Establishment of the South African baseline surface radiation network station at De Aar

by

Daniël Johannes Esterhuyse

Submitted in fulfilment of the requirements for the degree of

MASTER OF SCIENCE (METEOROLOGY)

in the Faculty of Natural and Agricultural Sciences of the

University of Pretoria

July 2004

Dedicated to my dearest mother, who never had the opportunity to realise her intense love for nature in formal scientific training. Mom, this one is for you, out of gratefulness for this opportunity granted to me.

Opgedra aan my dierbare moeder, wat nooit self die geleentheid gehad het om haar intense liefde vir die natuur te kon realiseer in formele wetenskaplike opleiding nie. Mamma, hierdie een is vir u, uit dankbaarheid vir die geleentheid wat aan my gebied is.

ABSTRACT

Establishment of the South African baseline surface radiation network station at De Aar

Daniël Johannes Esterhuyse

Promotor:	Prof. C.J. de W. Rautenbach
Department:	Department of Geography, Geoinformatics and Meteorology
Faculty:	Faculty of Natural and Agricultural Sciences
University:	University of Pretoria
Degree:	Magister Scientae (Meteorology)

Summary

The South African Weather Service (SAWS) was offered a unique opportunity to become involved in the prestigious global Baseline Surface Radiation Network (BSRN) project in 1995. This study is an academical and technical document describing and elucidating aspects regarding the eventual establishment of the BSRN measurement facility at De Aar that embodies South Africa's involvement.

The dissertation opens with an introductory chapter offering background information and an explanation of circumstances leading to South Africa's involvement in this project, including reasons exactly why De Aar was chosen to be the South African BSRN site. This is followed by details on a scientific measurement plan including necessary information on radiation processes in the atmosphere, measurement techniques and associated instrumentation. The next chapter is devoted to the design of a radiometric measurement system answering to the scientific plan, with more details on instrumentation, peripherals, calibration and data management strategies.

Three years of real measured data since station establishment, is used as a basis to apply and evaluate the various quality assurance techniques of the central BSRN data-archive. Special reference is made in a separate chapter to the two partial solar eclipses that traversed Southern Africa in 2001 and 2002, in the form of case studies.

This dissertation is illustrated by several photos, and rounded off by details of the station-toarchive file format as laid down by the international BSRN data-archive, a useful table reflecting sunrise, sunset, solar transit, day length and Top Of Atmosphere (TOA) radiation, an explanation on climate zone classification, as well as a useful technical guide on setting up a pyrgeometer.

Apart from the academic content this document also intends to serve as a guideline for station operation and future development of whatever form, for both the station scientist and the station manager. Such developments can include the establishment of other BSRN stations, or in general the enhancement of the quality of solar radiation measurements over the entire Southern Africa Developing Community (SADC) region.

The author wishes to state that in presenting this document in English, he does not wish to promote English as scientific language at the expense of Afrikaans. The choice of language was taken purely on the basis of broader international involvement and a wider local usefulness of this document.

<u>EKSERP</u>

Totstandkoming van die Suid-Afrikaanse grondvlakstralingsnetwerkstasie by De Aar

Daniël Johannes Esterhuyse

Studieleier:	Prof. C.J. de W. Rautenbach
Departement:	Departement van Geografie, Geoinformatika en Weerkunde
Fakulteit:	Fakulteit Natuur- en Landbouwetenskappe
Universiteit:	Universiteit van Pretoria
Graad :	Magister Scientae (Weerkunde)

Samevatting

Die Suid-Afrikaanse Weerdiens het in 1995 'n unieke geleentheid ontvang om deel te wees van die hoogs aangeskrewe grondvlak-stralingsnetwerk "(BSRN)" projek. In hierdie studiestuk wat akademies sowel as tegnies van aard is, word 'n uiteensetting gelewer en toeligting gegee van aspekte rakende die uiteindelike instrumentele opstelling by De Aar wat Suid-Afrika se betrokkenheid in hierdie projek beliggaam.

Die verhandeling open met 'n inleidende hoofstuk wat agtergrondinligting lewer sowel as 'n uiteensetting gee van die redes presies waarom juis op De Aar as die Suid-Afrikaanse BSRN stasie besluit is. Dit word opgevolg deur besonderhede van die wetenskaplike metingsplan, wat nodige inligting oor stralingsprosesse in die aarde se atmosfeer, metingstegnieke, sowel as bybehorende instrumentasie insluit. 'n Volgende hoofstuk word gewy aan die ontwerp van 'n stralingsmetingstelsel wat aan die wetenskaplike plan kan verantwoord, en dit sluit die volgende in: meer besonderhede rakende instrumentasie, bykomstighede, kalibrasie en data-versorging.

Drie jaar van werklike waargenome data sedert die totstandkoming van die stasie, word as vertrekpunt geneem om die verskeie kwaliteitskontroletegnieke wat die sentrale BSRN dataargief gebruik, te evalueer in 'n volgende hoofstuk. In die vorm van gedetailleerde gevallestudies word in 'n afsonderlike hoofstuk spesiale melding gemaak van die twee gedeeltelike sonsverduisterings wat beide oor Suidelike Afrika beweeg het in 2001 en 2002.

Die verhandeling word geïllustreer deur verskeie fotos, en word afgerond deur besonderhede van die stasie-tot-argief formaat vir 'n datalêer soos vasgestel deur die internasionale BSRN-argief, 'n nuttige tabel wat sonop-en sonondertye, sonmiddaguur-tyd en daglengte, sowel as Top Van Atmosfeer straling bevat, 'n verduideliking rakende klimaatsone-klassifisering, en 'n nuttige tegniese gids om 'n pyrgeometer op te stel.

Benewens die akademiese inhoud, is die dokument ook bedoel om as riglyn te dien vir die stasie-bestuurder en -wetenskaplike rakende die werking van die stasie en toekomstige ontwikkeling in watter vorm ookal. Sodanige ontwikkelings kan uitbreidings wees aan die bestaande stasie of moontlike ontwikkeling van 'n ander nabygeleë BSRN stasie in 'n buurland, tot voordeel van stralingsmeting in die Suider- Afrikaanse Ontwikkelingsgemeenskap.

Die outeur wil hiermee onomwonde verklaar dat hy nie poog om met hierdie verhandeling Engels as wetenskapstaal ten koste van Afrikaans te bevorder nie. Die besluit om dit in Engels aan te bied, was suiwer geneem op grond van wyer internasionale betrokkenheid sowel as wyer plaaslike bruikbaarheid van die dokument.

ACKNOWLEDGEMENTS

The author wishes to expresses his sincere thanks to the following persons and institutions for their assistance and contribution towards making this dissertation possible:

1. The South African Weather Service (SAWS)

for being continually committed to the Baseline Surface Radiation Network (BSRN) programme through the Global Atmosphere Watch (GAW) which forms part of the Climate Systems Directorate of the SAWS ;

for providing generous logistical support for the continuation of this project ;

for granting a part-time bursary that helped to make this study possible ;

2. The World Meteorological Organization (WMO)

for continued commitment towards the project ;

for generous financial support in providing a first consignment of instrumentation for establishment of the site, as well as a second consignment of spare parts ;

for providing continuous financial support enabling SAWS staff to attend overseas conferences and workshops in order to maintain valuable overseas contact and keep abreast with latest technology ;

3. The University of Pretoria

for providing the opportunity to submit this dissertation as fulfilment for an M.Sc.(Meteorology) degree ;

4. The late Cal Archer (1925 – 2000)

for his sheer inspiration and encouragement in a mentorship role to me as a young scientist in this field for the first five years of my employment at the SAWS ;

for his seemingly unlimited source of knowledge and often original, but always ingenious and surprisingly simple solutions for practical problems ;

for sustaining early correspondence vital in establishing the station even at a stage where it was not sure if South Africa was to be part of the programme or not ;

5. Dr Ellsworth Dutton (International project leader)

for generous and sustained encouragement during the course of this project, including two site visits to South Africa ;

6. The personnel of De Aar weather office

for their dedication in maintaining the day-to-day chores and operation of the station. Guys, without your sustained effort this would not have been possible.

TABLE OF CONTENTS

PAGE

Dedication	ii
Abstract (English)	iii
Ekserp (Afrikaans)	iv
Acknowledgements	v
Table of Contents	vi
List of Symbols	xiii
List of Figures	xv
List of Tables	xix
List of Acronyms and Abbreviations	xxi

CHAPTER 1 BACKGROUND

1.1	INTRODUCTION			1
	1.1.1	Global ne	eed for accurate radiation measurements	1
	1.1.2	Establish	ment of a new radiometric network	2
		1.1.2.1	Launching the project	2
		1.1.2.2	South Africa's first involvement	3
	1.1.3	How the	project unfolded	3
		1.1.3.1	First workshop	3
		1.1.3.2	Second workshop	5
		1.1.3.3	Third workshop	7
		1.1.3.4	Fourth workshop	8
1.2	SOUTH	AFRICA'S I	VOLVEMENT	9
	1.2.1	Strategic	importance of South Africa in a global network	9
	1.2.2	South Afr	rica's unique contribution	10
	1.2.3	Selection	of the most suitable site	11
	1.2.4	The best	location: De Aar	13
		1.2.4.1	Temperature	15
		1.2.4.2	Precipitation	16

1.3 SITE DEVELOPMENT AT DE AAR

17

1.4	OBJECTIVES OF THIS RESEARCH	19
1.5	ORGANIZATION OF THIS DISSERTATION	20

CHAPTER 2 SCIENTIFIC PLAN

2.1	SCIENT	IFIC GOALS	AND OBJECTIVES OF THE BSRN	22
	2.1.1	Goals		22
	2.1.2	Objective	95	23
	2.1.3	Practical	significance	24
2.2	ASPECT	S OF THE	SCIENTIFIC PLAN	28
	2.2.1	Data san	npling rate	28
	2.2.2	Accuracy	,	29
		2.2.2.1	Direct radiation	30
		2.2.2.2	Global radiation	31
		2.2.2.3	Diffuse radiation	31
		2.2.2.4	Reflected SW radiation	31
		2.2.2.5	Downwelling LW radiation	31
		2.2.2.6	Upwelling LW radiation	32
		2.2.2.7	Ancillary measurements	32
	2.2.3	Data acq	uisition	32
	2.2.4	Calibratio	on	33
	2.2.5	Data mar	nagement	33
	2.2.6	Internatio	onal database	33
	2.2.7	Site sele	ction criteria	33
		2.2.7.1	Satellite measurements	34
		2.2.7.2	Climate zones	35
2.3	RADIAT	ION		36
	2.3.1	Radiatior	n in the atmosphere	37
	2.3.2	The gree	nhouse effect	38
	2.3.3	Radiatior	n fluxes on earth	40

2.4MEASURING RADIATIVE FLUXES41

2.5	INSTRUMENTATION			44
	2.5.1	A vital com	ponent: Thermopile	44
	2.5.2	Measuring	direct radiation	46
		2.5.2.1	The cavity radiometer	47
		2.5.2.2	The thermopile pyrheliometer	48
	2.5.3	Measuring	diffuse radiation	49
	2.5.4	Measuring	global radiation	51
	2.5.5	Measuring	LW radiation	52

2.6 CONCLUSION

53

CHAPTER 3 SYSTEM DESIGN

3.1	INSTRU	MENTS		54
	3.1.1	Aspects of	of pyrheliometers	55
		3.1.1.1	Operational errors	55
		3.1.1.2	Window errors	58
		3.1.1.3	Circumsolar radiation	59
		3.1.1.4	Thermal offsets	60
	3.1.2	Aspects of	of pyranometers	60
		3.1.2.1	Operational errors	61
		3.1.2.2	Cosine error	62
		3.1.2.3	Thermal offsets	63
		3.1.2.4	Artificial ventilation and/or heating	66
	3.1.3	Aspects of	of pyrgeometers	66
		3.1.3.1	Error analysis between two equations	68
		3.1.3.2	Relative contribution of terms in LW equation	69
		3.1.3.3	Artificial ventilation and/or shading	73
	3.1.4	Aspects of	of the solar tracking system	73
		3.1.4.1	Tracker misalignments	74
		3.1.4.2	Tracker stoppages	75
	3.1.5	Identifyin	g instrument cleaning times	78
	3.1.6	Aspects of	of the data acquisition system	81
	3.1.7	The usag	e of an on-site PC	83
	3.1.8	Keeping	time: Global Positioning System (GPS)	84

3.2	MAINTEI	84	
	3.2.1	Regular inspection	85
	3.2.2	Calibration	85
3.3	DATA N	IANAGEMENT STRATEGY	86
	3.3.1	On-site management	86
	3.3.2	Management by station scientist	86
3.4	LIASING	G WITH INTERNATIONAL DATABASE	87
	3.4.1.	The GEBA database	88
	3.4.2.	The BSRN database	89
3.5	CONCL	USION	90

CHAPTER 4 QUALITY CONTROL

4.1	CONTR	OL OVER T	HE QUALITY OF MEASUREMENTS	92
	4.1.1	Terminol	ogy	92
	4.1.2	Measure	ment redundancy	92
	4.1.3	Keeping	data fresh	94
	4.1.4	Handling	seemingly erroneous data	94
4.2	WRMC	VALIDATIO	N CHECKS	95
	4.2.1	Procedu	re 1 ("Physically possible")	96
	4.2.2	Procedu	re 2 ("Extreme rare")	97
	4.2.3	Procedu	re 3 ("Across quantities")	99
		4.3.2.1	LW radiation	98
		4.2.3.2	SW radiation	103
4.3	APPLIC	ATION OF T	HE WRMC PROCEDURES	104
	4.3.1	Procedu	re 1 – "Physically possible"	104
		4.3.1.1	Sub-procedure 1.1	104
		4.3.1.2	Sub-procedure 1.2	106
		4.3.1.2.1	Closer inspection of violations of sub-procedure 1.2	106

	4.3.1.3	Sub-procedure 1.3	109
	4.3.1.3.1	Inspection of January 2001	110
	4.3.1.3	Sub-procedure 1.4	112
	4.3.1.4	Sub-procedure 1.5	113
4.3.2	Procedure	2 – "Extremely rare"	115
	4.3.2.1	Sub-procedure 2.1	115
	4.3.2.1.1	May 2001	117
	4.3.2.1.2	June 2002	119
	4.3.2.2	Sub-procedure 2.2	120
	4.3.2.3	Sub-procedure 2.3	121
	4.3.2.3.1	January 2003	122
	4.3.2.4	Sub-procedure 2.4	123
	4.3.2.3.1	April 2001	125
	4.3.2.4.2	June 2001	126
	4.3.2.5	Sub-procedure 2.5	127
	4.3.2.6	Sub-procedure 2.6	127
4.3.3	Procedure	3 – "Across quantities"	127
	4.3.3.1	Sub-procedure 3.1	127
	4.3.3.2	Sub-procedure 3.2	131
	4.3.3.3	Sub-procedure 3.3	131
	4.3.3.4	Sub-procedure 3.4	131
	4.3.3.4.1	May 2001	133
4.3.4	Procedure	s 4 and 5	135

4.4 CONCLUSIONS

136

CHAPTER 5 CASE STUDIES

5.1	SOLAR	ECLIPSES: BACKGROUND	137
5.2	TWO SC	OLAR ECLIPSES OVER SOUTHERN AFRICA	138
5.3	ECLIPS	E OF 21 JUNE 2001	139
	5.3.1	General description	139
	5.3.2	Eclipse in South Africa	141
	5.3.3	The weather	141

	5.3.4	The BSR	N measurements	144
		5.3.4.1	Radiation loss due to eclipse	145
		5.3.4.2	Focus on SW elements	146
		5.3.4.3	Focus on LW elements	151
		5.3.4.4	Non-radiation measurements	152
5.4	ECLIPS	E OF 4 DEC	EMBER 2002	154
	5.4.1	General	description	154
	5.4.2	Eclipse i	n South Africa	155
	5.4.3	The wear	ther	156
	5.4.4	The BSR	N measurements	160
		5.4.4.1	Radiation loss due to eclipse	160
		5.4.4.2	Focus on SW elements	161
		5.4.4.3	Focus on LW elements	165
		5.4.4.4	Non-radiation measurements	167

5.5 CONCLUSIONS

168

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS

6.1	MAIN A	CHIEVEMENTS	170
6.2	THE RC	DAD FROM HERE	172
	6.2.1	Justifying its existence	172
	6.2.2	Present and future role in SAWS	172
	6.2.3	NEPAD potential	173
	6.2.4	International potential	173
6.3	RECOM	IMENDATIONS	174
	6.3.1	BSRN in general	174
	6.3.2	Site improvement	175
	6.3.2	System upgrading	177

REFERENCES 179

APPENDICES	191

- APPENDIX A: PHOTOPAGES
- APPENDIX B: STATION-TO-ARCHIVE FILE FORMAT
- APPENDIX C: SPECIFIC DATA FOR A TYPICAL YEAR AT DE AAR
- APPENDIX D: THE KÖPPEN CLIMATE ZONE CLASSIFICATION
- APPENDIX E: CONNECTION AND OPERATION OF A PYRGEOMETER

LIST OF SYMBOLS

UPPER CASE LETTERS

- A Area (m^2)
- AU Astronomical unit (1.5 x 10^{11} m)
- *A*₀ Radius vector of solar distance (dimensionless)
- C_1 Thermopile long-wave sensitivity constant (ca. 4 mV.kW⁻¹.m⁻²)
- *E* Radiant energy flux density (from a non-specific source per unit area) (W.m⁻²)
- E_{LW} Long-wave energy flux density (W.m⁻²)
- E_{OLR} Energy flux of outgoing Long-wave Radiation density (W.m⁻²)
- E_{SW} Short-wave energy flux density (W.m⁻²)
- E_{TOA} Energy flux density at the top of the atmosphere (W.m⁻²)
- E_v Excitation voltage used in pyrgeometer operation (mV)
- *F* Radiometer reading (nominal units)
- *H* (solar) Hour Angle (radians)
- *I* Electric current (Ampere)
- *P* Electric power (Watt)
- Q Radiation flux density leaving the surface of the sun (W.m⁻²)
- R_c (calculated) Resistance of the pyrgeometer case thermistor (Ohm)
- R_d (calculated) Resistance of the pyrgeometer dome thermistor (Ohm)
- R_E Mean radius of the Earth (6.37 x 10⁶ m)
- R_{ν} Resistance of the pyrgeometer precision resistor (Ohm)
- S_0 Total radiant energy flux of the sun (3.9 x 10²⁶ W)
- *S* (annual mean) Solar constant, (1371 W.m⁻²)
- *T* Absolute temperature (K)
- *T_b* Instrument body (case) temperature (K)
- T_d Instrument dome temperature (K)
- *V_c* Pyrgeometer case thermistor potential difference (mV)
- V_d Pyrgeometer dome thermistor potential difference (mV)
- *W* Power, energy flux (Joules.s⁻¹; Watts)
- Z Solar zenith angle (degrees)
- Z(t) Solar zenith angle at time instant *t*, or a short time interval

LOWER CASE LETTERS

- c Speed of light in vacuum (3 x 10^8 m.s⁻¹)
- *e* Surface vapour pressure (hPa)
- g Gravity acceleration on the Earth's surface (9.8 m.s⁻²)
- *h* Planck's constant (6.62 x 10^{-34} J.s⁻¹)
- *k*₁ Pyrgeometer calibration constant 1 (dimensionless)
- *k*₂ Pyrgeometer calibration constant 2 (dimensionless)
- *k*₃ Pyrgeometer calibration constant 3 (dimensionless)
- *m* Kasten optical air mass (dimensionless)
- *p* Thermopile voltage (mV)
- *t* Time (seconds)

GREEK LETTERS

- α Planetary albedo, estimated at 0.3
- δ Solar declination (radians)
- *ε* Atmospheric emmissivity (dimensionless)
- φ Site latitude (radians)
- λ Wavelength (m)
- κ Stefan-Bolzmann's constant in specific corresponding units (1.38 x 10⁻²³ J.m⁻².K⁻¹)
- σ Stefan-Bolzmann's constant in specific corresponding units (5.67 x 10⁻⁸ W.m⁻².K⁻⁴)
- θ Solar azimuth angle (radians)
- ξ Equation of time (radians)

DATE FORMAT

The author is aware of the standard ISO- 8601 format for writing dates, i.e. **CCYY-MM-DD**, for example, 1964-02-10 meaning "The 10th of February 1964 AD". However, to omit any ambiguousity and also make dates equally well presentable in text, headings, figures and captions, it was decided to use alternatively the formats **DD Mmm CCYY** (written as "10 Feb 1964" with regards to the said example) in tables and figures, as well as **DD Month CCYY** (written as "10 February 1964) where most appropriate.

LIST OF FIGURES

Figure 1.1	The first group of archiving "pioneer" BSRN stations for	
	1992/1993, together with the provisional sites at that time	6
Figure 1.2	BSRN locations (archiving and provisional) at the time South Africa	
	was considered to join the network. The observational gap is	
	shown in dashed lines.	9
Figure 1.3	Provincial map of South Africa depicting the central position of	
	De Aar	14
Figure 1.4	The instrument camp at the Weather Office of De Aar where	
	the BSRN site is located	15
Figure 1.5	Monthly average maximum and minimum temperature as well as	
	temperature range, measured in $^{\circ}$ C at the De Aar Weather Office	15
Figure 1.6	Monthly mean precipitation and maximum precipitation for De Aar	
	Weather Office in mm	16
Figure 1.7	BSRN sites, both archiving and provisional, in 2003	18

Figure 2.1	Normalized emission versus wavelength plots of Planck's equation	
	for both solar and terrestrial radiation	36
Figure 2.2	Schematic representation of radiative fluxes in the	
	atmosphere (after Wallace and Hobbs, 1977).	40
Figure 2.3	A typical thermopile's position in a radiometer and from closer up	45
Figure 2.4	An Eppley AHF absolute cavity radiometer with control box	48
Figure 2.5	A Kipp & Zonen CH1 pyrheliometer	49
Figure 2.6	A Kipp & Zonen CM21 pyranometer	50
Figure 2.7	An Eppley Precision Infrared Radiometer	52

Figure 3.1	Schematic layout of basic instrumentation at a BSRN site	55
Figure 3.2	Radiation intensities recorded by the pyrheliometers A and B, as well	
	as their difference on 26 January 2003	56
Figure 3.3	Scatter plot for global pyranometer thermopile response	
	versus pyrgeometer thermopile for 10 to 26 January 2003	64
Figure 3.4	Scatter plot for diffuse pyranometer thermopile response	
	versus pyrgeometer thermopile for 10 to 26 January 2003	65
Figure 3.5	Individual LWD term contribution on 2 June 2000	70

Figure 3.6	Individual LWD term contribution on 22 June 2000	71
Figure 3.7	Individual LWD term contribution on 30 December 2000	71
Figure 3.8	Individual LWD term contribution on 11 December 2000	72
Figure 3.9	Measurements on 2 July 2002 for pyrheliometer A, misaligned with	
	pyrheliometer B.	75
Figure 3.10	Time-series for direct, global and diffuse radiation for 9 June 2002.	
	The period of tracker failure is shaded.	75
Figure 3.11	Time-series of the ratio DSGL2 / DSGL1 for 9 June 2002. Tracker	
	failure time is shaded.	77
Figure 3.12	Individual LW radiation terms and LWD on 9 June 2002. Tracker	
	failure time is shaded.	77
Figure 3.13	Close-up view of LWD from Figure 3.12 for 9 June 2002. Tracker	
	failure time is shaded.	78
Figure 3.14	Midnight-to-midnight time series for 4 July 2002 of the shaded	
	columns in Table 3.4: Pyrheliometer A OSD, pyrheliometer B OSD	
	and difference.	80
Figure 3.15	Data management scheme for De Aar's data using generic filenames.	87
Figure 4.1	From Table 4.6: Violations of sub-procedure 1.2, expressed as a	
Figure 4.1	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints	107
Figure 4.1 Figure 4.2	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints TOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001	107 108
Figure 4.1 Figure 4.2 Figure 4.3	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints TOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001 DSGL2 datapoints for January 2001	107 108 111
Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints TOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001 DSGL2 datapoints for January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on	107 108 111
Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints TOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001 DSGL2 datapoints for January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 1 January 2001	107 108 111 112
Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints TOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001 DSGL2 datapoints for January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 1 January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on	107 108 111 112
Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints TOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001 DSGL2 datapoints for January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 1 January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 20 November 2001	107 108 111 112 112
Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints TOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001 DSGL2 datapoints for January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 1 January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 20 November 2001 From Table 4.9: violations of sub-procedure 2.1, expressed as a	107 108 111 112 112
Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints TOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001 DSGL2 datapoints for January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 1 January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 20 November 2001 From Table 4.9: violations of sub-procedure 2.1, expressed as a percentage for all datapoints	107 108 111 112 112 112
Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints TOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001 DSGL2 datapoints for January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 1 January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 20 November 2001 From Table 4.9: violations of sub-procedure 2.1, expressed as a percentage for all datapoints Time-series for DSTM : May 2001	107 108 111 112 112 112 116 117
Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 Figure 4.8	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints TOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001 DSGL2 datapoints for January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 1 January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 20 November 2001 From Table 4.9: violations of sub-procedure 2.1, expressed as a percentage for all datapoints Time-series for DSTM : May 2001 DSTM versus cos <i>Z</i> : May 2001	107 108 111 112 112 112 116 117 118
Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 Figure 4.8 Figure 4.9	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints TOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001 DSGL2 datapoints for January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 1 January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 20 November 2001 From Table 4.9: violations of sub-procedure 2.1, expressed as a percentage for all datapoints Time-series for DSTM : May 2001 DSTM versus cos <i>Z</i> : May 2001 Time-series for DSTM: June 2002	107 108 111 112 112 112 116 117 118 119
Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 Figure 4.8 Figure 4.9 Figure 4.10	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints TOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001 DSGL2 datapoints for January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 1 January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 20 November 2001 From Table 4.9: violations of sub-procedure 2.1, expressed as a percentage for all datapoints Time-series for DSTM : May 2001 DSTM versus cos <i>Z</i> : May 2001 Time-series for DSTM: June 2002 DSTM versus cos <i>Z</i> : June 2002	107 108 111 112 112 112 116 117 118 119 120
Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 Figure 4.8 Figure 4.9 Figure 4.10 Figure 4.11	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints TOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001 DSGL2 datapoints for January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 1 January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 20 November 2001 From Table 4.9: violations of sub-procedure 2.1, expressed as a percentage for all datapoints Time-series for DSTM : May 2001 DSTM versus cos <i>Z</i> : May 2001 Time-series for DSTM: June 2002 DSTM versus cos <i>Z</i> : June 2002 A close-up view of 28 January 2003: (07:11UT-07:46UT): DSDIR,	107 108 111 112 112 116 117 118 119 120
Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 Figure 4.8 Figure 4.9 Figure 4.10 Figure 4.11	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints TOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001 DSGL2 datapoints for January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 1 January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 20 November 2001 From Table 4.9: violations of sub-procedure 2.1, expressed as a percentage for all datapoints Time-series for DSTM : May 2001 DSTM versus cos <i>Z</i> : May 2001 Time-series for DSTM: June 2002 DSTM versus cos <i>Z</i> : June 2002 A close-up view of 28 January 2003: (07:11UT-07:46UT): DSDIR, DSDFS and DSGL2	107 108 111 112 112 116 117 118 119 120 122
Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 Figure 4.8 Figure 4.9 Figure 4.10 Figure 4.11	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapoints TOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001 DSGL2 datapoints for January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 1 January 2001 Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 20 November 2001 From Table 4.9: violations of sub-procedure 2.1, expressed as a percentage for all datapoints Time-series for DSTM : May 2001 DSTM versus cos <i>Z</i> : May 2001 Time-series for DSTM: June 2002 DSTM versus cos <i>Z</i> : June 2002 A close-up view of 28 January 2003: (07:11UT-07:46UT): DSDIR, DSDFS and DSGL2 From Table 4.11: violations of sub-procedure 2.4, expressed	107 108 111 112 112 116 117 118 119 120 122
Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 Figure 4.8 Figure 4.9 Figure 4.10 Figure 4.11 Figure 4.12	From Table 4.6: Violations of sub-procedure 1.2, expressed as a percentage for all datapointsTOA radiation + 10 W.m ⁻² and diffuse radiation for 2 September 2001DSGL2 datapoints for January 2001Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 1 January 2001Diurnal variation of TOA radiation, DSDIR, DSGL2 and DSDFS on 20 November 2001From Table 4.9: violations of sub-procedure 2.1, expressed as a percentage for all datapointsTime-series for DSTM : May 2001DSTM versus cosZ: May 2001Time-series for DSTM: June 2002DSTM versus cosZ: June 2002A close-up view of 28 January 2003: (07:11UT-07:46UT): DSDIR, DSDFS and DSGL2From Table 4.11: violations of sub-procedure 2.4, expressed as a percentage of all datapoints per month	107 108 111 112 112 116 117 118 119 120 122 123

Scatter diagram of τ versus Z: June 2001	126
Time-series for July 2001: Measured LWD, calculated σT^4 and $~\epsilon.$	
Area between boundaries is shaded.	129
Scatter diagram U versus $arepsilon$: June 2000 to May 2003 (hourly	
values) with straight regression line	130
Time-series of (DSGL2 – DSDIF – DSDIR *cosZ): May 2001	133
Time-series on 17 May 2001 for DSDIR, DSDFS, DSGL2, TOA	
radiation and DSGL2 – DSDFS –DSDIR*cosZ	134
Time-series on 31 May 2001 for DSDIR, DSDFS, DSGL2, TOA	
radiation and DSGL2 – DSDFS – DSDIR*cosZ.	135
	Scatter diagram of τ versus Z: June 2001 Time-series for July 2001: Measured LWD, calculated σT^4 and ϵ . Area between boundaries is shaded. Scatter diagram U versus ϵ : June 2000 to May 2003 (hourly values) with straight regression line Time-series of (DSGL2 – DSDIF – DSDIR *cosZ): May 2001 Time-series on 17 May 2001 for DSDIR, DSDFS, DSGL2, TOA radiation and DSGL2 – DSDFS –DSDIR*cosZ Time-series on 31 May 2001 for DSDIR, DSDFS, DSGL2, TOA radiation and DSGL2 – DSDFS – DSDIR*cosZ.

Figure 5.1	Global orthographic projection of solar eclipse on 21 June 2001	139
Figure 5.2	Close-up view of 2001 eclipse path through Africa, showing detail	
	of partial phase.	140
Figure 5.3	Synoptic conditions at 12:00 UT on 18 June 2001	142
Figure 5.4	Synoptic conditions at 12:00 UT on 19 June 2001	142
Figure 5.5	Synoptic conditions at 12:00 UT on 20 June 2001	143
Figure 5.6	Synoptic conditions at 12:00 UT on 21 June 2001	144
Figure 5.7	SW radiation elements for eclipse 2001: Time-series of datapoints	
	for DSGL2, DSDIR, DSDFS and TOA radiation	144
Figure 5.8	DSDIR and the associated OSD. Eclipse time is shaded.	147
Figure 5.9	DSGL2 and the associated OSD. Eclipse time is shaded.	148
Figure 5.10	DSDFS and the associated OSD. Eclipse time is shaded.	148
Figure 5.11	Time-series of DSGL1-DSGL2 and DSGL2 / DSGL1. Eclipse time	
	is shaded.	149
Figure 5.12	Time-series for K_t , K_n , K_d and K_t – (K_n + K_d). Eclipse time is shaded.	150
Figure 5.13	Scatter diagram of K_n versus K_t for 21 June 2001	150
Figure 5.14	Time-series of LWD and terms of equation 3.4. for 21 June 2001	151
Figure 5.15	Time-series of only LWD for 21 June 2001. Eclipse time is shaded.	152
Figure 5.16	Close-up view of LWD time series for 21 June 2001. Eclipse time is	
	shaded.	152
Figure 5.17	Time-series of surface temperature and relative humidity for eclipse	
	2001. Eclipse time is shaded.	153
Figure 5.18	Time-series of wind speed and wind direction for eclipse 2001. Eclipse	
	time is shaded.	153
Figure 5.19	Global orthographic projection of solar eclipse, 4 December 2002.	154
Figure 5.20	Close-up view of 2002 eclipse path through Africa, showing details of	

	the partial phase. For reference, the totality path for 2001 is also shown	152
Figure 5.21	Close-up view of totality path and partial phases for South Africa.	153
Figure 5.22	Synoptic conditions at 12:00 UT on 1 December 2002	157
Figure 5.23	Synoptic conditions at 12:00 UT on 2 December 2002	158
Figure 5.24	Synoptic conditions at 12:00 UT on 3 December 2002	158
Figure 5.25	Synoptic conditions at 12:00 UT on 4 December 2002	159
Figure 5.26	SW radiation elements for eclipse 2002: Time-series of datapoints	
	for DSGL2, DSDIR, DSDFS and TOA radiation	160
Figure 5.27	DSDIR and the associated OSD	162
Figure 5.28	DSGL2 and the associated OSD	162
Figure 5.29	DSDFS and the associated OSD	163
Figure 5.30	Time-series of DSGL1-DSGL2 and DSGL2/DSGL1. Eclipse time	
	is shaded.	164
Figure 5.31	Time-series for K_t , K_n , K_d and $K_t - (K_n + K_d)$. Eclipse time is shaded.	165
Figure 5.32	Scatter diagram of K_n versus K_t for 4 December 2002	165
Figure 5.33	Time-series of LWD and terms of Equation 3.4 for 4 December 2002.	
	Eclipse time is shaded.	165
Figure 5.34	Time-series of only LWD, for 4 December 2002. Eclipse time is	
	shaded.	166
Figure 5.35	Close-up view of LWD time series for 4 December 2002. Eclipse time	
	is shaded.	166
Figure 5.36	Time-series of surface temperature and relative humidity for eclipse	
	2002. Eclipse time is shaded.	167
Figure 5.37	Time-series of wind speed and wind direction for eclipse 2002. Eclipse	
	time is shaded.	168
Figure 6.1	Monthly percentage of missing data : June 2000 to May 2003	171
Figure A.1	First photopage Appendix A	•
Figure A.2	Second photopage Appendix A	A
Figure D 1	Geographical representation of Koppen climate zones	h
		,
Figure E.1	Circuit diagram for pyrgeometer- logger connections Appendix E	Ξ

LIST OF TABLES

Table 1.1	Essential references for De Aar Weather Office	14
Table 2.1	Evolution of target radiometric accuracy in BSRN	29
Table 2.2	Site evaluation criteria based upon a selection of desirable surface/	
	atmospheric characteristics and satellite algorithm comparisons	34
Table 2.3	Evolution of the active BSRN climate zone representation	35
Table 2.4(a)	Basic radiation measurement parameters at BSRN stations	43
Table 2.4(b)	Basic non-radiation measurement parameters at BSRN stations	43
Table 2.5	Extended measurement parameters at BSRN stations	44
Table 3.1	Observed pyrheliometer sensitivities since the De Aar BSRN	
	installation	57
Table 3.2	Observed pyranometer sensitivities since the De Aar BSRN	
	installation	60
Table 3.3	Error estimation using Equation 3.4 for typical De Aar values	
	instead of Equation 3.3.	69
Table 3.4	One-minute De Aar data for 4 July 2002 between minutes 354 and 369	79
Table 3.5	One-minute De Aar data for 4 July 2002 between minutes 562 and 590	81
Table 4.1	Sub-procedures of WRMC procedure 1: Physically possible quantities	96
Table 4.2	Sub-procedures of WRMC procedure 2: Extremely rare quantities	98
Table 4.3	Sub-procedures of WRMC procedure 3: Across quantities	99
Table 4.4	Intercomparison of a number of LWD parameterizations using De Aar	
	measured LWD and surface meteorological data	100
Table 4.5	Frequency distribution of DSDIR: June 2000 to May 2003, ref. to sub-	
	procedure 1.1	105
Table 4.6	Frequencies of DSDFS > TOA + 10 W.m ⁻² : June 2000 to May 2003,	
	ref. to sub-procedure 1.2	107
Table 4.7	Frequency distribution of DSGL2: June 2000 to May 2003, ref. to sub-	
	procedure 1.3	110
Table 4.8	Frequency distribution of LWD: June 2000 to May 2003, ref. to sub-	

	procedure 1.4	114
Table 4.9	Frequencies of DSTM < 0: June 2000 to May 2003 ref to sub-procedure	
	2.1	116
Table 4.10	Frequency distribution of DSDFS: June 2000 to May 2003, ref. to sub-	
	procedure 2.3. Shaded area represents violations	121
Table 4.11	Frequency distribution of τ : June 2000 to May 2003, ref. to sub-	
	procedure 2.4. Shaded area represents violations	124
Table 4.12	Frequency distribution of ε : June 2000 to May 2003, ref. to sub-	
	procedure 3.1. Shaded areas represent violations	128
Table 4.13	Frequency distribution of DSGL2-DSDFS-DSDIR*cosZ: June 2000 to	
	May 2003, ref. to sub-procedures 3.3 and 3.4. Shaded areas	
	represent violations	132
Table 5.1	Relative frequency of eclipse types (after NASA's Solar Eclipse	
	Catalogue)	138
Table 5.2	Comparative data at De Aar BSRN station for the 2001 and 2002	
	eclipses over Southern Africa.	139
Table 5.3	Local circumstances for a few centra in South Africa during eclipse	
	2001	141
Table 5.4	Local circumstances for a few centra in South Africa during eclipse	
	2002	156
Table 5.5	Comparison of radiation losses for the two eclipses	161

 Table D.1
 Descriptive properties of the Koppen climate zone classification
 Appendix D

LIST OF ACRONYMS AND ABBREVIATIONS

AMS	American Meteorological Society
AOD	Aerosol Optical Depth
ARM	(American) Atmosphere Radiation Monitoring
AVG	(Mathematical) Average
AWS	Automatic Weather Station
BOM	(Australian) Bureau of Meteorology
BSRN	Baseline Surface Radiation Network
CD	Compact Disk
CMDL	(American) Climate Monitoring and Diagnostics Laboratory
COSPAR	Committee on Space Research
CSI	Campbell Scientific Incorporated
DJF	December-January-February (average of summer data) – see also MAM, JJA and SON
DL	One-minute average value of downwelling longwave radiation – see also LWD
DSDFS	One-minute average value of diffuse radiation.
DSDIR	One-minute average value of direct radiation.
DSGL1	One-minute average value of calculated global radiation using the relationship
	between direct, diffuse and the solar zenith angle.
DSGL2	One-minute average value of global radiation using an unshaded
	pyranometer.
DSTM	(A complex definition involving DSGL2 and TOA radiation, in section 4.3.2.1.)
ECMWF	European Centre for Medium-Term Weather Forecasts
EMPA	"Eidgenössische Materialprüfungs- und Forschungsanstalt" (Swiss Federal
	Laboratory for Materials Research and Testing)
EPLAB	Eppley Laboratories
ERBE	Earth Radiation Budget Experiment
ETHZ	"Eidgenössische Technische Hochschule Zürich" (Swiss Federal Institute of
	Technology)
FTP	File Transfer Protocol
GAW	Global Atmosphere Watch
GBSRN	Global Baseline Surface Radiation Network
GEWEX	Global Energy and Water Cycle Experiment
GPS	Global Positioning System (by satellites)
GSFC	Goddard Space Flight Centre (the combination NASA-GSFC is often used).

HTTP	Hyper-text Transfer Protocol
ICSU	International Council of Scientific Unions
INFM	"L'Istituto Nazionale per la Fisica della Materia"
	(The (Italian) National Institute for the Physics of Matter)
IPC	International Pyrheliometric Comparisons (such as IPC VIII, IPC IX, etc.)
IPCC	Intergovernmental Panel on Climate Change
IPS	International Pyrheliometric Scale
IR	Infrared (radiation)
ITCZ	Inter-tropical Convergence Zone
IUCC	Information Unit on Climate Change
JJA	June-July-August (average of winter data) – see also DJF, MAM and SON.
KNMI	"Koninklijk Nederlands Meteorolgisch Instituut"
	(Royal Dutch Meteorological Institute).
LAN	Local Area Network
LW	Longwave (Radiation)
LWD	Longwave Downwelling (Radiation)
MAM	March-April-May (average of autumn data) – see also DJF, JJA and SON
NASA	(American) National Aeronautic Space Agency. See also GSFC.
NEPAD	New Plan for African Development
NH	Northern Hemisphere
NIP	Normal Incidence Pyrheliometer
NOAA	National Oceanic Atmospheric Administration
NREL	(American) National Renewable Energy Laboratory. See also SERI.
OLR	Outgoing Longwave Radiation
OSD	One-minute standard deviations (of BSRN measurements)
PAR	Photosynthetically Active Radiation
PC	Personal Computer
PDF	Portable Document File (computer format)
PIR	Precision Infrared Radiometer
PMOD	"Physikalisch-Meteorologisches Observatorium Davos"
	(World Radiation Centre) – also see WRC
PSP	Precision Spectral Pyranometer
PWV	Precipitable Water Vapour
RTM	Radiative Transfer Model(s)
SADC	Southern African Development Community
SAST	South African Standard Time
SAWB	South African Weather Bureau
2///2	South African Weather Service

SERI	Solar Energy Research Institute (now known as NREL).
SGP	(American) Southern Great Plains
SH	Southern Hemisphere
SON	September-October-November (average of spring data) – see also DJF, MAM
	and JJA
SRB	Surface (Solar) Radiation Budget
STD	Standard Deviation
SURFRAD	(American) Surface Radiation Project
SW	Shortwave (Radiation)
TOA	Top Of (the) Atmosphere
UL	One-minute average value of upwelling longwave (radiation)
UNEP	United Nation's Environmental Programme
UPS	Uninterruped Power Supply
USSR	Union of Socialistic Soviet Republics
UT	Universal Time
UV	Ultraviolet (Radiation)
WAN	Wide Area (computer) Network
WCRP	World Climate Research Programme
WRDC	World Radiation Data Centre (St. Petersburg, Russia)
WRMC	World Radiation Monitoring Centre (Zürich, Switzerland)
WMO	World Meteorological Organization
WRC	World Radiation Centre (also see PMOD: the combination PMOD-WRC is
	often used)
WRR	World Radiometric Reference