160 research outputs found

    The BGP Visibility Toolkit: detecting anomalous internet routing behavior

    Get PDF
    In this paper, we propose the BGP Visibility Toolkit, a system for detecting and analyzing anomalous behavior in the Internet. We show that interdomain prefix visibility can be used to single out cases of erroneous demeanors resulting from misconfiguration or bogus routing policies. The implementation of routing policies with BGP is a complicated process, involving fine-tuning operations and interactions with the policies of the other active ASes. Network operators might end up with faulty configurations or unintended routing policies that prevent the success of their strategies and impact their revenues. As part of the Visibility Toolkit, we propose the BGP Visibility Scanner, a tool which identifies limited visibility prefixes in the Internet. The tool enables operators to provide feedback on the expected visibility status of prefixes. We build a unique set of ground-truth prefixes qualified by their ASes as intended or unintended to have limited visibility. Using a machine learning algorithm, we train on this unique dataset an alarm system that separates with 95% accuracy the prefixes with unintended limited visibility. Hence, we find that visibility features are generally powerful to detect prefixes which are suffering from inadvertent effects of routing policies. Limited visibility could render a whole prefix globally unreachable. This points towards a serious problem, as limited reachability of a non-negligible set of prefixes undermines the global connectivity of the Internet. We thus verify the correlation between global visibility and global connectivity of prefixes.This work was sup-ported in part by the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant 317647 (Leone)

    A system for the detection of limited visibility in BGP

    Get PDF
    Mención Internacional en el título de doctorThe performance of the global routing system is vital to thousands of entities operating the Autonomous Systems (ASes) which make up the Internet. The Border Gateway Protocol (BGP) is currently responsible for the exchange of reachability information and the selection of paths according to their specified routing policies. BGP thus enables traffic to flow from any point to another connected to the Internet. The manner traffic flows if often influenced by entities in the Internet according to their preferences. The latter are implemented in the form of routing policies by tweaking BGP configurations. Routing policies are usually complex and aim to achieve a myriad goals, including technical, economic and political purposes. Additionally, individual network managers need to permanently adapt to the interdomain routing changes and, by engineering the Internet traffic, optimize the use of their network. Despite the flexibility offered, the implementation of routing policies is a complicated process in itself, involving fine-tuning operations. Thus, it is an error-prone task and operators might end up with faulty configurations that impact the efficacy of their strategies or, more importantly, their revenues. Withal, even when correctly defining legitimate routing policies, unforeseen interactions between ASes have been observed to cause important disruptions that affect the global routing system. The main reason behind this resides in the fact that the actual inter-domain routing is the result of the interplay of many routing policies from ASes across the Internet, possibly bringing about a different outcome than the one expected. In this thesis, we perform an extensive analysis of the intricacies emerging from the complex netting of routing policies at the interdomain level, in the context of the current operational status of the Internet. Abundant implications on the way traffic flows in the Internet arise from the convolution of routing policies at a global scale, at times resulting in ASes using suboptimal ill-favored paths or in the undetected propagation of configuration errors in routing system. We argue here that monitoring prefix visibility at the interdomain level can be used to detect cases of faulty configurations or backfired routing policies, which disrupt the functionality of the routing system. We show that the lack of global prefix visibility can offer early warning signs for anomalous events which, despite their impact, often remain hidden from state of the art tools. Additionally, we show that such unintended Internet behavior not only degrades the efficacy of the routing policies implemented by operators, causing their traffic to follow ill-favored paths, but can also point out problems in the global connectivity of prefixes. We further observe that majority of prefixes suffering from limited visibility at the interdomain level is a set of more-specific prefixes, often used by network operators to fulfill binding traffic engineering needs. One important task achieved through the use of routing policies for traffic engineering is the control and optimization of the routing function in order to allow the ASes to engineer the incoming traffic. The advertisement of more-specific prefixes, also known as prefix deaggregation, provides network operators with a fine-grained method to control the interdomain ingress traffic, given that the longest-prefix match rule over-rides any other routing policy applied to the covering lessspecific prefixes. Nevertheless, however efficient, this traffic engineering tool comes with a cost, which is usually externalized to the entire Internet community. Prefix deaggregation is a known reason for the artificial inflation of the BGP routing table, which can further affect the scalability of the global routing system. Looking past the main motivation for deploying deaggregation in the first place, we identify and analyze here the economic impact of this type of strategy. We propose a general Internet model to analyze the effect that advertising more-specific prefixes has on the incoming transit traffic burstiness. We show that deaggregation combined with selective advertisements (further defined as strategic deaggregation) has a traffic stabilization side-effect, which translates into a decrease of the transit traffic bill. Next, we develop a methodology for Internet Service Providers (ISPs) to monitor general occurrences of deaggregation within their customer base. Furthermore, the ISPs can detect selective advertisements of deaggregated prefixes, and thus identify customers which may impact the business of their providers. We apply the proposed methodology on a complete set of data including routing, traffic, topological and billing information provided by an operational ISP and we discuss the obtained results.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Arturo Azcorra Saloña.- Secretario: Steffano Vissichio.- Vocal: Kc. Claff

    Deep Dive into the IoT Backend Ecosystem

    Get PDF
    Internet of Things (IoT) devices are becoming increasingly ubiquitous, e.g., at home, in enterprise environments, and in production lines. To support the advanced functionalities of IoT devices, IoT vendors as well as service and cloud companies operate IoT backends -- the focus of this paper. We propose a methodology to identify and locate them by (a) compiling a list of domains used exclusively by major IoT backend providers and (b) then identifying their server IP addresses. We rely on multiple sources, including IoT backend provider documentation, passive DNS data, and active scanning. For analyzing IoT traffic patterns, we rely on passive network flows from a major European ISP. Our analysis focuses on the top IoT backends and unveils diverse operational strategies -- from operating their own infrastructure to utilizing the public cloud. We find that the majority of the top IoT backend providers are located in multiple locations and countries. Still, a handful are located only in one country, which could raise regulatory scrutiny as the client IoT devices are located in other regions. Indeed, our analysis shows that up to 35% of IoT traffic is exchanged with IoT backend servers located in other continents. We also find that at least six of the top IoT backends rely on other IoT backend providers. We also evaluate if cascading effects among the IoT backend providers are possible in the event of an outage, a misconfiguration, or an attack

    The Maestro Attack: Orchestrating Malicious Flows with BGP

    Get PDF
    We present the Maestro Attack, a Link Flooding Attack (LFA) that leverages Border Gateway Protocol (BGP) engineering techniques to improve the flow density of botnet-sourced Distributed Denial of Service (DDoS) on transit links. Specific-prefix routes poisoned for certain Autonomous Systems (ASes) are advertised by a compromised network operator to channel bot-to-bot ows over a target link. Publicly available AS relationship data feeds a greedy heuristic that iteratively builds a poison set of ASes to perform the attack. Given a compromised BGP speaker with advantageous positioning relative to the target link in the Internet topology, an adversary can expect to enhance flow density by more than 30 percent. For a large botnet (e.g., Mirai), the bottom line result is augmenting the DDoS by more than a million additional infected hosts. Interestingly, the size of the adversary-controlled AS plays little role in this effect; attacks on large core links can be effected by small, resource-limited ASes. Link vulnerability is evaluated across several metrics, including BGP betweenness and botnet flow density, and we assess where an adversary must be positioned to execute the attack most successfully. Mitigations are presented for network operators seeking to insulate themselves from this attack

    Interdomain Route Leak Mitigation: A Pragmatic Approach

    Get PDF
    The Internet has grown to support many vital functions, but it is not administered by any central authority. Rather, the many smaller networks that make up the Internet - called Autonomous Systems (ASes) - independently manage their own distinct host address space and routing policy. Routers at the borders between ASes exchange information about how to reach remote IP prefixes with neighboring networks over the control plane with the Border Gateway Protocol (BGP). This inter-AS communication connects hosts across AS boundaries to build the illusion of one large, unified global network - the Internet. Unfortunately, BGP is a dated protocol that allows ASes to inject virtually any routing information into the control plane. The Internet’s decentralized administrative structure means that ASes lack visibility of the relationships and policies of other networks, and have little means of vetting the information they receive. Routes are global, connecting hosts around the world, but AS operators can only see routes exchanged between their own network and directly connected neighbor networks. This mismatch between global route scope and local network operator visibility gives rise to adverse routing events like route leaks, which occur when an AS advertises a route that should have been kept within its own network by mistake. In this work, we explore our thesis: that malicious and unintentional route leaks threaten Internet availability, but pragmatic solutions can mitigate their impact. Leaks effectively reroute traffic meant for the leak destination along the leak path. This diversion of flows onto unexpected paths can cause broad disruption for hosts attempting to reach the leak destination, as well as obstruct the normal traffic on the leak path. These events are usually due to misconfiguration and not malicious activity, but we show in our initial work that vrouting-capable adversaries can weaponize route leaks and fraudulent path advertisements to enhance data plane attacks on Internet infrastructure and services. Existing solutions like Internet Routing Registry (IRR) filtering have not succeeded in solving the route leak problem, as globally disruptive route leaks still periodically interrupt the normal functioning of the Internet. We examine one relatively new solution - Peerlocking or defensive AS PATH filtering - where ASes exchange toplogical information to secure their networks. Our measurements reveal that Peerlock is already deployed in defense of the largest ASes, but has found little purchase elsewhere. We conclude by introducing a novel leak defense system, Corelock, designed to provide Peerlock-like protection without the scalability concerns that have limited Peerlock’s scope. Corelock builds meaningful route leak filters from globally distributed route collectors and can be deployed without cooperation from other network

    Ontological interpretation of network monitoring data

    Get PDF
    Interpreting measurement and monitoring data from networks in general and the Internet in particular is a challenge. The motivation for this work has been to in- vestigate new ways to bridge the gap between the kind of data which are available and the more developed information which is needed by network stakeholders to support decision making and network management. Specific problems of syntax, semantics, conflicting data and modeling domain-specific knowledge have been identified. The methods developed and tested have used the Resource Descrip- tion Framework (rdf) and the ontology languages of the Semantic Web to bring together data from disparate sources into unified knowledgebases in two discrete case studies, both using real network data. Those knowledgebases have then been demonstrated to be usable and valuable sources of information about the networks concerned. Some success has been achieved in overcoming each of the identified problems using these techniques, proving the thesis that taking an ontological ap- proach to the processing of network monitoring data can be a very useful technique for overcoming problems of interpretation and for making information available to those who need it
    • …
    corecore