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Abstract—In this paper, we propose the BGP Visibility Toolkit,
a system for detecting and analyzing anomalous behavior in
the Internet. We show that interdomain prefix visibility can be
used to single out cases of erroneous demeanors resulting from
misconfiguration or bogus routing policies. The implementation
of routing policies with BGP is a complicated process, involving
fine-tuning operations and interactions with the policies of the
other active ASes. Network operators might end up with faulty
configurations or unintended routing policies that prevent the
success of their strategies and impact their revenues. As part
of the Visibility Toolkit, we propose the BGP Visibility Scanner,
a tool which identifies limited visibility prefixes in the Internet.
The tool enables operators to provide feedback on the expected
visibility status of prefixes. We build a unique set of ground-truth
prefixes qualified by their ASes as intended or unintended to have
limited visibility. Using a machine learning algorithm, we train
on this unique dataset an alarm system that separates with 95%
accuracy the prefixes with unintended limited visibility. Hence,
we find that visibility features are generally powerful to detect
prefixes which are suffering from inadvertent effects of routing
policies. Limited visibility could render a whole prefix globally
unreachable. This points towards a serious problem, as limited
reachability of a non-negligible set of prefixes undermines the
global connectivity of the Internet. We thus verify the correlation
between global visibility and global connectivity of prefixes.

I. INTRODUCTION

The performance of the global routing system is vital
to thousands of entities operating the Autonomous Systems
(ASes) which make up the Internet. The Border Gateway
Protocol (BGP) is currently responsible for the exchange of
reachability information and the selection of paths according
to specified routing policies. By tweaking the BGP configura-
tions, the network operators are able to express their routing
preferences, designed to accommodate myriad economic and
technical goals. Despite the flexibility offered, the implemen-
tation of routing policies is a complicated process in itself,
involving fine-tuning operations. Thus, it is an error-prone task
and operators might end up with faulty configurations that
impact the efficacy of their strategies or, more importantly,
their revenues. Flawed routing policies cause for anomalies
to emerge in the Internet, including interdomain prefix leaks,
e.g., the case of Dodo leaking its full BGP routing table to
provider Telstra in February 2012 [1], prefix hijacks, e.g., the
well-known case of Pakistan Telecom hijack of YouTube [2]
or prefixes not being distributed everywhere, e.g., the case

where some multi-homed networks could not see the prefix
of the DNS K root server [3]. Over the last years, a lot of
effort has gone in the direction of identifying, classifying and
eliminating some of these anomalies [4].

Withal, even when correctly defining legitimate routing
policies, unforeseen interactions between ASes have been
observed to cause important disruptions that affect the global
routing system [5], [6]. The main reason behind this resides
in the fact that the actual interdomain routing is the result of
the interplay of many routing policies from ASes across the
Internet, possibly bringing about a different outcome than the
one expected. Consequently, in order to ensure the efficiency
of their routing policies, ASes periodically control how their
preferences resonate in the routing system using, among other,
public looking-glasses or public BGP routing feeds.

In this paper, we argue that prefix visibility at the interdo-
main level is an important

:
a flag useful to detect cases of

faulty configurations or bogus routing policies, which disrupt
the functionality of the routing system. We say that a prefix
is visible to an AS if the latter has a stable active route
in its BGP Global Routing Table (GRT) for the prefix in
question. We (loosely) define the GRT as the routing table
provided by an

:::::::
Internet

::::::
Service

::::::::
Provider

:
(ISP)

:
to its customers

requesting a full routing feed. Each Internet Service Provider
(ISP )

:::
ISP

:
maintains its own version of the GRT, which

may vary from one network to another in terms of routes
contained [7]. A prefix is globally visible when almost all
the ASes in the Internet have an active stable route for it. In
this paper, we show that the lack of global prefix visibility can
offer early warning signs for anomalous events that, despite
their impact, often remain hidden from state of the art tools,
e.g., [8], [9]. Additionally, we show that such unintended
Internet behavior not only degrades the efficacy of the routing
policies implemented by operators, but can also point out
problems in the global connectivity of prefixes. In order to
evaluate the global visibility of a prefix, we compare the
content of the GRTs from the ASes that make their routing data
public. We define Limited-Visibility Prefix (LVP) as stable
long-lived Internet prefix that is visible in the GRTs of at least
two different ASes and in at most 95%1 of all the GRTs in the

1The choice of the 95% visibility threshold allows for a 5% error in the
routing tables sampling process, also accommodating possible glitches that
may appear in the data.
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available sample. Contrariwise, we define the High-Visibility
Prefix (HVPs) as the prefix that is propagated in at least
95% of all the GRTs in the available sample. Additionally, we
identify the Dark Prefixes (DPs) [10], which denote the LVPs
that are not covered by less-specific HVPs.

The work we present in this paper focuses on developing
techniques, tools and methodologies to assist network oper-
ators and researchers in understanding the manner in which
BGP routing policies take effect in the Internet and which
may be their possible impacts in the Internet ecosystem. The
BGP Visibility Toolkit aims to detect and analyze anomalous
interdomain behavior by separating the LVPs which are unin-
tentionally generated in the Internet. The toolkit includes four
different components, which are our main contributions:

1) We propose the BGP Visibility Scanner2, a tool which
allows network operators to check the visibility of their
IPv4 and IPv6 prefixes and detect unintended policies.
An earlier version of this tool is documented in [11]. We
have publicly released the visibility scanner in November
2012. Ever since, the tool has been well received by the
operational community3. The tool continues to evolve and
to attract a large amount of attention and feedback [12],
thus validating its usefulness for the operational commu-
nity. In Section II, we provide the detailed description of
the methodology we build into the scanner.

2) We assemble a unique ground-truth dataset of 20,000
LVPs, for which network operators themselves confirm
which is the expected visibility status of the prefixes
reported by the BGP Visibility Scanner. After comparing
the expected visibility status with the actual one reported
by the scanner, we label each of these LVPs as intended
or, respectively, as unintended to have limited visibility.
An unintended LVP is a prefix whose visibility status in
the BGP Visibility Scanner does not match with the in-
tentions that the network operators reports in the ground-
truth dataset. Contrariwise, the intended LVP is a prefix
for which the intention of the network operator matches
the visibility status we can observe with the Visibility
Scanner.
Collecting feedback from operators regarding their strate-
gies in terms of interdomain routing policies is not an
easy task. We invite the users who query our tool to
participate in a survey. The survey is optional and asks the
users to provide more information regarding the observed
visibility status of their prefixes. Additionally, we have
actively been in contact with various operators who asked
for our support while debugging their routing policies.
The dataset brings additional value in that it accurately
documents distinct causes for the limited visibility of
prefixes in the Internet and provides a deep understanding
of the routing conditions which allows them to emerge. It
documents multiple cases of misconfiguration, unforeseen
interactions and intentional routing policies effects. In
Section III, we further expand on several of these

2The BGP Visibility Scanner is publicly available at visibility.it.uc3m.es
3We presented the BGP Visibility Scanner [11] in different network

operators group meetings, including NANOG, LACNOG, UKNOF, EsNOG.
We have also announced it on RIPE Labs [9].

examples.
3) We propose the Winnowing Algorithm [13], a machine

learning classification algorithm able to automatically
distinguish the unintended LVPs, caused by misconfigura-
tion or unforeseen interactions between routing policies,
from the intended LVPs, which emerge as a legitimate
expressions of intentional routing policies in the Internet.
Using the BGP Visibility Scanner as a data mining tool,
we blend the per-prefix visibility information with the
ground-truth information from active users of the tool to
generate an alarm system for misconfiguration or bogus
routing policies. The resulting Winnowing Algorithm has
a 95% level of accuracy. This further proves that visibil-
ity features are generally powerful to detect anomalies
which

:::
that, despite their impact on the routing system,

are hard to single out due to the limited and distributed
nature of the data. We explain the proposed approach in
more detail

::
the

::::::::
proposed

::::::::
approach

:
in Section IV.

4) We analyze the correlation between visibility and
reachability of both IPv4 and IPv6 prefixes [14]. Faulty
configurations, complex interdomain interactions or bo-
gus routing policies not only impact the efficacy of
the intended routing policies of ASes. Sometimes, the
impacted prefixes are prevented

::::
these

::::::::::
phenomena

::::::
prevent

::
the

:::::::
prefixes

:
to be learned altogether, making the attached

host globally unreachable. It is expected that limited
visibility does not necessarily imply limited reachability,
since the a

:
less-specific high visibility covering prefix

provides
:::
may

::::::::
provide

:
reachability. This is no longer

true for the DPs, which lack a
::
the

:
covering less-specific

prefix with high visibility to ensure that the attached
hosts are still

::::::
globally

:
reachable. We show that the lack

of global visibility of a prefix does imply a
:::::
certain

risk on its global reachability, especially in the IPv6
Internet. While the IPv4 dark address space can be largely
explained as route leaks or mistakes, this is not valid
for the IPv6 DPs. We find that the subset of IPv6 dark
prefixes are

::
is

:
highly unreachable. We believe that this

is a serious problem for the IPv6 Internet, as limited
reachability of a non-negligible set of prefixes undermines
the global connectivity of the Internet. We expand on the
methodology details and

::::::
discuss

:::
our

:
results in Section V.

II. THE BGP VISIBILITY SCANNER

In this section, we describe the BGP Visibility Scanner,
the tool we propose for identifying prefixes with limited
visibility at the interdomain level from publicly available BGP
routing data. The tool has been active and available for the
operational community since November 2012, allowing any
network operator to check the visibility status of their prefixes.
At the time of writing, the visibility scanner detects on a daily
basis more than 95,000 IPv4 and IPv6 LVPs. The daily set of
prefixes with limited visibility can be further queried using the
BGP Visibility Scanner public web-page. We collect feedback
on the intended visibility status of the LVPs from the operators
of the networks originating the prefixes and which are actively
using our tool. This further enables us to verify if the intention
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of the origin network is reflected in the observed visibility
status of its prefixes and to gather ground-truth on the various
causes for LVPs.

A. The BGP Visibility Scanner Methodology
In Figure 1, we depict the main steps we follow for pro-

cessing the raw data according to the BGP Visibility Scanner
Methodology. The methodology is structured in three steps:
First, we retrieve the raw BGP routing data. Second, we pre-
process the raw data in order to obtain the GRTs. Third,
we follow the Visibility Scanner Algorithm to evaluate the
visibility of each prefix within the sample of available GRTs.

1) The Raw Data: Next, we expand on the first block of the
methodology flow depicted in Figure 1. We collect the routing
information from two major publicly available repositories at
RouteViews and RIPE RIS. The two repositories gather BGP
data throughout the world, at the time of writing deploying
24 different collection points, to which we further refer as
collectors. The collectors periodically receive BGP routing
table snapshots, i.e. the content of routing tables at a certain
moment in time from one or more routers within the ASes
activated

:::::
active as monitors. A monitor represents a network

(identified by a unique Autonomous System number) that
connects to the public RIS/RouteViews repository to

:::::::
regularly

propagate its routing table snapshot. At the time of writing,
there are more than 350 different active monitors in RIS and
Routeviews. The monitors have different policies with respect
to the public repositories, thus providing different types of
routing table snapshots. We are able to identify three different
types of feeds that the collectors receive, namely Partial
Routing Tables4, Global Routing Tables and Global Routing
Table with internal routes5. However, only by comparing
GRTs, we can identify the HVPs and LVPs. We further explain
next how we differentiate between these three types of routing
table feeds in order to evaluate the visibility of the prefixes in
the GRTs alone.

Additionally, in order to address the confusion that con-
verging prefixes generate in our analysis by emerging as false
positive LVPs, we analyze two 8-hours apart samples of raw
routing data. In other words, we retrieve the BGP routing
tables twice every day, namely at 08h00 and 16h00 UTC.
We use the two different samples in order to ensure the
correct separation of routes with limited visibility as long-
term expressions of routing policies implemented by ASes and
converging routes or routes with temporary limited visibility
due to internal operational activities of the ASes.

2) GRTs: Cleaning and Pre-processing the Raw Data: We
explain in detail the steps we take in order to pre-process the
raw data, as depicted in the second block in Figure 1.

Size Filter: in order to exclude the Partial Routing Tables
from the whole set of feeds, we verify the actual size of the

4This type of feed can be though as the result of establishing a peering-
like business relationship between the monitor and the collector. By definition,
these feeds are not GRTs, thus are not useful for our analysis.

5In some cases, it may happen that the monitor announces, aside from the
complete routing table, other additional internal information. This additional
information is again of no interest for our study, since we do not focus on
the internal operations of a network. Consequently, we need to identify and
filter out these particular routes within the complete routing feed.

routing table. We consider that an IPv4 GRT should have
no less than 400,000 routing entries [15]. Similarly, an IPv6
global routing table should not contain less than 10,000 routing
entries. Consequently, we keep for further study only the
routing feeds that comply with the minimum limit on the
number of prefixes.

Clean GRTs: we perform a couple of sanitary checks on
the actual data contained in the identified GRTs, in order to
further discard the information that is of no interest for our
analysis, namely bogons, MOAS and internal routes. Bogons
are defined as Martians, representing private and reserved
address space or Fullbogons, which include the IP space that
has been allocated to a Regional Internet Registry (RIR),
but has not been assigned by that RIR to an actual Internet
Service Provider (ISP) or other end-user. Using the bogons
lists published for IPv4 and IPv6 on a daily basis at [16], we
build the bogon filter. We apply this filter on the content of all
the GRTs, to eliminate any matching or more-specific prefixes
for the ones present in the bogon list. The Multiple-Originating
AS (MOAS) [17] prefixes cannot be qualified within our study,
since for these prefixes we are not able to identify which origin
AS might be suffering/generating the reduced visibility of its
prefixes. We eliminate all the identified MOAS. We filter out
the cases of prefixes emerging as LVPs that

::
are, in fact, are

internal routes propagated to the collectors by the monitors.
To discard any potential internal paths, we remove all the
prefixes visible to only one monitor, which is also the origin
AS for the prefixes in question.

3) The Visibility Scanner Algorithm: In this section, we
expand on the details of the proposed Visibility Scanner
Algorithm. Having obtained the “clean” version of the GRTs,
we identify in this phase the prefixes with stable limited
visibility in the Internet. When deriving the final visibility
label, we account for the dynamics of a prefix in time, as
presented

:::
we

:::::
show in the last block from Figure 1.

Labeling Mechanism: we use the two different GRTs taken
8-hours apart (i.e. 08h00 and 16h00 UTC) in order to ensure
the correct separation of the external long-term expressions
of the routing policies implemented by an individual AS

:::::::::
implements

:
and the converging prefixes or the temporary LVPs

due to internal operational activities. We evaluate the visibility
degree at both sampling moments and assign a visibility label
at each time. We define the visibility degree as the number
of GRTs within the daily sample which contain (i.e., “see”) a
certain prefix. The visibility label shows the visibility status of
each prefix at the sampling time, i.e. LVP for Limited Visibility
Prefix and HVP for High Visibility Prefix. We evaluate the
visibility degree of all prefixes at the two different sampling
moments and assign a visibility label at each time. We label
LVP

::::
with

::::
LVP the prefixes present in less than 95% of the

GRTs at each sampling time. Otherwise, the prefixes are
labeled HVP

::
we

:::::
label

:::
the

:::::::
prefixes

:::::
with

:::::
HVP. Consequently,

we assign to each prefix at most two visibility labels.
Label Prevalence Sieve: at this point, we identify and

discard LVPs caused by other factors than routing policies,
e.g. BGP convergence. By analyzing the two visibility labels
that we assign in the previous phase to every prefix, we aim
to avoid such false positive LVPs. The high visibility of a
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Fig. 1. The BGP Visibility Scanner methodology.
TABLE I

IPV4 AND IPV6 BGP ROUTING DATA PROCESSING STATS.

Data Stats IPv4 IPv6
Number of GRTs 150 110
GRT size filter 400,000 10,000
Total Prefixes Analyzed 550,000 16,500
Number of LVPs 90,000 [20%] 3,500 [20%]
Number of HVPs 420,000 12,500
Number of DPs 2,500 [3%] 500 [14%]
% ASes originating LVPs 9% 13%
Internal Routes 10,000 150
Converging Routes 8,000 10

prefix at either of the two sampling times hints the fact that
the route can be visible to all ASes active as monitors. Should
this change during the analyzed time, it might be a cause of, for
example, topology changes or failures. Therefore, we consider
that the HVP label always prevails, i.e. if a prefix is tagged
as HVP at one sampling time, it receives a final label of HVP.
Otherwise, when the prefix has no HVP label, we analyze the
cases of LVP

::::
LVPs prefixes emerging in our results. If a prefix

appears only at one sampling time and it has a
::
an

:
LVP label,

this might be a sign that the prefix is in the process of being
withdrawn or, contrariwise, in the process of converging after
just being injected. These particular routes cannot be qualified
within the visibility scanner, thus we discard any prefix with
only one visibility label and that label being LVP. The only
case where we can say a prefix has final limited visibility is
when it has exactly two LVP labels.

B. The LVPs in Rough Numbers

The
:::
We

:::::
make

::::::::
publicly

::::::::
available

:::
the

:
set of LVPs identi-

fied using the BGP Visibility Scanner methodologyis made
publicly available, so that each network can potentially check
the status of its prefixes. The results are refreshed

::
We

::::::
refresh

::
the

::::::
results

:
on a daily basissuch that the operators can have ,

::
to

::::
give

::::::::
operators

:
an updated view on the efficiency of their

routing policies, both in IPv4 and IPv6. We present next a
few statistics regarding the number of both IPv4 and IPv6
LVPs , as observed

:::
that

:::
we

:::::::
observe during the first 15 months

::::
when

::::
the

::::
BGP

:::::::::
Visibility

:::::::
Scanner

:::
has

:::::
been

:::::
active

:
(i.e., from

November 2012 until January 2014)when the BGP Visibility
Scanner has been active. We summarize this information in
Table I.

Every day we collect more than 500 routing feeds, for each
of the two different sampling moments. In rough numbers,
the daily total number of IPv4 prefixes is around 550,000
prefixes

:
at
::::

the
::::
time

:::
of

::::::
writing. Out of these, around 10,000

IPv4 prefixes are internal routes,
:
which we discard. We also

remove the converging routes. This incurs the elimination
of about 8,000 additional IPv4 prefixes in average. For the
remaining prefixes, we continue the visibility analysis and
assign LVP/HVP labels. We identify, in average, 90,000 LVPs
and 420,000 HVPs. When checking how the two sets of
prefixes overlap, we find that there are more than 2,500 IPv4
LVPs without covering HVP, which we mark DPs. We have
observed

::::::
observe

::::
that

::
more than 3,800 ASes which inject

LVPs, out of which less than 1,000 ASes originate DPs.
The size of the IPv6 GRT is much smaller than the one

for IPv4. We adjust the size filter to be at least 10,000 routes

::
for

:::::
IPv6. We identify and further process the content of 110

GRTs to determine the set of IPv6 LVPs. The daily overall
total number of prefixes is approximatively 16,500 prefixes.
Out of these, on

:::
we

:::::::
discard

::
in

:
average 150 IPv6 prefixes

are discarded as
:::
that

::::
are

:
internal routes advertised to the

collector. We further eliminate the converging routes, i.e.,
approximatively 10 additional prefixes in average. On average,
3,500 IPv6 prefixes are LVPs and approximatively 12,500 IPv6
prefixes are HVPs. In other words, 20% of all the IPv6 prefixes
identified from all the analyzed routing tables are LVPs. This
is consistent with the result for the IPv4 LVPs, where out
of all the prefixes learned, 20% have limited visibility [11].
When checking how the LVPs and HVPs overlap, we find that,
for IPv6, there are more than 500 LVPs without a covering
HVP, which we label as DPs. This represents approximatively
14% of the whole set of IPv6 LVPs. When comparing with
the situation in IPv4, where in average only 3% of the LVPs
are marked as DPs, we find that we have almost 5 times
more IPv6 dark address space. This is relevant because these
prefixes may have limited reachability, in the lack of a default
route. We further analyze the correlation between the limited
visibility and the limited reachability of the LVPs in Section V.
We observe that more than 13% of all IPv6 active ASes
inject LVPs and approximatively 5% of all IPv6 active ASes
originate DPs. In IPv4, we see that 9% of all ASes originate
LVPs and only 2% are also injecting DPs. These numbers may
vary from day to day, given that neither the monitors providing
their global routing tables, nor the actual content of the GRTs
are constant over time.

III. GROUND-TRUTH: UNDERSTANDING LVPs THROUGH
OPERATIONAL USE CASES

The daily set of LVPs is accessible in the BGP Visibility
Scanner for queries on a per-origin AS basis. At the time
of writing, the tool gathers over 8,000 queries for more than
3,000 different origin ASes. We invite the users of the tool to
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participate in a survey regarding the expected visibility status
for the prefixes retrieved. We also inquire about the possible
causes generating the LVPs that the scanner detects. By doing
this, we aim to obtain more insights into why LVPs appear
in the Internet. Also, network operators directly contact us
to provide information on the intended visibility status for
their LVPs detected with the visibility scanner. Leveraging
the feedback received, we build a unique ground-truth dataset
including 20,000 LVPs. We compare the original intention
of the operator with the actual observed visibility status of
the prefixes in the BGP Visibility Scanner, and distinguish
two classes of LVPs: intended and unintended. The ground-
truth dataset contains 1,150 prefixes of the class intended and
a staggering 18,850 LVPs of the class unintended. Conse-
quently, the dataset documents a significant variety of factors
which generate LVPs, both intentionally and unintentionally.
We expand next on a few operational examples which we
found

:::
find

:
to be most interesting.

A. Intended LVPs

Some ASes create LVPs on purpose. There are several ways
this can be done, including the use of BGP communities to
restrict the scope of a prefix advertisement (e.g. geographically
restricted prefixes aimed to offer connectivity only to networks
located in a certain region) or advertisements only through
(some) peering and not transit relationships

::::
links. We next

provide real cases of ASes that deliberately restrict the global
propagation of their prefixes.

For example, using the BGP Visibility Scanner, we are
able to verify and validate the routing policies of two of the
Internet DNS root-servers. For each root-server we identify
the presence of one more-specific LV prefix, which is meant
for providing

::
to

:::::::
provide connectivity only to direct peers and,

consequently, is tagged with the well-known NO-EXPORT
community. The limited visibility of the more-specific prefix
correctly reflects the impact of the NO-EXPORT community
on the connectivity of the prefix. However, the LVP has global
reachability due to the presence of a less-specific HVP, which
is used by the root-servers in order to avoid connectivity issues.

The tool also validates the routing policy of a large content
provider that deliberately limits the visibility of one of its
prefixes to a certain geographical area.

B. Unintended LVPs

The second type of use cases we present captures unin-
tended results of routing policies, i.e., accidental misconfig-
uration or unforeseen interactions between external routing
policies at the interdomain level.

In many cases, LVPs are the result of errors in the configura-
tion of filters at the origin or other ASes that have received the
prefix announcement. For example, a large and widely-spread
ISP learned that a large set of its internal prefixes are visible
only to some of its direct peers. After further investigation,
the ISP was able to identify the misconfiguration of its out-
bound filters, which should have otherwise ensured that those
prefixes were not being advertised to other networks. After
correcting these issues, the origin AS successfully eliminated
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Fig. 2. Empirical CDF of the unintended LVPs lifetime, from June 2012 until
the end of April 2013.

4,000 unintended LVPs of whose existence it was previously
unaware. We note that these issues were

:::::::
remained

:
undetected

for a very long time before the BGP Visibility Scanner became
operational. Figure 2 further depicts the empirical CDF of the
time unintended LVPs were active within the 11 months period
between June 2012 until the April 2013. We observe a large
number of LVPs were active for 150 days within those 11
months. These LVPs then disappeared around November 2012,
after the origin ASes learned that it was accidentally leaking
4,000 prefixes because of misconfiguration.

A clear example of the serious impact that undetected
mistakes might have on the strategies of a network is the case
of an ISP whose prefixes appear as DPs in the scanner. After
investigating this issue, the origin AS found that, due to a
mistake in the configurations of its transit provider, the prefixes
are not being correctly advertised

:::
ISP

:::
was

::::
not

:::::::::
advertising

:::
the

::::::
prefixes

:::
of

:::
the

:::
AS

:::
in

:::::::
question. This not only means that the

prefixes are not globally propagated, but that they could also
be suffering from limited reachability in the Internet.

Unforeseen interactions between legitimate and correctly
defined routing policies of ASes can also limit the visibility
of some prefixes at the interdomain level. The ground-truth
dataset we collect includes cases of ASes reporting

::::
which

:::::
report

:
that the limited visibility of their prefixes is due to

the impact of the filtering policies of third-party ASes. More
exactly, the LVPs the scanner detects

::::
these

::::
are

::::::
cases

::
of

::::::
prefixes

::::
that

:
do not have corresponding objects defined in

the Regional Internet Registry (RIR) database. Thus, ASes
that filter based on the information from the RIR database
discard such prefixes, impacting their global visibility. This,
consequently, causes prefixes to suffer from unintended limited
visibility. Using the BGP Visibility Scanner, network operators
are able to discover and address such cases

::
of

:::::::::
unintended

::::
LVPs.

Overall, as far as we know, the BGP Visibility Scanner
has been able to eliminate approximatively 18,500 unintended
LVPs withing the first 15 months of activity. We find that
14,600 out the total 18,500 known unintended LVPs were
already active on June 1st 2012, as much as 5 months before
the BGP Visibility Scanner became available.

IV. WINNOWING UNINTENDED LVPS: THE MACHINE
LEARNING APPROACH

In this section, we propose the Winnowing Algorithm, the
machine learning tool we incorporate in the BGP Visibility
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Fig. 3. Winnowing Unintended LVPs: detailed methodology.

Toolkit to automatically separate unintended LVPs, which
emerge because of errors or complex interaction between
networks from the intended LVPs, which emerge as expected
expressions of routing policies. The tool builds on the ground-
truth dataset collected with the BGP Visibility Scanner, which
we present in Section III. We use the BGP Visibility Scanner
as a a data mining tool for identifying stable LVPs and
monitoring their status in time. The supervised learning ap-
proach advances a decision tree model using specific visibility
features in order to classify the LVPs. We further show that the
per-prefix visibility features derived by monitoring the prefix
visibility status reported by the visibility scanner over a period
of two weeks are generally powerful to detect prefixes which
are suffering from limited unintended visibility.

Figure 3 illustrates the different steps we follow to winnow-
ing unintended LVPs from the rest. We begin by describing the
visibility features we analyze to characterize each prefix from
the ground-truth dataset of 20,000 pre-classified LVPs. We
then present the proposed machine learning study design and
expand on the error measures we try to optimize. We advance a
decision tree model using the optimal set of visibility features,
chosen according to the information gain measure. Using
the AdaBoost [18] algorithm, we boost the obtained basic
model to achieve higher accuracy and reduce bias in this
supervised learning approach. We finally test the boosted tree-
based model on a hold-out dataset, which was not used during
the learning phase.

A. Data for Supervised Learning

We expand here on the way we pre-process the ground-
truth dataset to further use it for supervised learning. This
corresponds to the first step we illustrate in the workflow

::::::::
work-flow

:
in Figure 3. The ground-truth consists of 20,000

LVPs, each pre-classified to indicate if the prefix has unin-
tended limited visibility or if it is the consequence of intended
interdomain behavior. We note that the dataset exhibits an
important disproportion between the two defined classes, with
1,150 prefixes of the class intended and 18,850 LVPs of
the class unintended. In order to use the ground-truth for
training the machine learning Winnowing Algorithm, we first
identify the full set of significant visibility features, which
we attach to each prefix in the dataset. For every LVP, the
corresponding origin AS is observed over a period of 14 days
prior to the feedback moment. We can thus characterize the
visibility dynamics captured in the BGP Visibility Scanner.

All the possible visibility parameters are listed and explained
in Table II.

B. Study Design

In this section, we explain the study design we follow for
deriving the Winnowing Algorithm. This is depicted in the
second processing block in Figure 3.

We design the learning process in a training-validation-test
format. In other words, we use cross-validation to estimate
how the classification model behaves on an independent never-
before-seen set of data. Also known as rotation estimation, this
approach implies splitting the data into known data, which
we use for training and validation, and unknown data, also
known as hold-out test data, which we use for final testing.
The idea of cross-validation is to repetitively split the known
data into training and validation disjoint sub-sets, in order
to estimate the accuracy of the model. We use the training
dataset to first derive the classification algorithm. In order to
avoid issues like over-fitting and gain more insight on how
the model could generalize to new independent data, we then
perform an initial testing on the validation data. We further
tune the decision model to achieve optimal performance on
the validation dataset. We manually repeat the training and
validation for various splits of

::::
ways

::
to

::::
split

:
the known data.

In order to determine which is the algorithm with the best
results across all possible data splits, we define a set of error
measures which we further

:::
that

:::
we

:
explain in detail

:::
next.

1) Data Structure: When splitting the ground-truth dataset
into training, validation and the hold-out test data, we need to
fulfill several constraints, which we explain next. The three
datasets considered in the study design must be perfectly
disjoint, i.e., we should observe no prefixes nor origin ASes
in any two or more datasets. We thus split the ground-truth
such that all the LVPs generated by the same AS are included
in one unique dataset. We impose these restrictions in order to
ensure a correct estimation of the algorithm performance when
predicting the class of LVPs originated by unknown ASes, on
which we have no prior ground-truth for training. This is a
challenge, since predicting the class of LVPs originated by an
AS on which we have previously trained is significantly easier.

We first create the hold-out test dataset, by randomly
choosing 10% of all the ASes which

:::
that

:
provided feedback.

This hold-out test set is under no circumstances to be used
in the training-validation phase of the learning process. Its
main purpose is to estimate the performance of the optimal
winnowing algorithm on unknown independent data.

We split the remaining 90% of the ground-truth data in two
different subsets, namely the training and validation datasets.
We perform the separation such that the training dataset has
approximatively 80% of the remaining ground-truth dataset,
and the validation set, the 20% left. We require that this
constraint is respected

::::::
respect

::::
this

:::::::::
constraint

:
for the total

number of prefixes and also for the number of different ASes,
i.e., 80% of ASes must be in the training dataset and the
rest of 20% in the validation dataset. Additionally, we require
that the 80-20 split for the training-validation datasets is also
respected for each of the two classes of prefixes. In other
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TABLE II
THE LIST OF PER-LVP VISIBILITY FEATURES. ALL THE VALUES ARE CALCULATED FOR AN OBSERVATION PERIOD OF 14 DAYS. THE FEATURES ARE

ORDERED IN DECREASING ORDER OF THEIR IMPORTANCE, ACCORDING TO THE INFORMATION GAIN.

Extracted per-LVP Feature Explanation Information Gain [weights]
mean_nrPrefs Average number of LVPs generated by the same origin AS 0.319
mean_MonitorsDetecting Average proportion of active monitors detecting the LVP 0.308
std_MonitorsDetecting Standard deviation of the proportion of active monitors detecting the LVP 0.3068
std_nrPrefs Standard deviation of the number of LVPs generated by the same origin AS 0.3060
mean_VisibilityDegree Average absolute visibility degree for the LVP 0.244
std_VisibilityDegree Standard deviation of the absolute visibility degree for the LVP 0.234
length Prefix length of the LVP detected by the BGP Visibility Scanner 0.183
TimeActive Proportion of time the LVP remained with limited visibility 0.153
VisibilityLabel Shows if the prefix has a covering less-specific HVP (i.e., LVP) or not (i.e., DP). 8.61e-05

words, we must have 80% of the intended LVPs in the training
and the rest 20% in the validation dataset and the same for the
unintended LVPs. We impose these rules to ensure a similar
distribution of prefixes and ASes in the training and in the
validation datasets. Given the explained

::::
these

:
constraints, we

identify exactly 989 different ways in which we can separate
the training-validation datasets. In rough numbers, this means
training on about 15,000 LVPs, validating on about 4,500 LVPs
and, finally, testing on approximatively 100 LVPs which were
not used in the training-validation process.

2) Error Measures: In this section, we define the error
measures which we choose to describe the performance of the
derived classification algorithm. The accuracy of a classifier
is defined as the percentage of ground-truth tuples which are
correctly classified when we test on a set of unknown data.
However, even when we obtain a very high value for the ac-
curacy of the classifier, it may be the case that the model does
not recognize very well the tuples of one of the two classes, .

::::
This

:::::::
happens especially when dealing with unbalanced classes

in the data, which is our case. To address these limitations
and to further evaluate the model performance, we define the
following concepts:

• True Positive tuples [TP]: number of tuples classified as
unintended, which really are of unintended class.

• False Positive tuples [FP]: number of tuples classified as
unintended, which really are of intended class.

• True Negative tuples [TN]: number of tuples classified as
intended, which really are of intended class.

• False Negative tuples [FN]: number of tuples classified
as intended, which really are of unintended class.

We now can define the two error metrics which allow us
to correctly evaluate the performance of the classification by
capturing the per-class classification accuracy. Namely, we use
True Positive rate [TPrate] and False Positive rate [FPrate],
which we calculate as follows:

TPrate = P (unintended | unintended ) ∼ TP
TP + FN

,

FPrate = P (unintended | intended) ∼ FP
TN + FP

.

In other words, the TPrate represents the probability of
predicting a tuple6 as unintended, conditioned by the fact
that the tuple is indeed unintended. Similarly, the FPrate

represents the probability of classifying a tuple as unintended,
conditioned by the fact that the tuple is actually intended.

6We call tuple the data structure consisting of the LVP and the correspond-
ing visibility features.

We use the Receiver Operating Characteristic (ROC) curves
to visualize the performance of a classifier . The ROC curve
is a graphical plot that illustrates the performance of a
classification model as

:::
For

::::
each

::::::
tuple,

:::
the

:::::::
decision

::::
tree

::::::::
classifier

::::::::
computes

:::::
some

::::
value

::::::::
between

:::::
zero

::::
and

:::::
one

::::
that

::::
can

:::
be

::::::::::
interpreted

:::
as

::
an

:::::::::
estimation

:::
of

::::
the

::::::::::
probability

::::
that

:::
the

:::::
tuple

::::::::
belongs

::
to

the discrimination threshold is varied. Many classification
models, including decision trees, assign a probability to every
tuple, expressing the degree to which the tuple is considered
to belong to one of the positive class(i. e., in our case
the LVP class “unintended”). By setting a discrimination
threshold

:::::::::::
”unintended”

:::::
class.

::::
The

::::::::::
categorical

::::::::
decisions

::
of

:::
the

:::::::
classifier

::::
are

:::
the

::::::
result

::
of

:::::::
setting

::
a

::::::::
threshold,

:::
µ,

:
on these

probabilities, we obtain a categorical classifier, i.e.,
:
in
:::::

such
:
a

:::
way

::::
that

:
the tuples are classified as unintended

::::::::::
”unintended”

if their probability is higher than the fixed threshold, and
“intended” otherwise. The performance of such a model
is characterized by a single (TPrate,

::
µ,

::::
and

:::
as

:::::::::
“intended”

::::::::
otherwise.

::
It
:::::

turns
::::

out
::::
that

:::
the

:::::
TPrate::::

and
:::
the

::::::
FPrate ::::::

depend

::
µ.

:::
For

:::::
large

::
µ

::::
only

:::
the

:::::
most

::::::::
probably

:::::
tuples

:::
are

::::::::
assigned

::
to

::
the

:::::::
positive

:::::
class,

::::::
which

::
is

::::::
useful

::
to

::::::::
minimize

:::::
false

:::::::
positives

::::
(i.e.,

:::::
small

:
FPrate)pair of values which can be plotted in the

so-called ROC space.When considering different values of the
discrimination threshold, we obtain a set of points capturing
the

:
,
:::
but

::
at
::::

the
:::::::
expense

:::
of

:::::::
missing

:::::
tuples

:::::
from

:::
the

:::::::
positive

::::
class

::::
(i.e.

:::::
small

:::::::
TPrate).

:::
On

::::
the

::::::::
opposite,

::::::
smaller

:::::::::
thresholds

:::::::
increase TPrateto FPrate ,

:::
but

::
at

:::
the

:::::::
expense

::
of

:::::::::
increasing

:::::
FPrate.

:::
The

::::
two

:::::::::::
dimensional

::::
plot

:::::::::::
representing

:::::
pairs

::::::::::::
(FPrate,TPrate)

::
for

::::::::
different

::::::
values

:::
of

::
µ

::
is

::::::
usually

::::::::
referred

::
as

::::
the

::::::::
Receiver

::::::::
Operating

::::::::::::
Characteristic

::::::
(ROC)

::::::
curve.

::::
The

:::::
ROC

:::::
curve

:::
is

:
a

:::::::
standard

::::
way

::
of

::::::::::
representing

:::
the trade-off which can be plotted

in the ROC space. Together,these points form the ROC curve
of the decision model

::::::
between

::::
the

:::::::
positive

:::
and

::::
the

:::::::
negative

::::
class

::
in
::::::

binary
::::::::::::

classification. Overall, the ROC curve gives
an aggregated view on the performance of the model, without
reference to a specific threshold value.

To asses
::::
assess

:
the general performance of various models

using the ROC space, we can measure the area under the curve
(AUC). The ROC space usually shows an ascending diagonal
line, corresponding to the ROC curve of a non-informative
classifier (i.e. one making stochastic decisions independent on
data). As the ROC curve goes closer to this line, the AUC
goes closer to 0.5 and the model becomes less accurate, up
to the point of random. Consequently, an AUC closer to 1
shows high performance for the model

:::
and

::
an

:::::
AUC

:::::
close

::
to

:::
0.5

:::::
shows

::::
low

:::::::::::
performance.
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We also use the ROC curve to further tune the model and
determine the optimal operating point for the classification
model. Note that, since each point in the curve corresponds
to a

:::::::
different

:::::
value

::
of

:::
the

:
discrimination threshold, selecting

the operating point is equivalent to selecting a discrimination
threshold. This selection may depend on the design con-
siderations. For instance, if positive and negative examples
are equally likely, the operating point maximizing the sum
between the TPrate and 1 − FPrate could be a good choice,
because this is equivalent to maximizing the number of cor-
rectly detected tuples. However, the decision model operating
with this threshold may not provide good results on new
datasets with different distributions of tuples per class. To this
end, a robust choice of the operating point is the break even
point. The latter represents the value of the discrimination
threshold where FP is equal to FN. It has been proven that
this point optimizes the performance of the classifier under
worst case conditions, i.e. under adversarial choices of the
class distributions [19].

C. Decision Tree Induction

After previously defining the data structure, error measures
and tools for assessing the performance of a classification
model, we next explain the constructive process we follow in
order to derive the decision tree-based Winnowing Algorithm.
Following the flowchart depicted in Figure 3, we thus proceed
to the last block, namely the Decision-Tree Induction.

In the model, we choose decision trees as base learners
which are boosted to create a robust classification model. Tree-
based learning methods rely on iteratively partitioning the data
into smaller groups of similar elements [19]. The splitting
of the data is done using the features that best separate the
two classes, intended or unintended LVPs. The key idea is
to chose the splits which maximize the group homogeneity,
i.e., elements of the same class are within the same group,
or until the groups are sufficiently “pure”. Choosing the right
number of splits is a challenge, since we

:
.
:::
We

:
can easily over-

fit the model by considering splits that are very specific to the
training data, or, contrariwise, .

::::::::::::
Contrariwise,

:::
we

:::
can

:
under-

fit it by considering shallow general splits. Finding the correct
balance is conditioned by finding the optimal set of features
used to partition the data.

Decision tree induction is the process of deriving decision
trees from the training ground-truth datasets [19]. We use the
extensively tested and popular machine learning method called
Classification and Regression Trees (CART) [20] for deriving
and fine-tuning the base tree model. A CART tree is a binary
decision tree that is constructed by splitting the training dataset
into subsets based on a feature value test. The process is then
repeated on each derived subset in a recursive manner. The
recursion is completed when all the elements in a subset at
a node are of the same class or when splitting no longer
adds value to the classification. We derive the decision trees
using the standard library tree for the R Project for Statistical
Computing [21]. Using each of the 989 different training-
validation splits, we determine the optimal decision tree in
every case. The resulting optimal CART trees are further used

in the following step, where by boosting we combine multiple
CART base learners to form a robust classification model.

In Algorithm 1, we show the main phases traversed
::
we

::::::
traverse

:
in the process of Decision-Tree Inductionthat

:
,
:::::
which

results in building the final Winnowing Algorithm.

Algorithm 1 Decision-Tree Induction
1) Feature Selection

• for n = 1, ..., N :
• Learning from n features:

– append the n-th feature (ranked using the
information gain) to LVPs in the training set;

– for each of the 989 train/validation splits:
∗ grow CART base model;
∗ for each discrimination threshold value:
· compute TPtrain, TNtrain

– compute average ROC over the 989 ROC
curves;

– compute AUC(n) for the averaged ROC curve;
• take subset of n* features maximizing AUC(n).

2) Boosting
• for each train/validation split (out of 989 possi-

ble) :
– train AdaBoost using n* features
– compute TPtrain, TNtrain

• compute threshold average ROC curve over all
the splits;

• take threshold value from the break-even point
in the average ROC.

3) Testing
• train AdaBoost using n* features and the whole

dataset, excluding hold-out test data;
• compute TP, TN on the test set.

1) Feature Selection: We expand next on the Feature Selec-
tion phase of the Decision Tree Induction process, succinctly
described

::::
which

::::
we

:::::::::
succinctly

:::::::
describe

:
in Algorithm 1. We

perform the feature selection by ordering the visibility features
in decreasing order

:::::::::::
decreasingly, in function of their informa-

tion gain. The information gain is a widely accepted measure
for evaluating the capacity of a feature to distinguish between
tuples of different classes. In the third column of Table II,

:
we

show the values of the information gain metric associated to
each of the 9 different visibility parameters. In order to select
the subset of features which ensures the optimal performance
of the base CART decision tree for any training-validation data
configuration, we adopt a progressive approach.

For all the LVPs in the known training dataset, we begin
by considering that every tuple contains

::
the

:::::
tuple

:::::::
formed

::
by

the LVP and only the feature with the highest value of the
information gain, i.e., the mean nrPrefs. For each of the 989
training-validation splits of the known data, we then grow a

::
the

:
decision tree that uses only the value of the mean nrPrefs

feature to discriminate between the two classes of LVPs. We
then test each of these 989 decision trees on the validation
dataset of the corresponding data split and derive one ROC
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Fig. 4. Threshold-average ROC curves for performance estimation of the
decision tree built with the 9 feature-sets. The red continuous curve for the
model using the 7 most important features has the highest AUC and, thus,
constitutes the optimal model.

curve for each of the 989 decision trees. We then calculate
the average performance of the

::::
over

:::
the

::::
989

:
decision trees

generated for each of these
:::
the

:
989 splits. We do so by

evaluating
:::::::::
calculating

:
the average TPrate and FPrate over the

989 ROC curves at every discrimination threshold value. By
calculating the

:::
The

:
average of the 989 values we produce

::::::::
represents

:
a single point on the threshold-averaged ROC curve.

We repeat this process after adding
::::
each

::::
time

:
one more

feature to every tuple
::
the

::::::
tuples

:
in the training dataset, in .

:::
We

:::
add

:::
the

:::::::
features

::
in

:::
the

:
decreasing order of the information

gain value. For example, if before we grew a classification
tree only with mean nrPrefs, in this step we do so by using
the mean nrPrefs and the mean MonitorsDetecting, which is
the feature with the second-highest value of information gain.
We then repeat the process explained above for deriving the
threshold-averaged ROC curve for each subset of features. We
depict in Figure 4 the threshold-averaged ROC curve for every
of the 9 different subsets of features considered for the tuples
in the known dataset used for training.

To identify which is the optimal set of features, we compare
the AUC for the 9 different threshold-averaged ROC curves in
Figure 4. We observe that the classification tree using the first
7 most-important features has the highest performance, with
an average AUC equal to 0.94. In the overall best operating
point for all the 989 data splits, the decision tree has an average
TPrate equal to 0.99 and an average FPrate equal to 0.1.

2) Boosting for Improved Accuracy: We previously found
that

:::
find

::::
that

:::
the

:
optimal decision tree uses only the first 7

most-important visibility features (as per the information gain
value included in Table II) to classify the LVPs. We now move
on to the second phase of the decision tree induction present
in Algorithm 1, namely boosting the base tree model.

Boosting is one of the most powerful learning mechanisms
proposed in the last 20 years, useful to improve the accuracy
of a classification algorithm [22]. The main idea behind this
algorithm is to combine many base classifiers (e.g., in our
case, the CART decision tree built with 7 features) to produce
one robust classification algorithm. Unlike other boosting
algorithms, AdaBoost [18] adjusts adaptively to the errors
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Fig. 5. Threshold-average ROC curve of the boosted decision trees derived
using each of the 989 possible data splits.

of the base learners derived at each iteration. We use the
AdaBoost.M1 algorithm implemented in

:::::::
available

:::::
from

:
the

publicly available package adabag [23] for R.
In order to improve the classification performance across

all the possible data splits, we combine 50 such base learners
using the boosting ensemble technique. We choose to run
50 boosting rounds to make sure that we do not over-fit the
algorithm to the training data. After running experiments with
variable numbers of boosting iterations, we find that a number
of 50 boosting rounds improves the overall classification
performance without over-fitting the classification tree.

To guarantee a good general performance of the boosted
tree-based model with 7 features, we determine next the
overall optimal discrimination threshold for all the 989 splits.
For each of the 989 boosted decision trees obtained, we derive
the associated ROC curve, to obtain an aggregated view of the
performance of each classifier. Since we aim to determine the
optimal operating point over all the 989 models, we

::
We

::::
then

calculate the threshold-averaged ROC curve for
::
of

:
the 989

ROC curves.
In Figure 5 we depict the resulting averaged ROC curve,

which we further use to calibrate the model. We first note that,
independently of the threshold value, the classification model
is generally very accurate for any of the training-validation
splits, with an AUC equal to 0.997. Moreover, we observe
that in the best operating point, the decision algorithm has an
average true positive rate equal to 0.98, and an average false
positive rate of 0.05. The average accuracy of the decision
model is 98%. Though this is a very positive result, our aim
is to design a classification algorithm which generalizes by
accurately predicting for any previously unknown case of AS
originating LVPs. Given that for a new AS we do not have
ways to learn the distribution of intended and unintended
prefixes, we choose as optimal operating point the value of
the threshold where the performance of the algorithm is the
highest for any possible distribution of prefixes per class. In
other words, we choose the value of the threshold which gives
the best performance under the worst known conditions. This
point is the break even point, where the threshold value is
equal to 0.6. In this operating point, the decision algorithm
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has an average true positive rate equal to 0.99, and an average
false positive rate of 0.24. The average accuracy of the tree-
based model at the break-even point is 95%.

Though we observe a slightly weaker performance here
than in the best operating point, we ensure that the decision
algorithm at the break even point achieves optimal perfor-
mance for new cases of ASes originating LVPs. We further
refer to the boosted tree-based classification model using the
7 most-important features and operating with a discrimination
threshold of 0.6 as the Winnowing Algorithm.

3) Testing on the Hold-Out Dataset: To further estimate
the Winnowing Algorithm performance, we test the model
on the hold-out independent dataset, which we did not use
in the training/validation phase. First, we train the prediction
model on all the available ground-truth data, encompassing
both validation and training datasets. We then test the boosted
decision tree on the tuples from the hold-out dataset. The
performance of the winnowing algorithm is characterized by
an average true positive rate of 0.951, with a 95% confidence
interval of [0.87, 0.99] and an average false positive rate
of 0.01, with 95% confidence intervals of [0, 0.02]. We
further calculate the accuracy of the Winnowing Algorithm, by
evaluating the overall proportion of tuples correctly classified.
The average accuracy on the hold-out test set is 97.2%.

D. Discussion on the Machine Learning Approach

Though the machine learning approach is gaining popularity
for Internet-oriented applications, it is sometimes hard to
understand the functionality of the mechanism. In this section,
we provide the intuition behind the decision rules implemented
in the winnowing system.

1) On the Visibility Features: One particularity of the
Winnowing Algorithm is that it only uses visibility features of
the ground-truth LVPs for classification. This set of features
is consistent with the operational status of the routing system.
For example, accidental routing leaks usually generate a large
number of prefixes at once. This explains why, in the context
of the Winnowing Algorithm, the most important feature used
to pinpoint unintended LVPs is the average number of LVPs
injected by the same origin AS. Also, a high variation in the
total number of LVPs from the same origin AS hints that the
prefixes may not be stable expressions of long-lived routing
policies, but side-effects of routing errors. Additionally, we use
as features the per-LVP visibility degree and the proportion
of active monitors which “see” the LVPs. These two features
capture the prefix visibility dynamics caused by variations in
the daily set of active monitors available. We observe that
majority of unintended LVPs have a stable visibility degree
of 3, which is consistent with the fact that misconfiguration
usually affect the routing policies of the ASes in the direct
vicinity of the origin. Furthermore, discarding the last two
features, namely the TimeActive and the VisibilityLabel, is also
justified. For instance, as previously depicted in Figure 2, the
lifetime of unintended LVPs is longer than the lifetime of
easily-noticeable anomalous events, which are quickly fixed
by the origin. For this reason, the lifetime of unintended LVPs
is consistent with the lifetime of intended LVPs which appear

as a result of the correct routing policies. Thus, TimeActive
does not discriminate well between the two classes of LVPs.

2) On the Data Structure: One of the restrictions we
impose in the data structure proposed in the machine learning
study design is that

:
to

:::::::
include

:::
all the LVPs originated by the

same AS be all included in the same dataset, namely training,
validation or hold-out test data. This restriction ensures that
we correctly design the winnowing mechanism to distinguish
between LVPs from new ASes that might be suffering from
unforeseen events. However, it is also important to accurately
classify new LVPs from a network which already provided
feedback used for deriving the Winnowing Algorithm. In
order to verify the performance of the model for such cases,
we perform a very simple experiment. Namely, we split the
dataset independently of the origin AS. We withhold 100
random instances of each class for testing and use the rest
for training. We find that the Winnowing Algorithm derived
in Section IV-C2 performs a highly accurate classification of
the test samples, only misclassifying one out of the 200 tuples.
In other words, when training on LVPs originated from one
particular origin AS, the algorithm has a fairly easy task in
classifying other new LVPs originated by the same AS.

3) On the Ground-truth Lifetime: The ground-truth dataset
of 20,000 LVPs documents a wide range of cases of
previously

::::::::
long-lived

:
undetected anomalous events , affecting

the interdomain
:::
that

:::
are

::::::::
affecting

:::
the

:::::::
Internet entities. Though

the causes for the anomalies we detect are recurring in the
Internet, their appearance in the BGP Visibility Scanner may
change in time. It is unclear at this point how the validity of
the ground-truth dataset and, consequently, the performance of
the Winnowing algorithm would be impacted by the evolution
in time of the routing anomalies and

::
of

:
the routing system

itself. Additional amount of feedback from active users of
the visibility scanner can advance our understanding of the
evolution of LVPs in the Internet. Furthermore, a ground-truth
dataset covering a longer period of time would also allow us
to enhance the capabilities of the Winnowing Algorithm, since
this would offer many different

::::
more

:
examples of intended and

unintended LVPs
:
, while also capturing the evolution in time

of the visibility parameters of
::
for routing anomalies. We leave

for future work the analysis of the lifetime of the ground-truth
knowledge we have accumulated

:::::::::
accumulate and the stability

of the accuracy of the winnowing system in time.

V. REACHABILITY AND VISIBILITY OF PREFIXES

With
::::
Using

:
the Winnowing Algorithm we propose in

:::
from

the previous section, we are able to accurately distinguish
unintended LVPs, which unexpectedly emerge in the Internet
because of configuration errors or bogus routing policies
tacking

:::::
taking effect. This set of anomalies not only impacts

the efficacy of the intended routing policies of the ASes
affected. There are cases when the LVPs become globally
unreachable, since there might not always be a less-specific
covering HVP to ensure that the destinations attached are
globally reachable. In this section, we aim to establish if prefix
visibility at the interdomain level can be further used to alert
ISPs about reachability issues their prefixes might be suffering.
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In other words, we analyze next if the routing anomalies that
render a prefixes as LVP can also deteriorate the reachability
of the corresponding address space. To this end, we perform

:::::
active reachability measurements towards prefixes from all of
the three visibility classes, i.e. HVP, LVP and DP, with the goal
of establishing .

::::
Our

::::
goal

::
is

::
to

::::::
further

::::::
verify

:
the existence of

a correlation between visibility and reachability of prefixes in
the Internet. For this analysis, we focus on the set of IPv4 and
IPv6 LVPs derived on

::::
from the 8th of August, 2013.

A. Measurement Approach

We begin our analysis by presenting the approach we pro-
pose to determine if a prefix is reachable from a given vantage
point in the Internet. Given the current stage of density of the
IPv4 Internet, this should not constitute a concern when testing
the reachability of the address space. Howevver

:::::::
However, the

challenge comes from doing
:::::
testing

:
this for IPv6 prefixes, for

which it is not a simple task to find an address that is actually
allocated to an active host in any prefix. For consistency, we
further design and employ the same measurement approach
both for IPv6 and IPv4 prefixes.

The idea we put forward is to probe the reachability of
a prefix with traceroute towards a random address within

::::::::
contained

:::
by the prefix. We can then check if the last node

replying to the traceroute belongs to the AS of the target prefix
or to one of its Internet providers, as observed in the BGP AS-
Path. In other words, our measurement approach is as follows.

• We send ICMP traceroute probes towards an IP address
in the target prefix.

• We say that the
::::
target

:
prefix is reachable if :

1) The traceroute probe reaches the
::::
origin

::
AS of the

target, i.e., the last AS which appears in the BGP AS-
Path7.

2) The traceroute probe traverses the second-last AS in
the BGP AS-Path8.

:::::::::
Traceroute

::
is
:::::

one
:::

of
::::

the
:::::

most
:::::::

widely
:::::

used
::::::::

network

:::::::::::
measurement

:::::
tools,

::::::
useful

:::::
both

:::
to

::::::::
network

::::::::
operators

::::
and

:::::::::
researchers.

::::::
Apart

:::::
from

:::
the

:::::::
default

::::::::::::::
traceroute [24] ,

::::::
several

::::
other

::::::::::
traceroute

::::::::::
approaches

::::
are

:::::::::
available,

::::::::
namely

:::::
UDP

::::::::
traceroute,

::::::
TCP

::::::::::
traceroute

::::
and

:::::::
ICMP

::::::::::
traceroute.

:::::
The

::::::::
traceroute

:::::::
probing

:::::::
method

:::
we

:::::::
employ

::
is
::::::

ICMP
::::::::::

traceroute,

:::::
which

:::
has

:::::
been

:::::::::
previously

::::::
shown

:::
to

::
be

::::
the

::::
most

:::::::::
successful

:::::::
approach

:::
in

:::::
terms

::
of

::::::
replies

::::::::
received

:::::
[25] .

:

We include the latter hypothesis
:::::
second

::::::::::
hypothesis

::
in

:::
our

:::::::::::
measurement

::::::::
approach

:
because there may be cases where,

even if the probe does reach its destination, it might happen
that the AS of the source IP for the last ICMP message
received is actually the transit provider of the target AS. This
happens because it is a common operational practice that ASes
use addresses from their providers for their transit links. As
a result, the router within the destination network that issues
the last message of the traceroute process will do so using an

7Usually, in the BGP AS-Path the last hop represent the origin AS of the
prefix, while the first hop represents the AS whose routing table we analyze.

8Following the order of the ASes in the BGP AS-Path attribute, the second-
last hop (2LH) in the AS-Path corresponds to the transit provider of the origin
AS.

source address from its ISP’s address space
:
a

::::::
source

::::::
address

:::
that

:::::::
belongs

::
to

:::
its

::::
ISP. This may also be due to reachability

problems in the last hop, which our methodology is unable to
distinguish.

We establish next which of the most popular traceroute
approaches is also the most efficient. Traceroute is one of
the most widely used network measurement tools, useful
both to network operators and researchers. Apart from the
default traceroute [24] , several other traceroute approaches
are available, namely UDP traceroute, TCP traceroute and
ICMP traceroute. The traceroute probing method we employ
is the ICMP traceroute, since it has been previously shown
to be the most successful approach in terms of replies
received [25] .

B. Validating the Measurement Methodology

We validate our approach by checking the reachability status
of a set of prefixes which are a-priori known to contain at
least one reachable address. Our aim is to determine if the
reachability of a randomly chosen IP address is representative
for the most-specific covering prefix. We use a control set
of 70.000 addresses which are known to be reachable. This
is made up of addresses from many sources, including DNS
entries, Alexa’s top sites, and several other sources. For each of
these addresses, we retrieve the most-specific covering prefix
installed in the BGP routing tables. We use public routing data
information to determine the most-specific prefixes covering
each of these reachable addresses. The set of prefixes deter-
mined represents address space known to contain at least one
address that replies to traceroute probing. These prefixes form
the control set of prefixes which we use for validation.

We test the methodology from a machine within a major
Japanese ISP, for which we also have the corresponding BGP
routing data. We send ICMP traceroute probes towards the
first IP address that is different from the address known to
be reachable within each of the prefixes previously inferred.
According to the proposed methodology, we consider that
the traceroute probe reaches the destination when it traverses
either the origin AS of the target, either the second-last AS
(2LH) appearing in the BGP AS-Path towards the target. In
order to identify the 2LH towards a prefix, we analyze the
AS-Path information in the BGP routing table of the AS from
which we are generating the traceroute messages.

After parsing the results of our traceroute tests, we learn that
the ICMP traceroute probes successfully reached more than
96% of these a-priori reachable prefixes. Consequently, the
methodology we propose is able to identify with 96% accuracy
the reachability status of an IPv6 prefixes. For the other 4% of
prefixes, our methodology is unable to determine reachability.
This may be due to several reasons, including ICMP filtering
or routers silently discarding packets.

C. Reachability of Visibility Classes

We further aim to establish the reachability for prefixes
with all of

:::::
within

::::
each

:
the three different classes

::::::::
categories

of interdomain visibility, namely DPs, non-dark LVPs and
HVPs. We perform the reachability measurements first from
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a single source, for which we also know the state of the BGP
routing at the moment of testing. From the point of view of
the measurement source, the High-Visibility Prefixes are the
prefixes contained in its BGP routing table. There are in total
13,195 such IPv6 prefixes and 480,400 IPv4 HVPs. These
prefixes may not be globally High-Visibility, since there may
be other routing tables not “seeing” some of these prefixes.
We label all the rest of prefixes learned from the rest of
the routing tables collected from the public repositories as
Limited Visibility. The latter

::::
LVPs

:
reach a total number of

2,359 prefixes for IPv6 and 87,397 prefixes for IPv4
:
at

:::
the

::::
time

::
of

:::
the

:::::::
analysis. In order to check if any of the Limited

Visibility prefixes are in fact Dark Prefixes from the point of
view of the ISP, we check which LVPs have a less-specific
HVP in the ISP’s routing table to offer global reachability.
We are thus able to single out a total number of 511 IPv6
DPs and 2917

:::::
2,917

:
IPv4 DPs.

In the case of the IPv6 LVPs which have a covering high-
visibility IPv6 prefix (i.e., they are not dark), we observe that
94% of the prefixes are reachable from the Japanese ISP’s
network. For the IPv4 LVPs with covering HVP, we find
that 89% were reachable from the single vantage point used.
This is consistent with the precision of our toolso ,

::::
thus

:
we

cannot make any claims about reachability problems in the
LVP set. We next evaluate the reachability status for the IPv6
and IPv4 DPs. We learn that for more than 95% of these IPv6
prefixes, the traceroute measurements

:::::
probes

:
did not reach

the target. Consequently, less than 5% of the dark address
space is reachable from the vantage point. This result is further
consistent with the reachability measurements performed for
the IPv4 dark prefixes, out of which less than 3% were
reachable from the vantage point. This results shows that,
contrary to the case of non-dark LVPs,

:
where there might be

a less-specific covering HVP to ensure global reachability, the
DPs do present serious connectivity problems, when measured
from this single vantage point.

D. RIPE Atlas Measurement Methodology

Previously, we have seen that, because of the lack of
a covering HVP, dark prefixes exhibit serious connectivity
issues, when tested from a vantage point in the Internet. In
this section, we further test if this is globally valid. We use
the RIPE Atlas Platform [26] to run large-scale measurements
for characterizing the reachability of the dark address space.

We zoom out from the previous localized analysis of
reachability, and test the reachability of the DPs from 100
different probes active in the RIPE Atlas platform. We run the
measurements both towards IPv6 and IPv4 dark prefixes. More
specifically, we test 473 IPv6 DPs derived from analyzing 110
IPv6 GRTs and 3,200 IPv4 DPs derived from analyzing 154
IPv4 GRTs. We send ICMP probes towards a target IP address
within each of the v6 and v4 DPs.

We verify the reachability results in accordance with the
methodology proposed in Section V. Point (2) of the proposed
methodology requires to verify if the traceroute probe traverses
the provider of the origin AS for the target prefix. As opposed
to the previous case where we have the BGP routing table

from the AS hosting the traceroute source to analyze, we now
do not have access to the BGP routing tables corresponding
to the 100 Atlas probes used. In order to overcome this issue,
we build a set of probable second-last hops, which are likely
to be traversed towards each of the possible destination ASes.
We do so by analyzing all the available routing tables from the
ASes active in RIPE RIS and/or Routeviews, and monitoring
the ASes appearing as 2LHs towards the origin AS of the
target prefix. We then state that the target prefix is reachable
if the traceroute probe traverses any of the probable second-
last ASes towards the origin AS of the target prefix.

In order to further understand the impact of relaxing point
(2) of our methodology, we perform the following verification.
We first determine the set of probable second-last hops towards
every destination AS, without using the BGP routing informa-
tion from the AS hosting the machine we used to run the
traceroute tests in Section V-C. We then verify the proportion
of prefixes for which the 2LH appearing in the BGP AS-Path
from the Japanese AS routing table is not among the set of
2LHs likely to be traversed towards the target prefix. We find
that only for 0.05% of the targets, the 2LHs appearing in the
BGP AS-Path of the Japanese ISP are not included in the set
of probable 2LHs derived from all the available GRTs.

E. Results

After processing all the traceroute measurements from each
of the 100 probes towards the Dark Prefixes, we conclude that
the average reachability degree9 for an IPv6 DP is of 46.5%,
whereas for an IPv4 DPs it decreases to only 17.4%. To further
understand this result, we verify how the DP reachability
correlates with the visibility degree of a DP. We show in Figure
6 the scatter-plots both for IPv6 and IPv4 DPs’ reachability
against their visibility within the corresponding sample of
ASes analyzed. We observe that for the IPv6 DPs, depicted
in the left-side plot, there is a stronger correlation between
reachability and visibility than for the IPv4 DPs. This happens
because, for the IPv4 DPs, we see a high number of prefixes
with very limited visibility, but which are highly reachable
from the sample of 100 probes chosen. We observe that in
the v4 plot from Figure 6 there are approximatively 8% of
IPv4 prefixes with visibilities smaller than 0.2 and reachability
larger than 0.2. As previously noted in [27], this may be due
to default routing in IPv4 or static routing [28]. In Section III,
we explain many of the real-life operational reasons for which
this type if IPv4 DPs emerge in the Internet. For example, we
observe in the lower-left corner of the IPv4 plot in Figure
6 a very large number of v4DP

::::
IPv4

::::
DP

:
(approximatively

72% of all the IPv4 DPs) with a reduced visibility degree
and a corresponding low reachability degree. According to the
observations in Section IV-D regarding the intuition behind
the visibility features used by the Winnowing Algorithm, a
small visibility degree of the LVPs indicates the fact that
the IPv4 DPs we test may be effects of misconfiguration or
bogus routing policies. For example, these IPv4 DPs may
be route leaks which, as we learn from the operational use

9We define the reachability degree as the number of probes out of the 100
Atlas vantage points that successfully reach the traceroute target.
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Fig. 6. Scatterplot of reachability probability against the DP’s visibility, for IPv6 DPs and for IPv4 DPs.

cases explained in Section III, often occur in the Internet.
Consequently, the lack of reachability observed for IPv4 DPs is
largely explained by the fact that these prefixes are unintended
to be visible in the Internet to begin with. At the same time,
even if the IPv6 DPs do not follow the known symptoms of
route leaks or anomalies previously learned from the IPv4
cases, they do struggle with important lack of reachability.
This further shows that, while in IPv4 the DPs are in majority
results of mistakes or slips in the network configuration, in
IPv6 the DPs might appear as side-effect of the early stages
of development of the network.

Next, we focus on analyzing the reachability of DPs whose
ASes originate both IPv4 and IPv6 dark address space. To this
end, we separate only the DPs which are generated by ASes
active both in v4 and v6. In total, we test the reachability of
214 dark prefixes, out of which 88 are IPv6 DPs. We learn that,
in average, for the IPv6 DPs there is an average probability of
40% of being reachable from a vantage point in the Internet,
which is consistent with the general reachability result for all
the IPv6 DPs. This probability decreases to 20% for the IPv4
DPs, also consistent with the overall reachability result for
IPv4. Consequently, there is no apparent correlation between
the reachability of IPv4 DPs and IPv6 DPs originated from
the same AS, these actually following the general reachability
trends previously established.

VI. RELATED WORK

Most of the work related to our efforts tackle the analysis
of BGP raw data, which can be tricky and difficult. There
are numerous efforts towards detecting security related routing
conditions, such as prefix hijacking (e.g., PHAS [29]). Also,
various tools exist to provide useful information for oper-
ators [30], [31]. Multiple operational misconfiguration have
been reported [4], but attempts go far beyond this. They
include RIPE Labs [9], which has a whole section devoted
to tools that assists operators or Renesys [32] and BGPmon
[33], which operate this type of services to operators for a
fee. Unlike tools which integrate a vast amount of operational
problems [8], we do not focus on inferring and/or monitoring
the AS-level topology of the Internet, but on monitoring
the healthy deployment of routing policies through prefix

visibility. In this sense
:
, our work is very closely related to the

work on BGP wedgies by Griffin et al [6], [34]. However, none
of those theoretical work is able to detect problematic routing
conditions based on raw BGP observations. All of this work
requires access to configuration files, which are typically not
shared. The latter are considered a company secret which BGP
was designed to hide, making it hard to be inferred [35]. While
we understand the limitations of BGP protocol monitoring,
we noticed that still a great deal that can be inferred. In
this sense, our work aims at reporting and aggregating the
information to make it usable for operators. Despite that many
other similar tools [8], [9] leverage the massive amount of
available routing data, the BGP visibility scanner is, to the best
of our knowledge, the only tool offering specific information
on global prefix visibility.

Machine learning in the context of interdomain routing
has been already proven to be a successful approach. Using
traffic feature distributions, Lakhina et al. [36] show that the
existence of some anomalies can be detected from traffic
flows. Furthermore, a Bayesian framework has been previously
proposed for detecting mistakes in the router configuration
files using statistical anomalies [37]. Relying on network
data, the usage of statistical algorithms has been advanced to
detect deviations from the long-term profile of BGP routing
updates [38]. Similarly, an instance-learning framework has
been previously recommended for identifying deviations from
the normal defined state of BGP routing dynamics [39].
Likewise, Li et. al advance a rule-based framework for the
detection of abnormal routing behavior caused by a major
worm or a blackout [40].

During the past years, IPv6 has received a lot of attention
both from the operational and the research community. Various
related works look into the transition of the IPv4 network
infrastructure to IPv6 [41] and how the Internet topology,
routing and performance across the two compares [42]. It had
been proven that the routing dynamics in the IPv6 topology
are largely similar to those know from IPv4, even if the degree
of IPv6 deployment is still far behind the IPv4 expansion [42].
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VII. CONCLUSIONS

The BGP Visibility Scanner has proven its ability to trigger
valid visibility alarms and to help operators debug their routing
policies. We were able to help identify more than 18,000
unintended LVPs and assist the origin networks in identifying
their causes. Such prefixes can be easily missed as they are
often overlooked as valid expressions of intentional events.
For example, an ISP was able to learn that 4,000 of its
prefixes were leaking through some of its direct peers and
were visible in the Internet since at least 6 months before the
query was performed. Such events may stem as a consequence
of the merger between large ISPs whose configurations are
consequently changing. This type of transition may affect the
visibility of some prefixes, as it has been observed in the case
of the Level3-Global Crossing merger [43].

In light of the observed perpetuity of such anomalous
interdomain events, we learn that there is an overall acute need
for a simple warning system for faulty configurations and/or
problematic external routing conditions to assist operators in
optimizing the performance of their routing policies. We thus
rely on machine-learning to design a Winnowing Algorithm
able to predict with 95% accuracy if a LVP is intended or
unintended. We leverage the robust machine learning concept
of boosted classification trees [18] to train the system on
ground-truth LVPs, and thus enable it to learn the patterns
of misconfiguration and bogus routing policies which are
normally hard to detect. Furthermore, the classification model
uses only visibility-related per-prefix features in order to
predict the class of the LVPs.

While affecting the global visibility of prefixes,
mis-configured

:::::::::::
misconfigured

:
or unintended routing policies

also impact the global reachability of prefixes. Consequently,
we research how the visibility degree of a prefix impacts
its global reachability. From multiple vantage points in the
Internet, including 100 RIPE Atlas active probes, we test the
reachability of both IPv4 and IPv6 LVPs. We find that limited
visibility does not necessarily imply limited reachability, since
there could be a less-specific HV

::::
HVP covering the LVP to

provide global reachability. However, Dark Prefixes (DPs),
which by definition do not have a covering less-specific
prefix, remain highly unreachable. Moreover, while the IPv4
dark address space can be largely explained as route leaks
or mistakes, this is not valid for the IPv6 DPs. We believe
that this is a serious problem for the Internet, as limited
reachability of a non-negligible set of prefixes cripples the
fundamental function of the Internet, i.e., ensuring global
connectivity for every host attached to it

:
.
:
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