16 research outputs found

    La estación BSRN de Izaña

    Get PDF
    Financial supports from the Spanish MICIIN (ref. CGL2008‐05939‐CO3‐00/CLI and CGL2009 09740) and from the GR‐220 Project of the Junta de Castilla y León are Gratefully acknowledged

    Description of the Baseline Surface Radiation Network (BSRN) station at the Izaña Observatory (2009–2017): measurements and quality control/assurance procedures [Discussion]

    Get PDF
    The Baseline Surface Radiation Network (BSRN) was implemented by the World Climate Research Programme (WRCP) starting observations with 9 stations in 1992, under the auspices of the World Meteorological Organization (WMO). Currently, 59 BSRN stations submit their data to the WRCP. One of these stations is the Izaña station (Station: IZA, #61) that enrolled in this network in 2009. This is a high-mountain station located in Tenerife (Canary Islands, Spain; at 28.3°N, 16.5°W, 2373ma.s.l.) and is a representative site of the subtropical North Atlantic free troposphere. It contributes with basic-BSRN radiation measurements, such as, global shortwave radiation (SWD), direct radiation (DIR), diffuse radiation (DIF) and longwave downward radiation (LWD) and extended-BSRN measurements, including ultraviolet ranges (UV-A and UV-B), shortwave upward radiation (SWU) and longwave upward radiation (LWU) and other ancillary measurements, such as vertical profiles of temperature, humidity and wind obtained from radiosonde (WMO, station #60018) and total column ozone from Brewer spectrophotometer. The IZA measurements present high quality standards since more than 98% of the data are within the limits recommended by the BSRN. There is an excellent agreement in the comparison between SWD, DIR and DIF (instantaneous and daily) measurements with simulations obtained with the LibRadtran radiative transfer model. The root mean square error (RMSE) for SWD is 2.28% for instantaneous values and 1.58% for daily values, while the RMSE for DIR is 2.00% for instantaneous values and 2.07% for daily values. IZA is a unique station that provides very accurate solar radiation data in very contrasting scenarios: most of the time under pristine sky conditions, and periodically under the effects of the Saharan Air Layer characterized by a high content of mineral dust. A detailed description of the BSRN program at IZA, including quality control and quality assurance activities, is given in this work.The IZA BSRN program has benefited from results obtained within POLARMOON project funded by the Ministerio de Economía y Competividad from Spain, CTM2015-66742-R

    Description of the Baseline Surface Radiation Network (BSRN) station at the Izaña Observatory (2009–2017): measurements and quality control/assurance procedures

    Get PDF
    The Baseline Surface Radiation Network (BSRN) was implemented by the World Climate Research Programme (WCRP) starting observations with nine stations in 1992, under the auspices of the World Meteorological Organization (WMO). Currently, 59 BSRN stations submit their data to the WCRP. One of these stations is the Izaña station (station IZA, no. 61) that enrolled in this network in 2009. This is a high-mountain station located in Tenerife (Canary Islands, Spain, at 28.3∘ N, 16.5∘ W; 2373 m a.s.l.) and is a representative site of the subtropical North Atlantic free troposphere. It contributes with basic-BSRN radiation measurements, such as global shortwave radiation (SWD), direct radiation (DIR), diffuse radiation (DIF) and longwave downward radiation (LWD), and extended-BSRN measurements, including ultraviolet ranges (UV-A and UV-B), shortwave upward radiation (SWU) and longwave upward radiation (LWU), and other ancillary measurements, such as vertical profiles of temperature, humidity and wind obtained from radiosonde profiles (WMO station no. 60018) and total column ozone from the Brewer spectrophotometer. The IZA measurements present high-quality standards since more than 98 % of the data are within the limits recommended by the BSRN. There is an excellent agreement in the comparison between SWD, DIR and DIF (instantaneous and daily) measurements with simulations obtained with the LibRadtran radiative transfer model. The root mean square error (RMSE) for SWD is 2.28 % for instantaneous values and 1.58 % for daily values, while the RMSE for DIR is 2.00 % for instantaneous values and 2.07 % for daily values. IZA is a unique station that provides very accurate solar radiation data in very contrasting scenarios: most of the time under pristine sky conditions and periodically under the effects of the Saharan air layer characterized by a high content of mineral dust. A detailed description of the BSRN program at IZA, including quality control and quality assurance activities, is given in this work.The IZA BSRN program has benefited from results obtained within POLARMOON project funded by the Ministerio de Economía y Competividad from Spain, CTM2015-66742-R

    Potential of subdermal solar energy harvesting for medical device applications based on worldwide meteorological data.

    Get PDF
    SIGNIFICANCE Active implants require batteries as power supply. Their lifetime is limited and may require a second surgical intervention for replacement. Intracorporal energy harvesting techniques generate power within the body and supply the implant. Solar cells below the skin can be used to harvest energy from light. AIM To investigate the potential of subdermal solar energy harvesting. APPROACH We evaluated global radiation data for defined time slots and calculated the output power of a subdermal solar module based on skin and solar cell characteristics. We assumed solar exposure profiles based on daily habits for an implanted solar cell. The output power was calculated for skin types VI and I/II. RESULTS We show that the yearly mean power in most locations on Earth is sufficient to power modern cardiac pacemakers if 10 min midday solar irradiation is assumed. All skin types are suitable for solar harvesting. Moreover, we provide a software tool to predict patient-specific output power. CONCLUSIONS Subdermal solar energy harvesting is a viable alternative to primary batteries. The comparison to a human case study showed a good agreement of the results. The developed code is available open source to enable researchers to investigate further applications of subdermal solar harvesting

    Assessment of BSRN radiation records for the computation of monthly means

    Get PDF
    The integrity of the Baseline Surface Radiation Network (BSRN) radiation monthly averages are assessed by investigating the impact on monthly means due to the frequency of data gaps caused by missing or discarded high time resolution data. The monthly statistics, especially means, are considered to be important and useful values for climate research, model performance evaluations and for assessing the quality of satellite (time- and space-averaged) data products. The study investigates the spread in different algorithms that have been applied for the computation of monthly means from 1-min values. <br><br> The paper reveals that the computation of monthly means from 1-min observations distinctly depends on the method utilized to account for the missing data. The intra-method difference generally increases with an increasing fraction of missing data. We found that a substantial fraction of the radiation fluxes observed at BSRN sites is either missing or flagged as questionable. The percentage of missing data is 4.4%, 13.0%, and 6.5% for global radiation, direct shortwave radiation, and downwelling longwave radiation, respectively. Most flagged data in the shortwave are due to nighttime instrumental noise and can reasonably be set to zero after correcting for thermal offsets in the daytime data. The study demonstrates that the handling of flagged data clearly impacts on monthly mean estimates obtained with different methods. We showed that the spread of monthly shortwave fluxes is generally clearly higher than for downwelling longwave radiation. <br><br> Overall, BSRN observations provide sufficient accuracy and completeness for reliable estimates of monthly mean values. However, the value of future data could be further increased by reducing the frequency of data gaps and the number of outliers. It is shown that two independent methods for accounting for the diurnal and seasonal variations in the missing data permit consistent monthly means to within less than 1 W m<sup>−2</sup> in most cases. The authors suggest using a standardized method for the computation of monthly means which addresses diurnal variations in the missing data in order to avoid a mismatch of future published monthly mean radiation fluxes from BSRN. <br><br> The application of robust statistics would probably lead to less biased results for data records with frequent gaps and/or flagged data and outliers. The currently applied empirical methods should, therefore, be completed by the development of robust methods

    Prediction of circumsolar irradiance and its impact on CSP systems under clear skies

    Get PDF
    In this work, a model to estimate circumsolar normal irradiance (CSNI) for several half-opening angles under clear skies was developed. This approach used a look-up table to determine the model parameters and estimate CSNI for half-opening angles between 0.5° and 5°. To develop and validate the proposed model, data from five locations worldwide were used. It was found that the proposed model performs better at the locations under study than the models available in the literature, with relative mean bias error ranging from −13.94% to 0.70%. The impact of CSNI for these different half-opening angles on concentrating solar power (CSP) systems was also studied. It was found that neglecting CSNI could lead to up to a 7% difference between the direct normal irradiance (DNI) measured by a field pyrheliometer and the DNI that is captured by CSP systems. Additionally, a case study for parabolic trough concentrators was performed as a way to estimate the impact of higher circumsolar ratios (CSR) on the decrease of the intercept factor for these systems. It was also concluded that if parabolic trough designers aim to reduce the impact of CSNI variation on the intercept factor, then parabolic troughs with higher rim angles are preferred

    Establishment of the South African baseline surface radiation network station at De Aar

    Get PDF
    The South African Weather Service (SAWS) was offered a unique opportunity to become involved in the prestigious global Baseline Surface Radiation Network (BSRN) project in 1995. This study is an academical and technical document describing and elucidating aspects regarding the eventual establishment of the BSRN measurement facility at De Aar that embodies South Africa’s involvement. The dissertation opens with an introductory chapter offering background information and an explanation of circumstances leading to South Africa’s involvement in this project, including reasons exactly why De Aar was chosen to be the South African BSRN site. This is followed by details on a scientific measurement plan including necessary information on radiation processes in the atmosphere, measurement techniques and associated instrumentation. The next chapter is devoted to the design of a radiometric measurement system answering to the scientific plan, with more details on instrumentation, peripherals, calibration and data management strategies. Three years of real measured data since station establishment, is used as a basis to apply and evaluate the various quality assurance techniques of the central BSRN data-archive. Special reference is made in a separate chapter to the two partial solar eclipses that traversed Southern Africa in 2001 and 2002, in the form of case studies. This dissertation is illustrated by several photos, and rounded off by details of the station-to-archive file format as laid down by the international BSRN data-archive, a useful table reflecting sunrise, sunset, solar transit, day length and Top Of Atmosphere (TOA) radiation, an explanation on climate zone classification, as well as a useful technical guide on setting up a pyrgeometer. Apart from the academic content this document also intends to serve as a guideline for station operation and future development of whatever form, for both the station scientist and the station manager. Such developments can include the establishment of other BSRN stations, or in general the enhancement of the quality of solar radiation measurements over the entire Southern Africa Developing Community (SADC) region. The author wishes to state that in presenting this document in English, he does not wish to promote English as scientific language at the expense of Afrikaans. The choice of language was taken purely on the basis of broader international involvement and a wider local usefulness of this document.Dissertation (MSc)--University of Pretoria, 2006.Geography, Geoinformatics and MeteorologyMScUnrestricte

    SIRTA, a ground-based atmospheric observatory for cloud and aerosol research

    Get PDF
    Ground-based remote sensing observatories have a crucial role to play in providing data to improve our understanding of atmospheric processes, to test the performance of atmospheric models, and to develop new methods for future space-borne observations. Institut Pierre Simon Laplace, a French research institute in environmental sciences, created the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA), an atmospheric observatory with these goals in mind. Today SIRTA, located 20km south of Paris, operates a suite a state-of-the-art active and passive remote sensing instruments dedicated to routine monitoring of cloud and aerosol properties, and key atmospheric parameters. Detailed description of the state of the atmospheric column is progressively archived and made accessible to the scientific community. This paper describes the SIRTA infrastructure and database, and provides an overview of the scientific research associated with the observatory. Researchers using SIRTA data conduct research on atmospheric processes involving complex interactions between clouds, aerosols and radiative and dynamic processes in the atmospheric column. Atmospheric modellers working with SIRTA observations develop new methods to test their models and innovative analyses to improve parametric representations of sub-grid processes that must be accounted for in the model. SIRTA provides the means to develop data interpretation tools for future active remote sensing missions in space (e.g. CloudSat and CALIPSO). SIRTA observation and research activities take place in networks of atmospheric observatories that allow scientists to access consistent data sets from diverse regions on the globe

    Global distribution of Earth's surface shortwave radiation budget

    No full text
    International audienceThe monthly mean shortwave (SW) radiation budget at the Earth's surface (SRB) was computed on 2.5-degree longitude-latitude resolution for the 17-year period from 1984 to 2000, using a radiative transfer model accounting for the key physical parameters that determine the surface SRB, and long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2). The model input data were supplemented by data from the National Centers for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR) and European Center for Medium Range Weather Forecasts (ECMWF) Global Reanalysis projects, and other global data bases such as TIROS Operational Vertical Sounder (TOVS) and Global Aerosol Data Set (GADS). The model surface radiative fluxes were validated against surface measurements from 22 stations of the Baseline Surface Radiation Network (BSRN) covering the years 1992-2000, and from 700 stations of the Global Energy Balance Archive (GEBA), covering the period 1984-2000. The model is in good agreement with BSRN and GEBA, with a negative bias of 14 and 6.5 Wm-2, respectively. The model is able to reproduce interesting features of the seasonal and geographical variation of the surface SW fluxes at global scale. Based on the 17-year average model results, the global mean SW downward surface radiation (DSR) is equal to 171.6 Wm-2, whereas the net downward (or absorbed) surface SW radiation is equal to 149.4 Wm-2, values that correspond to 50.2 and 43.7% of the incoming SW radiation at the top of the Earth's atmosphere. These values involve a long-term surface albedo equal to 12.9%. Significant increasing trends in DSR and net DSR fluxes were found, equal to 4.1 and 3.7 Wm-2, respectively, over the 1984-2000 period (equivalent to 2.4 and 2.2 Wm-2 per decade), indicating an increasing surface solar radiative heating. This surface SW radiative heating is primarily attributed to clouds, especially low-level, and secondarily to other parameters such as total precipitable water. The surface solar heating occurs mainly in the period starting from the early 1990s, in contrast to decreasing trend in DSR through the late 1980s. The computed global mean DSR and net DSR flux anomalies were found to range within ±8 and ±6 Wm-2, respectively, with signals from El Niño and La Niña events, and the Pinatubo eruption, whereas significant positive anomalies have occurred in the period 1992-2000
    corecore