BlueJ are asked to participate in 
this experiment as a routine part of using the environment, and 
participation is voluntary (through an opt-in mechanism). 

Currently, approximately 250,000 users are participating in 
the Blackbox data gathering, and the Blackbox dataset contains 
information about more than 20 million compilation events. 

For the study presented here, 23 sessions comprising a total 
of 136 events recorded between 2013-06-11 and 2014-01-01 
were randomly selected from the Blackbox data for analysis. 
This dataset in conjunction with the first dataset forms the basis 
for the categorisation, described in section II-C. 

B. Category Development 
The first phase of the analysis is the development of 

categories for the categorisation of the error (as distinct from 
the diagnostic message). The method used for this is based on 
Thematic Analysis methodology [2]. Categories are developed 
and refined as familiarisation with the data set is improved by 
repeated reading of the data set. 

A simple web-based application was developed that 
presents compilation failure events (students errors) to 
researchers, lets researchers inspect the event details (such as 
source code) and allows the classification of the error using a 
category system (including definition of new categories). The 
method is data driven, deriving the categories from the actual 
errors that were observed. This necessitated occasional need to 
revisit and re-categorise prior errors as the category system 
evolved. 

The initial phase of this categorisation was performed by 
two researchers in collaboration until a suitable abstraction 
level for categories emerged, and then continued by a single 
researcher. 

1) Category hierarchies 
Error categories were allowed to form a hierarchy. 

Sometimes the cause of the error could be determined fairly 
precisely, for example "method call: parameter number 
mismatch - call incorrect" in a case where a method call is 
written with the wrong number of parameters, and it is apparent 
that the method call expression at the call site (and not the 
method definition) is incorrect. A more general error is 
“method call: parameter number mismatch”, for cases when it 
cannot be decided whether it is the call site or the definition 
which is erroneous. These errors form a hierarchy, since one is 
a more specific variant of the other. 

In each case, the most specific error category that could be 
determined with confidence by the researcher was assigned. 
For some analyses, sub-categories may be included in their 
parent categories. 

Category hierarchies were developed naturally as the 
categories themselves were formed, during the familiarisation 
with the data set. If events were encountered for which an error 
category existed which closely matched but was either too 
specific or not specific enough, a new category was created and 
a hierarchy formed. 



2) Validating the categories 
Once the category system stabilised, the category system 

was validated. The premise of manual error categorisation is 
only useful if the identification of errors achieves a high degree 
of reliability and objectivity.  

The validation of the categories was performed by 
calculating inter-coder reliability (the degree with which two 
researchers categorising the same set of error events 
independently agree on the category assignment). 

To check inter-coder reliability, 150 error events were 
independently coded by three researchers, and a percent 
agreement calculation [7] was performed. 

Since multiple categories could be assigned to a single 
event (see II-C.1), the calculation of pairwise agreement 
required handling of cases where multiple categories were 
assigned by one researcher, and another researcher or 
researchers assigned fewer categories. Pairwise agreement in 
these cases was counted according to the following method: 

1. Let N be the number of researchers who have 
categorised an event 

2. Let Rn be the set of categories assigned to a 
particular event by researcher n (for each n in 
1..N) 

3. Let C be the vector containing all the elements 
{R1, …, Rn), ordered by size (smallest to largest). 

4. For each element of C, as Ci: 

a. For each further element of C, as Cj (j > i) 

i. Count one agreement for each element of 
Ci that also appears in Cj, and one 
disagreement for each element of Ci that 
does not appear in Cj. 

Use of this method effectively treats an event that has been 
multiply categorised by one or more researchers as multiple 
data points (each representing a logically distinct error) that 
have been categorised separately, and assumes that equivalent 
categorisations from multiple researchers are referring to the 
same data point.  

C. Categorisation 
Once error categories were defined and validated, 136 

additional error events from the second data set were coded by 
a single researcher using these categories. The categories at this 
stage were mostly stable, with only a small number of new 
categories introduced to cover errors not seen in the first data 
set. 

This categorisation, together with the categorisation 
performed on the first data set during the category development 
process, forms the basis of the analysis presented below. 

1) Multiple errors in single events 
In some instances, multiple errors were present in or near 

the same location in a single error event. An extreme – but real 
– example from the data illustrates this: 

answer=this.getuserinput 

This code includes four separate errors: the method name is 
mis-spelt, parentheses are missing after the method call, a 
semicolon is missing at the end of the statement, and the 
variable used in the assignment is undefined.  

Finding four errors at an error event may be rare, but the 
occurrence of two concurrent errors is reasonably frequent. In 
these cases, we coded the event by counting an instance of an 
error for each category that was found (that is: registering all 
errors present, not just the single one that would have resulted 
from counting diagnostic messages). 

2) Recurrence 
Another situation that requires consistent handling during 

analysis is the recurrence of the same error multiple times, in a 
very short space of time. Sometimes, students recompile 
erroneous code without editing the segment that caused the 
error (either making other changes or, occasionally, not making 
any changes at all). Just compiling the same error multiple 
times should not count as multiple errors, as this would 
invalidate the error frequency count. 

Three easily identifiable variations of the recurrence 
phenomenon were noticed during the initial category 
development (II-B). First, there were cases where the exact 
same source had been recompiled (either immediately, or with 
an intervening change or changes that were then reverted); 
secondly, there were cases where a minor edit was performed 
to the single line which was identified as erroneous by the 
diagnostic message produced by the compiler, which did not 
resolve the original error and which usually resulted in the 
same diagnostic message being produced again; finally, edits 
were sometimes made elsewhere in the source, rather than on 
the line identified as erroneous by the diagnostic message, 
which was left unchanged (leaving the error intact and causing 
the same diagnostic to be produced again). 

Therefore, recurrence was defined as any of: 

• Compilation of the exact same source file as had 
previously been compiled (at any stage in the session), 
resulting in the same diagnostic message being 
produced by the compiler 

• Compilation where the only source line changed from 
the previously recorded event was the one identified by 
the diagnostic message as containing an error, and 
where the diagnostic message was the same as for the 
previous event. 

• Compilation where the source line identified as 
containing an error for the previous event has not been 
changed, and for which the diagnostic message is the 
same as for the previous event. 

Recurring error events were detected automatically and 
omitted from the analysis. 

D. Data analysis 
Once error categorization was performed, the following 

analyses were made on the data: 



1) Frequency of errors 
The frequency of errors was calculated by counting the 

relative occurrence of each category (from all data points 
included in the categorisation). A list of errors ranked by 
frequency was produced. 

2) Number and frequency of diagnostic messages 
The diagnostic messages associated with the categorised 

errors were collated and counted. This had to be performed 
manually, due to diagnostic messages often containing variable 
elements (such as user identifiers). 

3) Coverage level of the most frequent error categories 
The coverage (relative number of analysed events) of the 

top N most frequent error categories was measured. The 
coverage expresses what proportion of actual error events falls 
into the top N categories. This analysis is useful when devoting 
effort on improving pedagogical interventions or error 
diagnostics: It is useful to judge the actual impact of an 
intervention or a potential improvement of an error message. 

This calculation was performed for N=5 through N=30 in 
increments of 5. 

III. RESULTS 

A. Error Categories 
A total of 80 error categories were identified during the 

category development phase of the research (described in 
section II-B). Broadly, errors can be divided into syntactic, 
semantic, and logic errors. 

1) Syntax error categories 
A variety of common syntax errors were identified. One of 

these, “semicolon missing”, corresponds closely to the javac 
diagnostic message “’;’ expected”. In general, however, the 
identified syntax error categories do not correspond well with 
any particular diagnostic messages that can be produced by 
javac. Examples include “keyword written incorrectly”, 
“method call: missing comma between parameters”, “method 
call: parameter types included”, “method call: semicolon in 
place of comma”, and “mismatched parentheses in or around 
expression”.  A general category, “invalid syntax”, was created 
as a super-category for all syntax errors (and was used to 
categorize errors that did not fit into any of the identified 
subcategories)2. 

2) Semantic error categories 
As well as syntax error categories, a broad range of 

semantic error categories were identified.  

Semantic error categories showed a greater tendency to 
correspond, to some degree, with compiler diagnostic messages 
than did the syntax error categories. Examples include “type 
mismatch in assignment” (javac: “Incompatible types”) and 
“variable not declared” (javac: “cannot find symbol – 
variable”). More precise sub-categories were identified in some 
cases – for instance, “variable name written incorrectly” is a 
sub-category of “variable not declared”, applicable when it is 
apparent the programmer intended to refer to a particular 

                                                             
2 A full list of all categories defined can be found at 

http://bluej.org/davmac/2014_novice_errors/categories.html 

variable but wrote the name incorrectly, due to misspelling or 
wrong capitalization (for example). The compiler’s diagnostic 
message in these cases does not change, showing that the 
categorization scheme can achieve a higher precision in 
describing these errors. 

Another example of the category scheme allowing for 
higher precision than the compiler diagnostic message 
presently does is for method calls with the wrong number of 
parameters. While javac does identify this error (“method xyz 
in class Abc cannot be applied to given types; … reason: actual 
and formal argument lists differ in length”), the compiler 
makes no distinction between incorrect method calls and 
declarations; a researcher performing categorization, on the 
other hand, may be able to use certain clues to allow such a 
distinction; for instance, with a call to library method that is 
part of the standard Java API, it can generally be assumed that 
the call must be at fault since the declaration is known to be 
correct. 

B. Frequency of error categories 
A total of 368 categorizations were applied to 333 events. 

The frequency of the top 10 error categories is shown in Table 
I3.  

The most frequently occurring error is “Variable not 
declared”. This error alone accounts for 11.1% of all error 
instances. 

C. Diagnostic message frequency 
Each of the 333 compilation events analysed had an 

associated compiler diagnostic message. To judge whether the 
manual classification provides an improvement over 
classification of diagnostic messages, it is useful to compare 
Table I to the equivalent table if diagnostic messages are used 
for classification. The messages often incorporate variable, 
contextual text such as user identifiers (variable, method and 
class names); the general form of such messages was manually 
extrapolated. The frequency of the top 10 messages is shown in 
Table II. 

                                                             
3 A full table of error frequencies found is online at 

http://bluej.org/davmac/2014_novice_errors/frequencies.html 

TABLE I. FREQUENCY OF ERROR CATEGORIES 

Category Frequency 
Variable not declared 11.1% 
; missing 10.3% 
Variable name written incorrectly 8.4% 
Invalid Syntax 7.9% 
Method name written incorrectly 4.9% 
Missing parentheses for constructor call 4.1% 
Unhandled exception 3.0% 
Class name written incorrectly 2.7% 
Method call: parameter type mismatch 2.4% 
Type mismatch in assignment 2.4% 



D. Category coverage 
Coverage levels for the top N categories were calculated for 

N=5, 10, 15, 20, 25 and 30. The coverage level represents the 
relative number of events that are categorised by at least one of 
top N categories. The results are shown in Table III. 

The results show that, for instance, the top 10 error 
categories encompass nearly 59% of all error events that 
students encounter. Thus, a significant impact could be 
achieved if reporting or understanding of just these errors could 
be improved. 

E. Intercoder reliability 
After three separate researchers performed categorisation of 

the same error set, the average pairwise agreement (II-B.2) was 
calculated. The agreement across all events and all categories 
was 70.06%. This figure could be considered an indicator of a 
modest level of agreement. However, agreement is not 
uniformly distributed over all error categories. Agreement 
tended to be higher in more common categories, and lower in 
less frequent, more obscure cases. Since it is likely that future 
work (both pedagogical or in tool improvements) will 
concentrate on the most frequent errors, it is interesting to 
investigate agreement levels separately for this group.  

For the top 10 error categories, pairwise agreement was 
92.5%. For the top 20 categories, agreement is 87.4%. This 
indicated a good level of researcher agreement in classification 
of the errors. 

The method used to calculate agreement is conservative, 
and higher agreement could be claimed using different 
methodology. To allow simplified calculation, pairwise 
agreement did not take the category hierarchy (see II-B.1) into 
account. A selection by one researcher of a category which was 
a subcategory of that selected by another researcher was 
counted as disagreement, whereas in fact this would be 

indicative of partial agreement. The impact of this is potentially 
quite significant. For the “Class name written incorrectly” 
category for example, all three researchers agreed on the 
category for exactly 50% of the events for which this category 
was selected. For the remaining 50%, two researchers chose 
this category and the third chose the “Class not defined” super-
category. Thus, at the higher category level for this particular 
category, there is 100% agreement. 

As a result, the agreement level reported above is a 
conservative lower bound. 

IV. DISCUSSION 

A. Diagnostic Message Frequencies in Comparison to Other 
Studies 
Jadud [5] published a distribution of errors made by 

novices, which was determined solely by examining diagnostic 
messages produced by javac. He finds the “missing semicolon” 
message to be the most frequent at 18%, with “unknown 
symbol – variable” next at 12%. “bracket expected”, “illegal 
start of expression” and “unknown symbol: class” follow at 
12%, 9% and 7% respectively. 

Jackson, Cobb, and Carver [4] found a somewhat different 
distribution in their own study, also based on diagnostic 
messages: they list “cannot resolve symbol” (which possibly 
includes both “unknown variable” and “unknown class” errors) 
as the most frequent at 14.6%, with “; expected” next at 8.5%. 
“illegal start of expression” and “) expected” also feature in the 
top 6 most frequent diagnostic messages, with “class or 
interface expected” and “<identifier> expected” both appearing 
in the top 5 (they appear in Jadud’s distribution at position 8 
and 9 respectively). 

Although the frequencies vary, there are several diagnostics 
that appear in both the Jadud and Jackson-Cobb-Carver top 10 
lists. The diagnostic message frequencies in this paper show a 
relatively high incidence of “cannot find symbol”, “’;’ 
expected”, “’)’ expected” and “illegal start of expression” 
diagnostics, similar to the other two studies, showing at least a 
moderate level of consistency between the three studies. 

There are several factors that could explain some of the 
differences in the observed distributions across the three 
studies: different compiler versions may have been used, and 
different cohorts participated. Neither Jadud nor Jackson et al 
describe any attempt to eliminate recurrent errors from their 
results as this paper does (II-C.2). 

B. Error categories compared to diagnostic messages 
The top 8 categories (see Table I) cover just over 50% of 

events; in contrast, the top 4 diagnostic messages cover roughly 
the same amount (52.8%). This fact alone demonstrates that the 
categories described here are in general more precise than the 
compiler’s diagnostics. While each category describes an error 
that will cause a diagnostic message to be generated by javac, 
the diagnostic message does not in general reflect the same 
precision as the category (see examples in III-A.2). 

There are also categories for which the associated 
diagnostic messages are not just imprecise, but are inaccurate. 
The “keyword written incorrectly” category, for instance, 

TABLE III. DIAGNOSTIC MESSAGE FREQUENCIES 

Diagnostic message form Frequency 
cannot find symbol - variable {variablename} 24.0% 
';' expected 14.7% 
cannot find symbol - method {method (…)} 8.7% 
')' expected 5.4% 
cannot find symbol - class {classname} 4.8% 
illegal start of expression 3.6% 
'(' or '[' expected 3.3% 
{method(…)} in {class} cannot be applied to 
({parameter types}) 

3.3% 

unreported exception {classname}; must be caught or 
declared to be thrown 

3.3% 

reached end of file while parsing 2.4% 
 

TABLE II. CATEGORY COVERAGE FOR TOP N CATEGORIES 

N (number of categories) Coverage level 
5 44.1% 
10 58.9% 
15 66.4% 
20 73.0% 
25 78.7% 
30 82.3% 

 



corresponds to the following diagnostic messages in the data 
set used for analysis: 

• cannot find symbol - variable flase 

• cannot find symbol - variable True 

These occurred due to misspelling and incorrect 
capitalization of the literals ‘false’ and ‘true’, respectively. The 
compiler message, however, refers to the lack of definition of a 
variable. While it is true that no variable defined as ‘flase’ or 
‘True’ existed, it is not the case that a variable reference was 
being attempted here. 

C. Coverage level of error categories 
The category coverage analysis shows that a small 

proportion of the categories cover a significant portion of errors 
(Table III). The top 10 categories cover well over 50% of 
errors; as more categories are added, the coverage increases, 
but the increase diminishes as N increases (where N is the 
number of categories). This implies that pedagogical 
interventions (or error diagnostic tools) would be effective by 
focusing on a select number of the most frequent types of error. 

D. Risks and limits to validity 
Several factors impose risks and limits to the interpretation 

of this data. 

First, all data was collected using the BlueJ IDE, consisting 
of programs in the Java programming language. Thus, all 
results are restricted to this programming language, and may be 
influenced by the choice of programming environment. 

Data from the first collection exercise was obtained from a 
relatively narrow set of students performing a relatively small 
set of programming exercises (two university courses). This 
data could be biased by student background and by the type of 
exercises undertaken. 

An attempt was made to use data more widely spread in 
student demographics for the second collection, by using 
subjects from the general BlueJ user population, but no 
information about student background or characteristics in 
known for this data set. 

The number of error events categorised is still relatively 
low. While they appear to be large enough for results to have 
stabilised, and thus seem suitable for this type of analysis, 
categorising a larger number of errors to increase the 
confidence level might be desirable. 

V. FUTURE WORK 
While the manual categorisation and frequency analysis of 

errors is in itself a useful result with the potential to guide 
future pedagogical interventions, it can also serve as the basis 
for improving educational programming environments. 

The goal of the next phases of the authors' work is to 
improve automatically generated diagnostic messages. This 
work involves four distinct phases: 

• The severity measure of an error will be defined, and 
the severity of every error category will be calculated. 
In this paper, only the frequency of the error has been 

presented. The severity of the error is a combination of 
frequency and difficulty, measured in time to solve the 
error. If an error is frequent, but easily fixed by 
beginners, it is less severe than errors that are frequent 
but present more persistent hurdles. 

• When researchers categorised the errors, they made use 
of a variety of contextual information, usually found 
elsewhere in the source code. For example, when an 
"Unknown identifier" diagnostic was encountered, the 
cause of the error could often be determined more 
specifically, by examining whether a similarly spelt 
identifier exists. We will record and analyse the 
contextual information used by researchers for this 
purpose. 

• We will investigate whether the use of contextual 
information as done by human researchers can be 
automated in some cases to improve the presentation of 
error diagnostics. 

• We hope to identify some errors where this 
improvement can be automated, and where the error 
ranking is relatively severe. For those errors, we hope to 
implement a system that produces clearly improved 
error diagnostics. 

Both the availability of error frequencies and the process of 
manual evaluation, as presented in this paper, are necessary for 
this further analysis. 

VI. CONCLUSION 
Determining the relative frequency of errors students make 

when programming in a particular programming system has 
long known to be useful. We improved on previous 
methodologies by analysing logical errors instead of diagnostic 
messages. This leads to a more reliable ranking of student error 
frequencies. 

The results show that human analysis can quite reliably 
identify the source of a student error more precisely than 
typical compilers currently do. This identification is reliable 
across individual researchers for the most frequent errors. 

There is some variation of our results compared to 
previously published studies. The data indicates that the most 
frequent errors are syntactical and their cause can often be 
determined reasonably precisely, which gives rise to some hope 
that the production of automated diagnostic messages could be 
improved. 
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