
Otterbein University Otterbein University

Digital Commons @ Otterbein Digital Commons @ Otterbein

Mathematics Faculty Scholarship Mathematical Sciences

2000

Design Early Considered Harmful: Graduated Exposure to Design Early Considered Harmful: Graduated Exposure to

Complexity and Structure Based on Levels of Cognitive Complexity and Structure Based on Levels of Cognitive

Development Development

Duane Buck
Otterbein University, DBuck@otterbein.edu

David J. Stucki
Otterbein University, dstucki@otterbein.edu

Follow this and additional works at: https://digitalcommons.otterbein.edu/math_fac

 Part of the Computer Sciences Commons, and the Mathematics Commons

Repository Citation Repository Citation
Buck, Duane and Stucki, David J., "Design Early Considered Harmful: Graduated Exposure to Complexity
and Structure Based on Levels of Cognitive Development" (2000). Mathematics Faculty Scholarship. 12.
https://digitalcommons.otterbein.edu/math_fac/12

This Conference Proceeding is brought to you for free and open access by the Mathematical Sciences at Digital
Commons @ Otterbein. It has been accepted for inclusion in Mathematics Faculty Scholarship by an authorized
administrator of Digital Commons @ Otterbein. For more information, please contact
digitalcommons07@otterbein.edu.

https://digitalcommons.otterbein.edu/
https://digitalcommons.otterbein.edu/math_fac
https://digitalcommons.otterbein.edu/math
https://digitalcommons.otterbein.edu/math_fac?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.otterbein.edu/math_fac/12?utm_source=digitalcommons.otterbein.edu%2Fmath_fac%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons07@otterbein.edu

Design Early Considered Harmful:
Graduated Exposure to Complexity and Structure

Based on Levels of Cognitive Development
Duane Buck and David J. Stucki

Otterbein College
Mathematical Sciences Department

Westerville, OH 43081
{DBuck, DStucki} @otterbein.edu

Abstract
We have recognized that the natural tendency to teach
according to the structure of one’s own understanding runs
contrary to established models of cognitive development.
Bloom’s Taxonomy has provided a basis for establishing a
more efficacious pedagogy. Emphasizing a hierarchical
progression of skill sets and gradual learning through
example, our approach advocates teaching software
development from the inside/out rather than beginning with
either console apps or monolithic designs.
Keywords
Inside/out Pedagogy, CS1, CS2, Control Structure
Diagrams, Bloom’s Taxonomy, Formal Specifications.

1. Introduction
The traditional liberal arts (arising out of the classical
quadrivium and trivium) divided education and the
instruction of knowledge into a hierarchy. There was a
prescribed order to the subjects, based on their dependency
relationships. Language grammar was seen as a prerequisite
to logic, which in turn was a necessary precursor to
rhetoric. In other words, it has long been obvious to
educators that students must master the basics before
attempting more advanced, abstract endeavors. Somehow,
in the fury of technological advancement we have lost sight
of this in computer science education.
Recent attempts to embrace the object-oriented paradigm in
CS1 (at least in many textbooks) have resulted in students
being exposed to very complex and often subtle concepts
before they have any adequate contextual foundation upon
which to base comprehension. This problem isn’t new.
Even earlier approaches to CS1 had students designing
entire applications from the start (albeit small ones first).
We feel strongly that students learn better when they are
provided a context that constrains their thinking in a
directed fashion. In other words, expecting them to program

to specifications is a way of providing guidance and
mentoring without having to give them cookbook
instructions.

2. A New Pedagogy
In this paper, we argue that practitioners of computer
science education have much to learn from extant research
on educational pedagogy. We draw specifically from
cognitive development theory and the pedagogy of teaching
writing. This has led us to an approach for early computer
science education that is at odds with existing textbooks1.
2.1 Analogy to Composition
Our premise is that students learn best when they are given
a chance to learn building blocks before they are asked to
design the whole building. In teaching writing (at least
outside the U.S.), one starts with writing sentences, then
paragraphs, then essays. In computer science, an error has
been made by assuming that the student should start out by
writing the equivalent of a whole literary form. We don't
know exactly how this misguided approach got started, but
we present below a few possible influences.
In teaching writing, practitioners must first imagine, and
then specify the context of a paragraph or essay fragment
prior to assigning the writing of it. One motivation for
requiring a whole form in computer science is that
computers are very narrow minded and require precise
adherence to a certain form. With some advance
preparation, however, we can avoid forcing the student to
write whole forms, but only require that they complete a
missing fragment in a more complete work, where they are
told the “message” the fragment is to convey. In other
words, learn to program from the inside out, solving smaller
problems first.
2.2 Cognitive Development
We have also observed that Bloom's taxonomy of cognitive
learning is helpful in structuring the beginning computer
science curriculum. Each level in the hierarchy is
subsumed by the next level, so that higher order functioning
requires by necessity the lower level skills. In Figure 1 we
list each level and the kinds of behaviors that might be
expected of a computer science student operating at that
level.

1 In response, we have developed a set of web-based materials to

support our methods, and are making the materials freely
available to others. (See http://math.otterbein.edu/sigcse/)

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Proceedings ACM SIGCSE Symposium, March 8-12, 2000, Austin,
Texas.

When we teach, we have an inclination to recapitulate the
systems development process, because that is the order in
which we have learned to apply our craft. We see here that
cognitive development corresponds, more or less, to the
reverse of the ordering of activities in the usual systems
development process. So our inclination is to present topics
in an order that is dissonant with the cognitive development
of our students. For some students, whose cognitive
development is already advanced, this may be appropriate.
However, with the increasing diversity of backgrounds of
students selecting computer science as a major, we no
longer have the luxury of ignoring pedagogical issues.
It's not that we have been lazy; we have really been too
heroic. Some disciplines are comfortable with the
knowledge and comprehension levels for too long a period
of time, well past the time that their students should be
developmentally ready to move on. They may be able to
fool themselves into believing that their students are
exhibiting the higher levels of development. However,
because our students create artifacts that have tangible,
independent evaluation (the compiler and run-time
performance), we have a built-in reality-check. This
independent evaluation may be another factor encouraging
us to push our students beyond their developmental levels.
We should not be afraid to honor our students'
developmental status: if we give assignments that are
consonant with their developmental level, we will obtain
better outcomes.

2 Cognitive level descriptions adapted from [1], pp. 506-507.

2.3 Inside/out : Upside/down
Based on these pedagogical influences, the process of
learning software engineering should turn the Development
Life Cycle on its head, incrementally building towards
design and then analysis.
Teaching procedures early [8] misses the whole point.
Procedures are a way to structure the solution of a problem.
How can students try to structure the solution, before they
have any idea of what a solution is? Read/call early [8] is
also a strange approach. Here we are dealing with huge,
complex primitives, with many possible behaviors. For
example, is it reasonable to expect students early in CS1 to
wade through the Java™ API (application programmer’s
interface) specification to locate the appropriate tools for
solving some specified problem? Hardly! Principled
utilization of commercial APIs requires sophisticated
synthesis of components that in turn must be thoroughly
understood (comprehended).
We may appear too reductionistic, but we have a limit. The
limit is using the primitives of the language being taught.
Why not go to a lower level and teach assembly language
first? Or machine language? The answer is that the
primitives of a procedural language reveal enough of the
underlying mechanism to get a feel for it, and the vast
majority of programmers never have to deal with that level
of detail. On the other hand, as we explain below, we are
experimenting with classical flowcharts and programming
without expressions as exercises to increase student
comprehension of the underlying processes.
So aren't we just going back to the old way of teaching

Cognitive Level2 Activity related to CS
Knowledge The remembering of previously learned material. This may

involve recall of a wide range of material, from specific facts
to complete theories, but all that is required is bringing to
mind the appropriate information.

Mathematical pre-requisites; exposure to
simple, standard libraries; instruction in
syntactic and semantic fluency in a
programming language.

Comprehension The ability to grasp the meaning of material. This may be
shown by translating material from one form to another
(words to numbers), by interpreting material (explaining or
summarizing), or by estimating future trends (predicting
consequences or effects).

Mental simulation of interpreter: Predict the
control flow through a program line by line as it
executes. Read a program and predict its
results. Translate a program to a flowchart.

Application The ability to use learned material in new and concrete
situations. This may include the application of such things as
rules, methods, concepts, principles, laws, and theories.

Implement a method to satisfy a specification.
Use of library components.

Analysis The ability to break down material into its component parts so
that its organizational structure may be understood. This may
include the identification of parts, analysis of the relationship
between parts, and recognition of the organizational principles
involved.

Read and comprehend a system with the
objective of making a modification in
functionality. Performance analysis of
algorithms. Debugging.

Synthesis The ability to put parts together to form a new whole. This
may involve the production of a unique communication
(theme or speech), a plan of operations (research proposal), or
a set of abstract relations (scheme for classifying information).
Stresses creative behaviors, with major emphasis on the
formulation of new patterns or structure.

Write an ADT, including developing the API.
Design of an application, given the
requirements.

Evaluation The ability to judge the value of material (statement, novel,
poem, research report) for a given purpose. The judgments are
to be based on definite criteria. These may be internal criteria
(organization) or external criteria (relevance to the purpose),
which may be determined by the student or be provided.

Systems analysis. Evaluation of disparate inputs
(management, users, systems personnel, etc.) to
form the requirements for a single coherent
system to meet the needs of the organization.

Figure 1: Bloom’s Taxonomy Applied to Computer Science Education

programming? Not really. The old way had the student
doing too much (writing a whole, monolithic application),
things that are really beyond them at that point in cognitive
development. That method induced a sense of panic, and
really taught bad design habits. We try to introduce one
new idea at a time, with the student both being motivated
and having the background to comprehend and apply it.
This incremental approach provides a more graduated
learning path.
Inside/out puts the student in the context of an overall
application design in which students, while working on
mastering one level, can glimpse the more advanced
concepts present in the layered interface. They are asked to
design and code algorithms, first using only language
primitives and later some simple library calls. In the context
of the design, they are given complete specifications to
which their algorithms must conform. We feel that the
specifications are important. Our method of specification
usually consists of a formal (mathematically rigorous) part
followed by an informal restatement.
We have used the inside/out approach in both procedural
and object oriented (OO) designs, and it works well in both.
However, it seems to have a real synergy with an object-
oriented language, like Java™. We strive to make the
design of our assignments reasonably close to the way a
non-academic (realistic) design might look. OO designs
often utilize methods that simply modify the object state.
These are perfect for the student to implement. There are no
input/output issues for the student, no parameter passing, no
return value, yet it is a reasonable design.
In other words, we are not teaching an OO language
procedurally forming many bad habits on the way; from day
one the student sees and implements parts of good object
oriented designs. As we progress to more advanced levels,
the student moves through the following roles, establishing
a progression of skill sets:

• server/client of language primitives
• server/client of simple libraries
• server/client of ADTs
• server of ADTs/client of ADTs
• server with application model responsibility
• server of people (application)/client of OS

functionality
3. Pedagogy In Practice
3.1 Developing Inside/Out Assignments
Our assignments typically focus on a single topic, and
supply the student with the surrounding environment to
explore that topic. The application typically includes a
nicely designed graphical user interface. However, because
of the careful layering of the design, we also may invoke
the student's solution through a batch process in order to
evaluate its conformance to the specification. An advantage
to the approach is that the student gets the feeling that the
user is in charge, instead of some weird question-and-
answer user interface that many textbooks proffer, and also
that the same functionality may be invoked through
different avenues, given a properly layered design.
Our first teaching language was Delphi™ Pascal, which had
a reasonably good IDE (integrated development

environment) for GUI (graphical user interface)
development. However, we are now switching to Java™,
and so far we have been coding the assignments in straight
Swing code. As the IDEs for Java™ mature, the
development of assignments should become easier. The
hardest part is coming up with the API and the
specifications for the methods that the student is required to
implement. One thing to avoid is having the student work
directly within the user interface code. They should work in
supporting class file(s), and observe the delegation of
responsibilities present in a good design. For instance,
direct coding into visual forms (provided by IDEs such as
Visual Basic™ and JBuilder™) should be avoided. Seeing
these unscalable designs is harmful to the student's
development of design intuition during their most formative
year.
We have been teaching Java using GRASP, from Auburn
University. It annotates the code with a Control Structure
Diagram (CSD), which gives an intuitive visual indication
of what the code means. See Figures 3 and 4. (It also
annotates ADA95, C, and C++ in the same style). Far from
being a generic pretty-printer application, we have found it
an important tool for helping our students better internalize
the meanings of control structures. (We also heavily use it
in our own development efforts.) We think CSDs are
especially useful for supporting student comprehension of
Java's strange C based programming syntax. Those curly
braces and saying void or int to create procedures or
functions is hard to comprehend. Fortunately, GRASP
solves the problem by analyzing the syntax and annotating
the source code with graphic symbols evocative of the
dynamic behavior of the program.
An encouraging discovery for us was the BlueJ [3, 4]
project at Monash University. BlueJ provides support for
inside-out teaching and assignments (using Java™) with
much less up-front effort on the part of the faculty member.
After developing the API that the student will work to
implement, the BlueJ GUI environment provides direct
support for the student exercising his or her
implementation, without having to code a GUI. The student
can code and see the behavior of the inside, without there
even being an explicit outside! We have had limited
classroom experience with BlueJ, but the results are so far
encouraging. Another use of BlueJ as a pedagogical tool is
to allow a student to learn an ADT by interactively
exploring the API (in a bottom-up fashion). This puts the
student in a less abstract role than that of programming
using the ADT. This is consistent with Bloom’s notion of
comprehension preceding application in the learning
process. It is especially useful for visualizing linked
structures that cooperate to carry out a specification. We
still believe that custom GUIs designed by faculty for an
assignment are important for giving the students a feeling
for layered design, especially at the earliest stages. Our
hope is that BlueJ will support us in latter CS1 and CS2
projects, after our students have learned to visualize the
interactions that go on in a complete application.
3.2 Example
Our CS1 course starts with a brief introduction to
programming with Jarel the Robot, a Java-based derivative
of Pattis’s [9] Karel the Robot. Because the Jarel language

has no explicit variables, we are better able to focus the
student on the sequence, selection, and iteration constructs.
The environment simulates a task with which they are
already familiar: moving around in the world. In fact, they
often visualize themselves as Jarel when they are
developing their algorithms. Although we eschew design
early in general, we are not opposed to introducing some
design elements when the student is both motivated and
cognitively ready. We believe this is the case toward the
end of the Jarel section, where we introduce defining new
instructions, starting with the classic "turnright"
implemented with a sequence of three primitive turnleft
instructions. The student's desire for symmetry is a fantastic
motivator!
We then proceed to introduce the Java™ language by way
of assignment, variables, and sequential flow. After a first,
simple project (the classical Fahrenheit to Celsius problem),
and a review of selection constructs, the second project asks
the student to implement two methods in a quadratic
equation tutoring application.

 Figure 2: Example User Interface
The user interface is shown in Figure 2. The entire
application has been designed and implemented in advance,
except for the methods invoked when the user clicks on the
buttons. One method will compute the roots of a quadratic
from its coefficients and the other will compute the inverse
relation, multiplying the factors to produce the coefficients.
The QuadraticAndFactors.java file provided to the students
is shown in Figure 3. All other class files that comprise the
application are provided in completed form by the
instructor. In addition, students are led through a web-based
discussion of the algorithm and data structures required to
solve the problem.3
In this assignment the student doesn’t have to know
anything about I/O or parameters, and only needs minimal
comprehension of subroutines. It is an advantage
pedagogically that in most OO languages, within the
implementation of a member method, the components of
the distinguished parameter can be referred to without
being qualified by 'self' or any other parameter name. This

3 See http://math.otterbein.edu/sigcse/quadratic.htm

ability affords a simplicity of reference that was the most
attractive feature of the otherwise poor practice of
accessing global variables. The habits taught in this lab
assignment don’t have to be unlearned when the student
becomes more sophisticated.

Figure 3: Example Specification

The formal specifications provided conform to the stylized
approach advocated by the RESOLVE [5, 6] project at
Ohio State, consisting of several clauses characterized by
the modifiers preserves, produces, consumes, alters,
requires, and ensures. These clauses establish a typical

contract-type constraint on the behavior of the method with
respect to the object state.

Figure 4: seekRoots Method Solution

The informal specifications are provided primarily as a tool
in teaching the students to read and understand the formal
specs. As such, they tend to contain some ambiguity while,
hopefully, conveying some intuition to the student.

4. Related Efforts
4.1 Previous Art
The need for precise specification has been elegantly stated
in documents published by the Eiffel project [7]. However,
they err pedagogically by assuming that a beginning student
should be involved in writing those specifications! Support
for the idea that monolithic applications are a bad idea
comes from the flurry of textbooks with “Procedures
Early.” The folly of the procedures early approach was
documented in the “Bandwagons” paper [2] (without many
recommendations) and in the “Heresy” paper by Pattis [8]
recommending Read/Call Early as an alternative.
One of the authors circulated a position statement locally
several years ago supporting the implementation of
procedure bodies as the correct starting point for CS1. This
ultimately came to fruition two years ago with the
development of a web-based set of materials using the
approach.
Independently, Monash has supported a very similar
approach to ours. Because their original software was based
on a special language and was unavailable for our platform,
we failed to recognize the logical similarity of their
approach until recently.
4.2 Future Research
We have experimented going one level deeper into the
machine by having the student translate the meaning of a
program into classical flowchart language. We think this
has high potential for increasing student comprehension of
sequence, selection, and iteration constructs. Note that we
are not advocating using flowcharts for program
development (which is largely discredited), but rather only
translating the meaning of programming language
constructs into flowcharts. As you nest one construct inside
another, it can become quite a good exercise for the student
to decipher the meaning as a flowchart. We now support
these flowchart exercises a part of the Jarel environment.
Students have a cognitive mismatch when it comes to
assignment statements. Because they have just learned
algebra, and the symbology is similar, they somehow think
that when they type in what appears to be an equation that
the computer is going to solve it. One way to overcome this
misconception might be to have them translate expressions
into several assignment statements, only allowing one
operator per statement. What other kinds of exercises might
be useful?

We are also experimenting with predictive exercises in the
Jarel environment. In this case, the student predicts the next
statement to which control will pass, throughout an entire
execution of a procedure. If they predict incorrectly, they
are shown the actual line to be executed next, and they
continue from there. For each run, they are given a score of
incorrect and correct predictions. This exercise is at the
comprehension level.

5. Conclusion
We advocate the application of educational pedagogy to the
development of computer science curriculum. Specifically,
we support the use of Bloom's Taxonomy to help identify
topics, exercises, and assignments for CS1 and CS2.
Traditional approaches to CS1 and CS2 are not in
congruence with cognitive development theory. We have
developed a new pedagogy that we call the inside/out
approach, which is tied closely to cognitive development.
We have developed web-based materials supporting our
approach, both in Delphi Pascal and in Java™, and are
making them freely available to the community. The BlueJ
project from Monash University significantly extends
support for our approach within the Java™ language.
Now that we have brought a venerable model of cognitive
development to bear on the structure of the CS1 and CS2
curriculum, the path toward significant enhancement of
student outcomes seems obvious. We need to develop more
compelling experiences and assignments at the lower levels
of cognitive development, and work our way more
gradually toward the higher levels. The risk is that we
develop materials at the right level, but that teach bad
practices (such as monolithic applications). We ask the
community to help us fill in more details of how we can
effectively build from the lower to higher cognitive levels.

References
[1] Gronlund, N.E. and Linn, R.L. Measurement and Evaluation

in Teaching, 6th ed., Macmillan, 1990.
[2] Kay, D.G. Bandwagons Considered Harmful, or The Past as

Prologue in Curriculum Change. SIGCSE Bulletin, Volume
28, Number 4 (December 1996), 55-58, 64.

[3] Kölling, M. and Rosenberg, J. Blue – A Language for
Teaching Object-Oriented Programming. Proceedings ACM
SIGCSE Symposium, 1996, 190-194.

[4] Kölling, M. and Rosenberg, J. An Object-Oriented Program
Development Environment for the First Programming
Course. Proceedings ACM SIGCSE Symposium, 1996,
83-87.

[5] Long, T.J., Weide, B.W., and Bucci, P. Client View First:
An Exodus from Implementation-Biased Teaching.
Proceedings ACM SIGCSE Symposium, 1999, 136-140.

[6] Long, T.J., et al. Providing Intellectual Focus to CS1/CS2.
Proceedings ACM SIGCSE Symposium, 1998, 252-256.

[7] Meyer, B. Applying "Design by Contract”, Computer
(IEEE), vol. 25, no. 10, October 1992, 40-51.

[8] Pattis, R.E. The “Procedures Early” Approach in CS 1: A
Heresy. SIGCSE Bulletin, Volume 25, Number 1 (March
1993), 122-126.

[9] Pattis, R.E. Karel the Robot: A Gentle Introduction to the
Art of Programming, 2nd ed., Wiley, 1995.

	Design Early Considered Harmful: Graduated Exposure to Complexity and Structure Based on Levels of Cognitive Development
	Repository Citation

	Introduction
	A New Pedagogy
	Analogy to Composition
	Cognitive Development
	Inside/out : Upside/down

	Pedagogy In Practice
	Developing Inside/Out Assignments
	Example

	Related Efforts
	Previous Art
	Future Research

	Conclusion
	References

