
Meaningful Categorisation of Novice Programmer
Errors

Davin McCall, Michael Kölling
School of Computing

University of Kent
Canterbury, United Kingdom

{dm391,m.kolling}@kent.ac.uk

Abstract—The frequency of different kinds of error made by
students learning to write computer programs has long been of
interest to researchers and educators. In the past, various studies
investigated this topic, usually by recording and analysing
compiler error messages, and producing tables of relative
frequencies of specific errors diagnostics produced by the
compiler. In this paper, we improve on such prior studies by
investigating actual logical errors in student code, as opposed to
diagnostic messages produced by the compiler. The actual errors
reported here are more precise, more detailed and more accurate
than the diagnostic produced automatically.

In order to present frequencies of actual errors, error
categories were developed and validated, and student code
captured at time of compilation failure was manually analysed by
multiple researchers. The results show that error causes can be
manually analysed by independent researchers with good
reliability. The resulting table of error frequencies shows that
prior work using diagnostic messages tended to group some
distinct errors together in single categories, which can now be
listed more accurately.

Keywords—programming, errors, novices, Java

I. INTRODUCTION AND PRIOR WORK

A. The Study of Student Errors
The study of errors made by students in their attempts to

write programs during the early phases of learning to develop
software has a long tradition. Various researchers (for example
Jadud [5], Shinners-Kennedy and Fincher [9], and Marceau,
Fisler and Krishnamurthi [8]) have investigated varying aspects
of student errors, using different programming languages and
environments.

The aim of investigating student errors usually falls into
one of two categories:

• Some researchers aim at identifying the most common
or most serious problems that students have when
learning to program, including recognising difficult
concepts [9] or misconceptions [10]. The ultimate aim
is to improve teaching and learning through an
awareness of the cognitive and practical challenges
learners face.

• Another group of researchers investigate compiler error
messages and students' reaction to encountering them
[5,8]. This includes wording and presentation of errors,
with the ultimate aim at improving our educational
programming systems by producing better messages
that provide improved help to students.

Both of these aspects still present interesting research
challenges. There still is no real agreement about the most
common problems students encounter, and how to address
these in our teaching is an open question. Compiler error
messages presented to students are still very obviously less
helpful than they could be in most development systems used
for programming education.

The work presented here aims at addressing both these
areas for the Java programming language. Our work includes a
method of identifying common student problems that differs
from those presented in previous studies, and aims at ultimately
improving both the understanding of problems students face in
introductory Java programming, and the messages that our
development tools produce.

In this paper, we present an analysis of the most common
student errors, using a more reliable methodology than
previous studies. This forms the basis of future work to
improve compiler error messages. The result is also relevant
for teachers and researchers wishing to improve programming
pedagogy.

B. The Problem with Investigating Error Messages
Various studies [1,4,5] have investigated student errors in

the past. Almost all of these studies used the compiler error
messages as the data at the heart of their research, usually by
recording and analysing error messages produced, and
identifying frequent or persistent messages.

This approach presents a significant problem. The
relationship of the compiler error message to the logical error is
not strong enough.

For the purposes of more precise discussion we define the
following terms, which we use in the remainder of this paper:

• The Error is the nature of the problem in the source
code that causes the compilation or execution to fail.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30704963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• The Diagnostic Message is the human-readable
message presented to the programmer when execution
or compilation fails.

• The Programmer Misconception is the nature of the
misunderstanding that resulted in the erroneous code
being written.

For the aims of their work, researchers are usually
interested in the error (and then, following this, the
programmer misconception), but studies usually evaluate only
the diagnostic messages. The reason for this is simple:
recording the diagnostic messages can easily be automated, and
analyses can be made at a large scale. Identifying the actual
error that causes the diagnostic is more difficult, and cannot be
automated.

However, this problem deserves to be taken more seriously
than it previously has. Imprecision in the relationship between
errors and diagnostic messages exists in both ways:

• A single error may, in different context, produce
different diagnostic messages.

• The same diagnostic message may be produced by
entirely different and distinct errors.

C. Mismatch of errors and diagnostic messages
It is easy to find examples of ambiguity of errors and

diagnostic messages. Consider, for example, the following
code fragment in Java:

for (int i=0, i<10, i++) {
}

This code contains an error: The student has typed a comma
in the loop header where Java requires a semicolon. When
compiled1, the following diagnostic message is produced:

';' expected

Consider further the following code segment:
int number of points = 0;

This code results in exactly the same diagnostic message,
even though the error is different (the student included spaces
in a variable name, which Java does not allow).

For purposes of analysing student misconceptions or
common problems, these are two very different errors which
should be distinguished, yet counting of diagnostic messages
will record them as the same.

The reverse problem – the same logical error producing
different diagnostic messages – is also frequent. Consider:

JFileChooser.showOpenDialog;

and

if(n > myList.size - 1) ...

Both these fragments contain the same logical error (the
student forgot to type parentheses after a method call), but the
diagnostic message is different. The first fragment produces

1 For this paper, all diagnostic messages used as examples were produced with

javac, version 1.7.0_45
2 A full list of all categories defined can be found at

not a statement

while the second causes a response of

size has private access in
java.util.ArrayList

This differences causes obvious problems for analyses of
student difficulties. In fact, the situation is even worse than
this: The exact same code (in the same context) will produce
different error messages when compiled with different
compilers (and sometimes even with different versions of the
same compiler).

Which diagnostic message is displayed is typically decided
by the compiler writer, and usually does not take pedagogical
considerations into account. In fact, which message is produced
often depends on the internal structure of the compiler, and is
to a significant extent an artefact of its implementation details.
This introduces a significant random factor into research based
on diagnostic messages, and imposes a limited utility on such
studies.

D. Identifying Errors
For the study presented here, we identify and analyse errors

(as opposed to diagnostic messages). The potential benefits are
clear – we can see the actual logical errors made by students,
and speculate on programmer misconceptions – but the
problems are also apparent: identification of errors cannot be
easily automated, and thus involves manual classification. For
each error, a researcher has to look at the source code and make
a judgement about the actual cause of the error. This
classification is more work intensive, so it is difficult to reach
the same scale, and necessarily involves a degree of
subjectivity.

It is not immediately clear whether actual errors can
reliably be identified by researchers with sufficient accuracy
and objectivity. This leads to the following research questions:

1. Can a manageable set of error categories be
developed to group student errors?

2. Can student errors be categorised objectively and
reliably?

If the answer to these two questions is 'yes' (and the
categorisation is produced), then we can ask a third question:

3. Which are the most common errors that beginning
student make?

In order to be useful, the number of different error
categories used must be neither too small nor too large. This is
expressed in question 1. If nearly every error produces its own
category, the analysis would have no value, as is also true if too
many errors fall into the same category. We consider a number
of categories in the dozens (rather than single figures or
hundreds) to be desirable.

A second question is whether a meaningful classification
can be done that is sufficiently independent of individual
researchers' judgement. If this is the case, the analysis of the
data presents more useful results than analyses of diagnostic
messages.

In this paper we present work to address all three of the
above research questions. We present a set of error categories,
a method to validate them for objectivity, and an analysis of a
set of errors using these categories.

E. Providing Better Diagnostics
As a side effect of this study, when researchers classify

errors they can also record the contextual information used
when making a judgement about the actual cause. It can then
be investigated whether (or in which cases) use of this
contextual information can be automated, and whether this
analysis can be used to ultimately produce better automated
diagnostic messages.

This paper does not include such an analysis, but the work
presented here forms the basis of this work in future.

II. METHOD
To perform the analysis described above, student error data

was collected, error categories have been developed and
checked for inter-coder reliability, student data was categorised
and an analyses of this categorisation has been performed.

A. Data Collection
Two separate collections were performed. Both sets of data

collection used the BlueJ IDE [6] to collect data from
programmers using that environment. Thus, the data presented
here is specific to the use of Java within BlueJ.

The first data collection exercise augmented BlueJ with an
extension that captured snapshots of the students' source code
at compilation times as they performed their coursework in a
university course. Participants were students of two
introductory Java programming courses, one of the University
of Kent, UK, and one at the University of Puget Sound in
Washington, USA, in autumn 2013. Participation in the data
collection was voluntary. Overall about 240 students
participated in the data collection. (Determining the exact
number is difficult since the data was anonymised, and for
technical reasons some participants may have received two
anonymous ID numbers.)

Included in the collected data were details of each
compilation event, consisting of a time stamp, outcome of the
compilation (success, or error message) and the source code at
the time of the event.

Overall, 37,432 compilation events were recorded, with
21,623 of these associated with a compilation error (the
remainder being successful compilations). 197 of these were
subsequently analysed.

This first data set was used for the first phase of the
analysis, the category development (see section II-B).

A second data collection exercise was then performed to
gather a larger data set for more large-scale and more varied
(and therefore more reliable) analysis. For this collection, the
Blackbox [3] project data was used. Blackbox is a data
collection project initiated by the authors and others to support
this work and other educational studies, by multiple
researchers.

Blackbox provides educational programmer user data at a
large scale by collecting the data from BlueJ users worldwide.
All users of a recent version of BlueJ are asked to participate in
this experiment as a routine part of using the environment, and
participation is voluntary (through an opt-in mechanism).

Currently, approximately 250,000 users are participating in
the Blackbox data gathering, and the Blackbox dataset contains
information about more than 20 million compilation events.

For the study presented here, 23 sessions comprising a total
of 136 events recorded between 2013-06-11 and 2014-01-01
were randomly selected from the Blackbox data for analysis.
This dataset in conjunction with the first dataset forms the basis
for the categorisation, described in section II-C.

B. Category Development
The first phase of the analysis is the development of

categories for the categorisation of the error (as distinct from
the diagnostic message). The method used for this is based on
Thematic Analysis methodology [2]. Categories are developed
and refined as familiarisation with the data set is improved by
repeated reading of the data set.

A simple web-based application was developed that
presents compilation failure events (students errors) to
researchers, lets researchers inspect the event details (such as
source code) and allows the classification of the error using a
category system (including definition of new categories). The
method is data driven, deriving the categories from the actual
errors that were observed. This necessitated occasional need to
revisit and re-categorise prior errors as the category system
evolved.

The initial phase of this categorisation was performed by
two researchers in collaboration until a suitable abstraction
level for categories emerged, and then continued by a single
researcher.

1) Category hierarchies
Error categories were allowed to form a hierarchy.

Sometimes the cause of the error could be determined fairly
precisely, for example "method call: parameter number
mismatch - call incorrect" in a case where a method call is
written with the wrong number of parameters, and it is apparent
that the method call expression at the call site (and not the
method definition) is incorrect. A more general error is
“method call: parameter number mismatch”, for cases when it
cannot be decided whether it is the call site or the definition
which is erroneous. These errors form a hierarchy, since one is
a more specific variant of the other.

In each case, the most specific error category that could be
determined with confidence by the researcher was assigned.
For some analyses, sub-categories may be included in their
parent categories.

Category hierarchies were developed naturally as the
categories themselves were formed, during the familiarisation
with the data set. If events were encountered for which an error
category existed which closely matched but was either too
specific or not specific enough, a new category was created and
a hierarchy formed.

2) Validating the categories
Once the category system stabilised, the category system

was validated. The premise of manual error categorisation is
only useful if the identification of errors achieves a high degree
of reliability and objectivity.

The validation of the categories was performed by
calculating inter-coder reliability (the degree with which two
researchers categorising the same set of error events
independently agree on the category assignment).

To check inter-coder reliability, 150 error events were
independently coded by three researchers, and a percent
agreement calculation [7] was performed.

Since multiple categories could be assigned to a single
event (see II-C.1), the calculation of pairwise agreement
required handling of cases where multiple categories were
assigned by one researcher, and another researcher or
researchers assigned fewer categories. Pairwise agreement in
these cases was counted according to the following method:

1. Let N be the number of researchers who have
categorised an event

2. Let Rn be the set of categories assigned to a
particular event by researcher n (for each n in
1..N)

3. Let C be the vector containing all the elements
{R1, …, Rn), ordered by size (smallest to largest).

4. For each element of C, as Ci:

a. For each further element of C, as Cj (j > i)

i. Count one agreement for each element of
Ci that also appears in Cj, and one
disagreement for each element of Ci that
does not appear in Cj.

Use of this method effectively treats an event that has been
multiply categorised by one or more researchers as multiple
data points (each representing a logically distinct error) that
have been categorised separately, and assumes that equivalent
categorisations from multiple researchers are referring to the
same data point.

C. Categorisation
Once error categories were defined and validated, 136

additional error events from the second data set were coded by
a single researcher using these categories. The categories at this
stage were mostly stable, with only a small number of new
categories introduced to cover errors not seen in the first data
set.

This categorisation, together with the categorisation
performed on the first data set during the category development
process, forms the basis of the analysis presented below.

1) Multiple errors in single events
In some instances, multiple errors were present in or near

the same location in a single error event. An extreme – but real
– example from the data illustrates this:

answer=this.getuserinput

This code includes four separate errors: the method name is
mis-spelt, parentheses are missing after the method call, a
semicolon is missing at the end of the statement, and the
variable used in the assignment is undefined.

Finding four errors at an error event may be rare, but the
occurrence of two concurrent errors is reasonably frequent. In
these cases, we coded the event by counting an instance of an
error for each category that was found (that is: registering all
errors present, not just the single one that would have resulted
from counting diagnostic messages).

2) Recurrence
Another situation that requires consistent handling during

analysis is the recurrence of the same error multiple times, in a
very short space of time. Sometimes, students recompile
erroneous code without editing the segment that caused the
error (either making other changes or, occasionally, not making
any changes at all). Just compiling the same error multiple
times should not count as multiple errors, as this would
invalidate the error frequency count.

Three easily identifiable variations of the recurrence
phenomenon were noticed during the initial category
development (II-B). First, there were cases where the exact
same source had been recompiled (either immediately, or with
an intervening change or changes that were then reverted);
secondly, there were cases where a minor edit was performed
to the single line which was identified as erroneous by the
diagnostic message produced by the compiler, which did not
resolve the original error and which usually resulted in the
same diagnostic message being produced again; finally, edits
were sometimes made elsewhere in the source, rather than on
the line identified as erroneous by the diagnostic message,
which was left unchanged (leaving the error intact and causing
the same diagnostic to be produced again).

Therefore, recurrence was defined as any of:

• Compilation of the exact same source file as had
previously been compiled (at any stage in the session),
resulting in the same diagnostic message being
produced by the compiler

• Compilation where the only source line changed from
the previously recorded event was the one identified by
the diagnostic message as containing an error, and
where the diagnostic message was the same as for the
previous event.

• Compilation where the source line identified as
containing an error for the previous event has not been
changed, and for which the diagnostic message is the
same as for the previous event.

Recurring error events were detected automatically and
omitted from the analysis.

D. Data analysis
Once error categorization was performed, the following

analyses were made on the data:

1) Frequency of errors
The frequency of errors was calculated by counting the

relative occurrence of each category (from all data points
included in the categorisation). A list of errors ranked by
frequency was produced.

2) Number and frequency of diagnostic messages
The diagnostic messages associated with the categorised

errors were collated and counted. This had to be performed
manually, due to diagnostic messages often containing variable
elements (such as user identifiers).

3) Coverage level of the most frequent error categories
The coverage (relative number of analysed events) of the

top N most frequent error categories was measured. The
coverage expresses what proportion of actual error events falls
into the top N categories. This analysis is useful when devoting
effort on improving pedagogical interventions or error
diagnostics: It is useful to judge the actual impact of an
intervention or a potential improvement of an error message.

This calculation was performed for N=5 through N=30 in
increments of 5.

III. RESULTS

A. Error Categories
A total of 80 error categories were identified during the

category development phase of the research (described in
section II-B). Broadly, errors can be divided into syntactic,
semantic, and logic errors.

1) Syntax error categories
A variety of common syntax errors were identified. One of

these, “semicolon missing”, corresponds closely to the javac
diagnostic message “’;’ expected”. In general, however, the
identified syntax error categories do not correspond well with
any particular diagnostic messages that can be produced by
javac. Examples include “keyword written incorrectly”,
“method call: missing comma between parameters”, “method
call: parameter types included”, “method call: semicolon in
place of comma”, and “mismatched parentheses in or around
expression”. A general category, “invalid syntax”, was created
as a super-category for all syntax errors (and was used to
categorize errors that did not fit into any of the identified
subcategories)2.

2) Semantic error categories
As well as syntax error categories, a broad range of

semantic error categories were identified.

Semantic error categories showed a greater tendency to
correspond, to some degree, with compiler diagnostic messages
than did the syntax error categories. Examples include “type
mismatch in assignment” (javac: “Incompatible types”) and
“variable not declared” (javac: “cannot find symbol –
variable”). More precise sub-categories were identified in some
cases – for instance, “variable name written incorrectly” is a
sub-category of “variable not declared”, applicable when it is
apparent the programmer intended to refer to a particular

2 A full list of all categories defined can be found at

http://bluej.org/davmac/2014_novice_errors/categories.html

variable but wrote the name incorrectly, due to misspelling or
wrong capitalization (for example). The compiler’s diagnostic
message in these cases does not change, showing that the
categorization scheme can achieve a higher precision in
describing these errors.

Another example of the category scheme allowing for
higher precision than the compiler diagnostic message
presently does is for method calls with the wrong number of
parameters. While javac does identify this error (“method xyz
in class Abc cannot be applied to given types; … reason: actual
and formal argument lists differ in length”), the compiler
makes no distinction between incorrect method calls and
declarations; a researcher performing categorization, on the
other hand, may be able to use certain clues to allow such a
distinction; for instance, with a call to library method that is
part of the standard Java API, it can generally be assumed that
the call must be at fault since the declaration is known to be
correct.

B. Frequency of error categories
A total of 368 categorizations were applied to 333 events.

The frequency of the top 10 error categories is shown in Table
I3.

The most frequently occurring error is “Variable not
declared”. This error alone accounts for 11.1% of all error
instances.

C. Diagnostic message frequency
Each of the 333 compilation events analysed had an

associated compiler diagnostic message. To judge whether the
manual classification provides an improvement over
classification of diagnostic messages, it is useful to compare
Table I to the equivalent table if diagnostic messages are used
for classification. The messages often incorporate variable,
contextual text such as user identifiers (variable, method and
class names); the general form of such messages was manually
extrapolated. The frequency of the top 10 messages is shown in
Table II.

3 A full table of error frequencies found is online at

http://bluej.org/davmac/2014_novice_errors/frequencies.html

TABLE I. FREQUENCY OF ERROR CATEGORIES

Category Frequency
Variable not declared 11.1%
; missing 10.3%
Variable name written incorrectly 8.4%
Invalid Syntax 7.9%
Method name written incorrectly 4.9%
Missing parentheses for constructor call 4.1%
Unhandled exception 3.0%
Class name written incorrectly 2.7%
Method call: parameter type mismatch 2.4%
Type mismatch in assignment 2.4%

D. Category coverage
Coverage levels for the top N categories were calculated for

N=5, 10, 15, 20, 25 and 30. The coverage level represents the
relative number of events that are categorised by at least one of
top N categories. The results are shown in Table III.

The results show that, for instance, the top 10 error
categories encompass nearly 59% of all error events that
students encounter. Thus, a significant impact could be
achieved if reporting or understanding of just these errors could
be improved.

E. Intercoder reliability
After three separate researchers performed categorisation of

the same error set, the average pairwise agreement (II-B.2) was
calculated. The agreement across all events and all categories
was 70.06%. This figure could be considered an indicator of a
modest level of agreement. However, agreement is not
uniformly distributed over all error categories. Agreement
tended to be higher in more common categories, and lower in
less frequent, more obscure cases. Since it is likely that future
work (both pedagogical or in tool improvements) will
concentrate on the most frequent errors, it is interesting to
investigate agreement levels separately for this group.

For the top 10 error categories, pairwise agreement was
92.5%. For the top 20 categories, agreement is 87.4%. This
indicated a good level of researcher agreement in classification
of the errors.

The method used to calculate agreement is conservative,
and higher agreement could be claimed using different
methodology. To allow simplified calculation, pairwise
agreement did not take the category hierarchy (see II-B.1) into
account. A selection by one researcher of a category which was
a subcategory of that selected by another researcher was
counted as disagreement, whereas in fact this would be

indicative of partial agreement. The impact of this is potentially
quite significant. For the “Class name written incorrectly”
category for example, all three researchers agreed on the
category for exactly 50% of the events for which this category
was selected. For the remaining 50%, two researchers chose
this category and the third chose the “Class not defined” super-
category. Thus, at the higher category level for this particular
category, there is 100% agreement.

As a result, the agreement level reported above is a
conservative lower bound.

IV. DISCUSSION

A. Diagnostic Message Frequencies in Comparison to Other
Studies
Jadud [5] published a distribution of errors made by

novices, which was determined solely by examining diagnostic
messages produced by javac. He finds the “missing semicolon”
message to be the most frequent at 18%, with “unknown
symbol – variable” next at 12%. “bracket expected”, “illegal
start of expression” and “unknown symbol: class” follow at
12%, 9% and 7% respectively.

Jackson, Cobb, and Carver [4] found a somewhat different
distribution in their own study, also based on diagnostic
messages: they list “cannot resolve symbol” (which possibly
includes both “unknown variable” and “unknown class” errors)
as the most frequent at 14.6%, with “; expected” next at 8.5%.
“illegal start of expression” and “) expected” also feature in the
top 6 most frequent diagnostic messages, with “class or
interface expected” and “<identifier> expected” both appearing
in the top 5 (they appear in Jadud’s distribution at position 8
and 9 respectively).

Although the frequencies vary, there are several diagnostics
that appear in both the Jadud and Jackson-Cobb-Carver top 10
lists. The diagnostic message frequencies in this paper show a
relatively high incidence of “cannot find symbol”, “’;’
expected”, “’)’ expected” and “illegal start of expression”
diagnostics, similar to the other two studies, showing at least a
moderate level of consistency between the three studies.

There are several factors that could explain some of the
differences in the observed distributions across the three
studies: different compiler versions may have been used, and
different cohorts participated. Neither Jadud nor Jackson et al
describe any attempt to eliminate recurrent errors from their
results as this paper does (II-C.2).

B. Error categories compared to diagnostic messages
The top 8 categories (see Table I) cover just over 50% of

events; in contrast, the top 4 diagnostic messages cover roughly
the same amount (52.8%). This fact alone demonstrates that the
categories described here are in general more precise than the
compiler’s diagnostics. While each category describes an error
that will cause a diagnostic message to be generated by javac,
the diagnostic message does not in general reflect the same
precision as the category (see examples in III-A.2).

There are also categories for which the associated
diagnostic messages are not just imprecise, but are inaccurate.
The “keyword written incorrectly” category, for instance,

TABLE III. DIAGNOSTIC MESSAGE FREQUENCIES

Diagnostic message form Frequency
cannot find symbol - variable {variablename} 24.0%
';' expected 14.7%
cannot find symbol - method {method (…)} 8.7%
')' expected 5.4%
cannot find symbol - class {classname} 4.8%
illegal start of expression 3.6%
'(' or '[' expected 3.3%
{method(…)} in {class} cannot be applied to
({parameter types})

3.3%

unreported exception {classname}; must be caught or
declared to be thrown

3.3%

reached end of file while parsing 2.4%

TABLE II. CATEGORY COVERAGE FOR TOP N CATEGORIES

N (number of categories) Coverage level
5 44.1%
10 58.9%
15 66.4%
20 73.0%
25 78.7%
30 82.3%

corresponds to the following diagnostic messages in the data
set used for analysis:

• cannot find symbol - variable flase

• cannot find symbol - variable True

These occurred due to misspelling and incorrect
capitalization of the literals ‘false’ and ‘true’, respectively. The
compiler message, however, refers to the lack of definition of a
variable. While it is true that no variable defined as ‘flase’ or
‘True’ existed, it is not the case that a variable reference was
being attempted here.

C. Coverage level of error categories
The category coverage analysis shows that a small

proportion of the categories cover a significant portion of errors
(Table III). The top 10 categories cover well over 50% of
errors; as more categories are added, the coverage increases,
but the increase diminishes as N increases (where N is the
number of categories). This implies that pedagogical
interventions (or error diagnostic tools) would be effective by
focusing on a select number of the most frequent types of error.

D. Risks and limits to validity
Several factors impose risks and limits to the interpretation

of this data.

First, all data was collected using the BlueJ IDE, consisting
of programs in the Java programming language. Thus, all
results are restricted to this programming language, and may be
influenced by the choice of programming environment.

Data from the first collection exercise was obtained from a
relatively narrow set of students performing a relatively small
set of programming exercises (two university courses). This
data could be biased by student background and by the type of
exercises undertaken.

An attempt was made to use data more widely spread in
student demographics for the second collection, by using
subjects from the general BlueJ user population, but no
information about student background or characteristics in
known for this data set.

The number of error events categorised is still relatively
low. While they appear to be large enough for results to have
stabilised, and thus seem suitable for this type of analysis,
categorising a larger number of errors to increase the
confidence level might be desirable.

V. FUTURE WORK
While the manual categorisation and frequency analysis of

errors is in itself a useful result with the potential to guide
future pedagogical interventions, it can also serve as the basis
for improving educational programming environments.

The goal of the next phases of the authors' work is to
improve automatically generated diagnostic messages. This
work involves four distinct phases:

• The severity measure of an error will be defined, and
the severity of every error category will be calculated.
In this paper, only the frequency of the error has been

presented. The severity of the error is a combination of
frequency and difficulty, measured in time to solve the
error. If an error is frequent, but easily fixed by
beginners, it is less severe than errors that are frequent
but present more persistent hurdles.

• When researchers categorised the errors, they made use
of a variety of contextual information, usually found
elsewhere in the source code. For example, when an
"Unknown identifier" diagnostic was encountered, the
cause of the error could often be determined more
specifically, by examining whether a similarly spelt
identifier exists. We will record and analyse the
contextual information used by researchers for this
purpose.

• We will investigate whether the use of contextual
information as done by human researchers can be
automated in some cases to improve the presentation of
error diagnostics.

• We hope to identify some errors where this
improvement can be automated, and where the error
ranking is relatively severe. For those errors, we hope to
implement a system that produces clearly improved
error diagnostics.

Both the availability of error frequencies and the process of
manual evaluation, as presented in this paper, are necessary for
this further analysis.

VI. CONCLUSION
Determining the relative frequency of errors students make

when programming in a particular programming system has
long known to be useful. We improved on previous
methodologies by analysing logical errors instead of diagnostic
messages. This leads to a more reliable ranking of student error
frequencies.

The results show that human analysis can quite reliably
identify the source of a student error more precisely than
typical compilers currently do. This identification is reliable
across individual researchers for the most frequent errors.

There is some variation of our results compared to
previously published studies. The data indicates that the most
frequent errors are syntactical and their cause can often be
determined reasonably precisely, which gives rise to some hope
that the production of automated diagnostic messages could be
improved.

ACKNOWLEDGEMENTS
The authors would like to thank Neil Brown and Michael

Berry from the University of Kent for their time spent in
categorising errors, for the purpose of category validation.

REFERENCES
[1] Ahmadzadeh, M., Elliman, D. and Higgins, C., 2005. An Analysis of

Patterns of Debugging Among Novice Computer Science Students.
ACM SIGCSE Bulletin 37, 3 (2005) 84-88.

[2] Braun, V., and Clarke, V., 2006. Using Thematic Analysis in
Psychology. Qualitative Research in Psychology 3, 2 (2006) 77-101.

[3] Brown, N. C. C., Kölling, M., McCall, D and Utting, I., 2014. Blackbox:
A Large Scale Repository of Novice Programmers’ Activity.
Proceedings of the 45th ACM Technical Symposium on Computer
Science Education (SIGCSE ’14) 223-228.

[4] Jackson, J., Cobb, M., and Carver, C., 2005. Identifying Top Java Errors
for Novice Programmers. Proceedings of the 35th Annual Conference
Frontiers in Education (FIE ’05). (Oct. 2005) T4C-24 – T4C-27.

[5] Jadud, M. C, 2005. A First Look at Novice Compilation Behaviour
Using BlueJ. Computer Science Education 15, 1 (Mar. 2005), 25-40.

[6] Kölling, M., Quig, B., Patterson, A. and Rosenberg, J. (2003) The BlueJ
system and its pedagogy. Computer Science Education, 13 (4). pp. 249-
268. ISSN 0899-3408.

[7] Lombard, M., Snyder-Duch, J., and Bracken, C. C., 2006. Content
Analysis in Mass Communication: Assessment and Reporting of
Intercoder Reliability. Human Communication Research 28, 4 (Jan.
2006), 587-604.

[8] Marceau, G., Fisler, and K., Krishnamurthi, S., 2011. Mind Your
Language: On Novices’ Interactions with Error Messages. Proceedings
of the 10th SIGPLAN Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (ONWARD ’11) 3-18.

[9] Shinners-Kennedy, D. and Fincher, S., 2013. Identifying Threshold
Concepts: From Dead End to a New Direction. Proceedings of the Ninth
Annual International ACM Conference on International Computing
Education Research (ICER ’13) 9-18.

[10] Sorva, J., 2013. Notional Machines and Introductory Programming
Education. ACM Transactions on Computing Education (TOCE) 13, 2
(Jun. 2013) 8:1-8:3.

