19,831 research outputs found

    The Automation Of Proof By Mathematical Induction

    Get PDF
    Chapter appears in Handbook of Automated Reasoning Edited by: Alan Robinson and Andrei Voronkov ISBN: 978-0-444-50813-3This paper is a chapter of the Handbook of Automated Reasoning edited by Voronkov and Robinson. It describes techniques for automated reasoning in theories containing rules of mathematical induction. Firstly, inductive reasoning is defined and its importance fore reasoning about any form of repitition is stressed. Then the special search problems that arise in inductive theories are explained followed by descriptions of the heuristic methods that have been devised to solve these problems

    A Rational Reconstruction and Extension of Recursion Analysis

    Get PDF
    The focus of this paper is the technique of recur8\on analysis. Recursion analysis is used by the Boyer-Moore Theorem Prover to choose an appropriate induction schema and variable to prove theorems by mathematical induction. A rational reconstruction of recursion analysis is outlined, using the technique of proof plans. This rational reconstruction suggests an extension of recursion analysis which frees the induction suggestion from the forms of recursion found in the conjecture. Preliminary results are reported of the automation of this rational reconstruction and extension using the CLAM-Oyster system

    The Dynamic Creation of Induction Rules Using Proof Planning

    Get PDF
    Centre for Intelligent Systems and their ApplicationsA key problem in automating proof by mathematical induction is choosing an induction rule suitable for a given conjecture. Since Boyer & Moore’s NQTHM system the standard approach has been based on recursion analysis, which uses a combination of induction rules based on the relevant recursive function definitions. However, there are practical examples on which such techniques are known to fail. Recent research has tried to improve automation by delaying the choice of inductive rule until later in the proof, but these techniques suffer from two serious problems. Firstly, a lack of search control: specifically, in controlling the application of ‘speculative’ proof steps that partially commit to a choice of induction rule. Secondly, a lack of generality: they place significant restrictions on the form of induction rule that can be chosen. In this thesis we describe a new delayed commitment strategy for inductive proof that addresses these problems. The strategy dynamically creates an appropriate induction rule by proving schematic proof goals, where unknown rule structure is represented by meta-variables which become instantiated during the proof. This is accompanied by a proof that the generated rule is valid. The strategy achieves improved control over speculative proof steps via a novel speculation critic. It also generates a wider range of useful induction rules than other delayed commitment techniques, partly because it removes unnecessary restrictions on the individual proof cases, and partly because of a new technique for generating the rule’s overall case structure. The basic version of the strategy has been implemented using the lamdaClam proof planner. The system was extended with a novel proof critics architecture for this purpose. An evaluation shows the strategy is a useful and practical technique, and demonstrates its advantages

    The Use of Proof Planning for Cooperative Theorem Proving

    Get PDF
    AbstractWe describebarnacle: a co-operative interface to theclaminductive theorem proving system. For the foreseeable future, there will be theorems which cannot be proved completely automatically, so the ability to allow human intervention is desirable; for this intervention to be productive the problem of orienting the user in the proof attempt must be overcome. There are many semi-automatic theorem provers: we call our style of theorem provingco-operative, in that the skills of both human and automaton are used each to their best advantage, and used together may find a proof where other methods fail. The co-operative nature of thebarnacleinterface is made possible by the proof planning technique underpinningclam. Our claim is that proof planning makes new kinds of user interaction possible.Proof planning is a technique for guiding the search for a proof in automatic theorem proving. Common patterns of reasoning in proofs are identified and represented computationally as proof plans, which can then be used to guide the search for proofs of new conjectures. We have harnessed the explanatory power of proof planning to enable the user to understand where the automatic prover got to and why it is stuck. A user can analyse the failed proof in terms ofclam's specification language, and hence override the prover to force or prevent the application of a tactic, or discover a proof patch. This patch might be to apply further rules or tactics to bridge the gap between the effects of previous tactics and the preconditions needed by a currently inapplicable tactic

    Automating inductive proof

    Get PDF

    Concrete Semantics with Coq and CoqHammer

    Full text link
    The "Concrete Semantics" book gives an introduction to imperative programming languages accompanied by an Isabelle/HOL formalization. In this paper we discuss a re-formalization of the book using the Coq proof assistant. In order to achieve a similar brevity of the formal text we extensively use CoqHammer, as well as Coq Ltac-level automation. We compare the formalization efficiency, compactness, and the readability of the proof scripts originating from a Coq re-formalization of two chapters from the book

    Univalent Foundations and the UniMath Library

    Get PDF
    We give a concise presentation of the Univalent Foundations of mathematics outlining the main ideas, followed by a discussion of the UniMath library of formalized mathematics implementing the ideas of the Univalent Foundations (section 1), and the challenges one faces in attempting to design a large-scale library of formalized mathematics (section 2). This leads us to a general discussion about the links between architecture and mathematics where a meeting of minds is revealed between architects and mathematicians (section 3). On the way our odyssey from the foundations to the "horizon" of mathematics will lead us to meet the mathematicians David Hilbert and Nicolas Bourbaki as well as the architect Christopher Alexander
    • 

    corecore