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The automation of proof by mathematical

induction

Alan Bundy
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THE AUTOMATION OF PROOF BY MATHEMATICAL INDUCTION 3

1. Introduction

Inductive inference is theorem proving using induction rules. It is required for reas-
oning about objects, events or procedures containing repetition. As well as mathem-
atical objects, like the natural numbers, these include: recursive data-structures, like
lists or trees; computer programs containing recursion or iteration; and electronic
circuits with feedback loops or parameterised components. Many properties of such
objects cannot be proved without the use of induction (see §3.4, p10). Inductive
inference is thus a vital ingredient of formal methods for synthesising, verifying and
transforming software and hardware.

Induction rules infer universal statements incrementally. The premises of an in-
duction consist of one or more base cases and one or more step cases. In a base
case the conclusion of the rule is proved for a particular value; in a step case the
conclusion is proved for a later value under the assumption that it is true for one or
more previous values. The classic example of an induction rule is Peano induction:

P(0), Vn:nat. (P(n) — P(s(n)))
Vn:nat. P(n) (L.1)

where z:7 means x is of type 7, nat is the type of natural numbers and s(n) = n+1.
s is the successor function for natural numbers. This induction rule has one base
case and one step case. In the base case the conclusion is proved for the value 0.
In the step case the conclusion is proved for s(n) under the assumption that it is
true for n. P(n) is called the induction hypothesis, P(s(n)) is called the induction
conclusion, n is called the induction variable and s(n) is called the induction term.

Unfortunately, the word “induction” is ambiguous in English. To avoid any mis-
understanding we contrast mathematical induction with inductive learning. Induct-
ive learning! is a rule of conjecture which takes the form:

P(Co), P(Cl)a P(CQ)a ) P(Cm)
Vn:nat.P(n)

i.e. if P(n) can be proved for a sufficiently large number of particular cases then it
is assumed true in general. It is a rule of comnjecture rather than a rule of inference.
In this chapter we will not be concerned with inductive learning.

Inductive inference requires special study because of negative theoretical results
which do not apply to first-order theorem proving (see §5, p19). These cause it to
suffer additional search control problems. For instance, it is sometimes necessary
to choose an induction rule, generalise the conjecture or to discover and prove an
intermediate lemma. Any of these can introduce infinite branching points into the
search space. New kinds of heuristic control are needed to deal with these special
search problems.

L Also called philosophical induction.
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1.1. Explicit vs Implicit Induction

There have been two major approaches to the automation of inductive proof: ex-
plicit and implicit. This chapter is concerned with explicit induction, in which
induction rules are explicitly incorporated into proofs.

In implicit induction the conjecture to be proved is added to the axioms. A
Knuth-Bendix completion procedure is then applied to the whole system. If no in-
consistency is derived by the procedure, then the conjecture is an inductive theorem.
This method is also called inductionless induction or inductive completion. More
details can be found in the chapter “Inductionless induction” by Hubert Comon in
this book.

1.2. Conventions

In this chapter we will use the following conventions. The double shafted arrow, =,
will be used to indicate the directed equality used in rewriting. The single shafted
arrow, —, will be used to represent logical implication.

Most research into inductive theorem proving has been restricted to the, so called,
quantifier-free fragment of first-order logic. This means that all variables are free
and, hence, implicitly universally quantified. The discussion below will be restric-
ted to this fragment of logic, except in §8, p45 when we will consider existentially
quantified second-order variables and §9, p49 when we will consider existentially
quantified first-order variables. Also, conjectures and induction rules will usually be
presented in fully quantified form so that the types of the variables can be emphas-
ised. Note that in quantifier-free form universal variables become free variables? in
axioms and hypotheses, but become arbitrary constants® in goals. We will follow
the Prolog convention of starting all free variables with an upper case letter. Bound
variables and constants will start with lower case letters.

Most of the example proofs discussed below will use backwards reasoning, from
the original conjecture to derive T, the truth value “true”. So rules of inference,like
rewriting (see §4.1) and induction (see §2), will be applied backwards. The current
goal will be matched to the conclusion of the rule of inference and the premises of
the rule will become the new goals.

2. Induction Rules

Peano induction is merely the simplest and best known inductive rule of inference.
Similar structural induction rules are available for every kind of recursively defined
data-structure, e.g. integers, lists, trees, sets, etc. Moreover, it is not necessary to

2 Also called meta-variables. The translation of universal variables into free variables is affected
by skolemisation.

3Also called skolem constants. This translation is affected by skolemising their negations and
then re-negating. This is also called dual skolemisation.



THE AUTOMATION OF PROOF BY MATHEMATICAL INDUCTION 5

traverse such data-structures in the obvious, stepwise manner; they can be traversed
using any well-ordering. An extreme example occurs in a standard proof that the
arithmetic mean is greater than or equal to the geometric mean. This uses an
induction rule that traverses the natural numbers by first going up in multiples of
2 and then filling in the gaps by coming in down in steps of 1. Nor is induction
restricted just to data-structures; it is possible to induce over the control flow of a
computer program or the time steps of a digital circuit.

2.1. Neetherian Induction

All of these forms of induction are subsumed by a single, general schema of
Neetherian induction®:

Ve, (Vy:r.y < ¢ — P(y)) — P(x)
V1. P(x) (2.1)

where < is some well-founded relation on the type 7, i.e. < is an irreflective, anti-
symmetric relation and there are no infinite, descending chains, like ... < a, <
... < az < as < aj. The data-structure, control flow, time step, etc., over which
induction is to be applied, is represented by the type 7. The inductive proof is
formalised in a many-sorted or many-typed logical system.

Success in proving a conjecture, P, by induction is highly dependent on the choice
of x and <. There is an infinite variety of possible types, 7, and for most of these
types, an infinite variety of possible well-orderings, <. Thus choosing an appropriate
induction rule to prove a conjecture also introduces an infinite branching point into
the search space. Controlling it, therefore, requires special heuristic techniques.

2.2. Constructor vs Destructor Style Induction Rules

Most inductive theorem proving systems construct customised induction rules for
each conjecture rather than use the general well-founded induction rule directly.
Such customised induction rules fall into two broad camps: constructor-style and
destructor-style. In constructor-style rules the step cases have the form:

P@i)A...AP(zy) = Plc(zy,...,Tm))

where Vi. z; < ¢(x1, ..., Zn). Peano induction is an example of a constructor-style
rule. In destructor-style rules the step cases have the form:

P(di(z))A...ANP(dn(z)) = P(z)
where Vi. d;(z) < z. In destructor-style, Peano induction would take the form:

P(0), Vn:nat.(n>0A P(p(n)) = P(n))
Vn:nat. P(n)

4 Also known as well-founded induction.
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where p is the predecessor function for natural numbers, i.e..

p(n) = {0 ifn =0

m if n = s(m)

In this chapter we will usually give constructor-style induction rules, recursive
definitions and, hence, proofs. This is because most inductive proving techniques are
more naturally described in constructor-style. In fact, when conjectures are stated
in destructor-style it is usual to convert the resulting proof attempt to constructor-
style at an early stage (see §4.3, p16, for instance).

There are destructor-style induction rules which have no direct counterpart in
constructor-style, for instance:

P(nil), Vz:list(nat).Vnmat. (n € z A P(delete(n,x)) — P(n))
Va:list(nat). P(x)

but this can be converted into:
P(nil), Vz:list(nat).Vnmnat. (P(z) — P(n :: z))
Ve:list(nat). P(z)

2.3. Additional Universal Variables

If an induction formula contains more than one universally quantified variable then
there is a choice of induction variable. It is interesting to see what becomes of the
universal variables which are not chosen as an induction variable. Consider, for
instance, the induction formula Vn:nat.Ym:nat. QQ(n,m). Suppose we choose n as
the induction variable. We can then apply the Peano induction rule (1.1) backwards
with Vm:nat. Q(n,m) as P(n). The step case of this induction is:

Vn:nat. [(Vm:nat. Q(n,m)) = (Vm:mat. Q(s(n), m))]

Note that the scope of the quantification of n is the whole step case, but the scopes of
the two quantifications of m is restricted to the induction hypothesis and induction
conclusion, respectively.

It is standard to strip the quantifiers from step cases and replace the implication
with a turnstile. In this format the step case is:

Q(n, M) = Q(s(n),m)

Note that the induction variable, n, becomes an arbitrary constant in both induction
hypothesis and induction conclusion. The other universal variable, m, becomes
an arbitrary constant, m, in the induction conclusion but a free variable in the
induction hypothesis®. This means that when using the induction hypothesis to

5These translations are the effect of dual skolemisation of the step case. Note that the Vm in
the induction hypothesis is in a position of negative polarity, so dual skolemisation turns this m
into a free variable.
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help prove the induction conclusion (see §4.2, pl4) we are not bound to match
M to m. We can match M to any term, including one properly containing m, if
desired. It is sometimes valuable to exploit this flexibility (see, for instance, §6.2.2,
p26).

3. Recursive Definitions and Datatypes

Recursion is frequently used in mathematics and programming both in the con-
struction of classes of objects and in the definition of functions and programs. We
call the former recursive datatypes and the latter recursive definitions. Induction is
needed to reason about both of these.

3.1. Recursive Datatypes

Recursive datatypes are constructed by providing a set of constructor functions and
then defining the datatype as the set of terms formed from them. If syntactically
distinct terms are unequal then the datatype is called free, otherwise it is non-free.
We discuss the free datatypes first.

3.1.1. Free Recursive Datatypes
We have already met one recursive datatype: the natural numbers. These are defined
with the successor function s and the constant 0 as the constructor functions. For
instance, the natural numbers are the set of terms: {0, s(0), s(s(0)), s(s(s(0))), ...},
which we have abbreviated as nat. Note that we have been using the binary function
: to represent type membership, i.e. n:nat says that n is a natural number.

Another recursive datatype we will meet frequently below is lists. Lists are a
parameterised datatype, i.e. lists are of elements of some underlying type, e.g. nat-
ural numbers or letters. The constructors for lists are the empty list, nil, and the
infix binary function ::. The function :: takes an element of the underlying type and
a list and returns a new list with the new element on the front of the old list. So the
lists of type 7 have the form: {nil, oy :: nil,as :: oy : nil, a3 = as = nil, ..},
where the a; are elements of type 7. We will abbreviate this as list(7), i.e. the
type of lists of natural numbers is list(nat). Lisp-style S-expressions (abbreviated
as sexpr) differ from lists in permitting nesting of lists to any level. This datatype
can be defined with the constructors nil and cons, where cons differs from :: by
being able to take an S-expression as its first argument as well as its second. Sim-
ilarly, we can construct one type of binary trees (abbreviated as tree(r)) from the
unary function leaf on labels and the binary function node on two trees.

The recursive datatypes of natural numbers, lists, S-expressions and trees are
examples of free datatypes because terms are only equal if they are syntactically
identical, e.g. s(s(0)) # s(0).
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3.1.2. Non-Free Recursive Datatypes

However, it is sometimes necessary to use non-free datatypes, i.e. datatypes in
which syntactically different terms may be equal. A simple example is the in-
tegers defined with the constructors 0, succ and pred, where the first two are like
0 and s for the natural numbers, but pred is the predecessor function for integers®,
i.e. pred(n) = n — 1. The predecessor function is needed to define the negative
integers: {0, pred(0), pred(pred(0)), pred(pred(pred(0))),...}. Unfortunately, this
representation is redundant, since for instance succ(pred(n)) = pred(succ(n)) =n
for all n.

Another example of a non-free datatype is the sets. We can define set(7), sets
of elements of type 7, with the constructors empty and insert, analogous to nil
and :: for lists. But this is not a free datatype because we have, for instance, the
equalities:

insert(a,insert(a, set)) = insert(a, set)

insert(a,insert(f, set)) = insert([3,insert(«a, set))

between non-identical terms.

3.2. Recursive Definitions

Functions are said to be defined recursively when the body of the definition refers
to the function itself. We usually demand that such recursive definitions are ter-
minating, i.e. that given some particular inputs the function will call itself only a
finite number of times before stopping with some output. See §4.4, p18 and the
chapter “Rewriting” by Nachum Dershowitz in this book for more discussion of
termination.

3.2.1. Structural Recursion

A common form of recursion is based on recursive datatypes and is called structural
recursion. In its simplest form there is one equation for each constructor function
of the datatype, e.g. the function + can be defined on datatype nat as:

0+Y =Y (3.1)

s(X)+Y =5(X+Y) (3.2)

Note that the recursive call of + on the RHS of the second equation has as its first
argument, X, which is the argument of the constructor s on the LHS. It is clear that

structural recursions like this terminate since + is called on a syntactically simpler
first argument on the RHS than on the LHS. For free datatypes, like nat, it is

6Note that pred differs from p, the predecessor function for natural numbers, since p(0) = 0,
whereas pred(0) = —1.
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also clear that structural recursion is well-defined, i.e. + is neither under- nor over-
defined. It is not under-defined because there is an equation for each combination of
inputs. It is not over-defined because there is only one equation for each combination
of inputs.

3.2.2. Non-Free Datatypes and Over-Definition

This is not clear for non-free datatypes. There is a danger here of over-definition,
i.e. of giving different values to calls with equal inputs. Consider, for instance, the
definition of + for integers.

0+Y =Y
suce(X)+Y = suce(X +Y)
pred(X)+Y =pred(X +Y)
Since succ(pred(n)) = pred(succ(n)) = n we have to check the side-condition:
succ(pred(n)) + m=pred(succ(n)) + m=n +m
otherwise, the definition of + could introduce a contradiction into the theory. In

this case this side-condition is easily proved. However, if we had erroneously defined
+ as:

0+Y =Y
suce(X) +Y = suce(X +Y)
pred(X)+Y =0
then we would find that:
succ(0) = succ(pred(0) + 0) = succ(pred(0)) + 0 = pred(succ(0)) +0 =0

i.e. that + is now over-defined, enabling a proof of succ(0) = 0. So recursive defin-
itions over non-free datatypes carry additional proof obligations to ensure that
functions are not over-defined. For a discussion of some additional problems with
non-free datatypes and one way to solve them see [Sengler 1996].

3.2.8. Non-Structural Recursions

Recursive definitions can take many other forms than constructor-style structural
recursions. For instance, destructors can be used instead of constructors. Consider,
for instance, this alternative definition of + on the natural numbers:

X+Y =if X =0then Y
else s(p(X) +Y)

Sometimes the recursive calls of the algorithm are not simply on the arguments
of the constructors. Consider, for instance, this definition of quicksort.

quicksort(nil) = nil

quicksort(H :: T) = quicksort(lesseq(H,T)) <> (H :: quicksort(greater(H,T)))
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where the recursive calls are on terms containing the arguments of the constructor
function. Termination of such definitions is non-trivial. We need to find a well-
founded relation, <, such that lesseq(H,T) < H :: T and greater(H,T) < H :: T.
In this case < can be defined as:

K < L ¢ length(K) < length(L)

3.3. Recursion/Induction Duality

There is an intimate relationship between induction rules and recursive definitions.
Not only is induction required for reasoning about recursively defined objects, but
there is a duality between the forms of recursive definitions and the forms of in-
duction rules. For instance, the two step recursion below that defines the even
predicate:

even(0) & T
even(s(0)) <> L
even(s(s(N))) < even(N) (3.3)

(where T is “true” and L is “false”) is structurally similar to the following two step
induction rule:

P(0), P(s(0)), Vnwmat. (P(n) — P(s(s(n))))
Vn:nat. P(n)

We will see in §6.1.1, p22 that this duality between recursion and induction can
be exploited when choosing an induction rule to prove properties of recursive func-
tions. We can also construct new induction rules by analogy to recursive definitions.
When proving that a recursively defined function terminates we must exhibit a well-
founded relation that decreases when the function is applied. This relation can then
be used to instantiate the Neoetherian induction schema, (2.1).

We will see examples below of inductions and recursions based on more com-
plex well-founded relations than the simple structural ones provided by recursive
datatypes.

3.4. The Need for Induction

Inductive inference is an essential tool for reasoning about recursively defined data-
types and functions. Without it, many true formulae cannot be proved. Recursive
and induction are opposite sides of the same coin. Recursion specifies the beha-
viour of a function over all members of a datatype; induction allows us to exploit
the restriction of variables to that datatype.

For instance, consider the formula:

Venat. x+0=2x (3.4)
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This is true for the natural numbers and is readily proved by induction from the
recursive definition of +. Peano induction reduces it to two cases: the base case
0+ 0 =0 and the step case z + 0 = z F s(x) + 0 = z. The base case is an instance
of (3.1), the base equation of the definition of +; the step case is readily proved
by applying (3.2), the step equation of the definition of +, and then the induction
hypothesis.

However, without the use of induction (3.4) is not provable. To see this we need
only exhibit a model of the recursive definition of + in which (3.4) is false. To
form this model we augment the natural numbers with the additional base element
0" to form the datatype nat'. Think of nat’ as the disjoint union of ‘red’ naturals
(0, s(0), 5(s(0)), . ..) and ‘blue’ naturals (0, s(0'), s(s(0)), .. .). Let the true formulae
in this model be just those formulae made true by the definition of +. So, in
particular, 0' + 0 = 0’ is false. Therefore,

Vemat'. x4+ 0= (3.5)

is false. But if (3.4) were provable solely from the recursive definition of + then
(3.5) would also be provable from them. Therefore, induction” is needed to prove
(3.4). Induction allows us to exploit the fact that = in (3.4) ranges over nat and
not, some larger datatype, like nat’.

4. Inductive Proof Techniques

Apart from the application of induction rules, a number of proof techniques are
used in inductive proofs. These range from standard techniques, like rewriting, to
more specialised techniques like fertilization, [Boyer and Moore 19884][§10.5], where
the induction hypothesis is used to prove the induction conclusion.

Many of these techniques are of use in non-inductive proofs as well as inductive
proofs and some of these are discussed in more detail in other chapters of this book.
In these cases a short account is included here for completeness and a pointer is
given to the other chapters for more detail.

4.1. Rewriting

The definition of a function or predicate is often given as a set of recursion equations
or equivalences®. Many of the lemmas required in proofs are also often equations.
A common technique in inductive theorem proving is to express these equations as
rewrite rules and apply them using the rewrite rule of inference backwards:

lhs = rhs, P[rhsd]
P[sub]

7Or some principle of equivalent power.
8Note that equivalences can be regarded as equations over the booleans, so references to “equa-
tions” below will include equivalences.
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where P[sub] means sub is a sub-term of formula P, called the redez, rhs¢ means
¢ is a substitution of terms for variables which is applied to rhs and [hs¢ = sub.
An example is:

2xX=X+X, even(n+n)

even(2 x n)

Sometimes we will want to use conditional rewrite rules. To apply these we will
need following modified version of the rule of inference:

Cond — lhs = rhs, P[rhs¢], Cond¢
P[sub]

where C'ond is the condition. Recall that we will usually be applying the rewriting
rule of inference backwards.

For more details about rewriting see the chapter “Rewriting” by Nachum Der-
showitz in this book.

4.1.1. Definitions and Lemmas as Rewrite Rule Sets

It is standard to turn recursive definitions of functions into sets of rewrite rules,
oriented so that the defined term is replaced by its definition. Thus the definitions
of infix addition, +, on nat and infix list append, <>, on list(7) will be given as
rewrite rules as follows:

0+Y =Y
s(X)+Y =s(X+Y) (4.1)
nil <>L =1L (4.2)

(H:T)<>L=H:(T<>L)

Functions can be defined recursively on one or more of their arguments. These are
called their recursive arguments. The recursive arguments of + and <> are their
first arguments.

Lemmas can also be presented as rewrite rules. The decision to represent them in
this way constitutes a commitment to their direction of application. In some cases
this is uncontroversial, for instance the commuted version of rule (4.1) is often useful
as the rule:

X +5(Y) = s(X +Y) (4.4)

But in other cases it is more problematic. For instance, both orientations of asso-
ciative laws are frequently required.

X<>Y<>2)=X<>Y)<>Z
(X<>Y)<>Z=>X<> (Y <> 2)
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But if both are included their unrestricted use can cause non-termination of re-
writing. Commutative laws cannot be included in either orientation without risking
non-termination.

X+Y=Y+X

One solution to such problems is to build such problematic lemmas into the uni-
fication algorithm, so that they are not needed as rewrite rules. For more details
on how this is done see the chapter on “Unification theory” by Franz Baader and
Wayne Snyder in this book.

4.1.2. Implicational Rewrites

We can use rewrite rules based on implication as well as equations and equivalences.
Care needs to be taken with such rules to ensure that their application is sound. In
particular, the direction of their application depends on the polarity of the redex
and also on the direction of reasoning. An example of a frequently used family of
implications is the replacement axioms of equality:

X1:Y1/\AXn:Yn%f(Xl,,Xn):f(Yl,,Yn)

Where f is the constructor of a free datatype, e.g. s or ::, these implications can
be strengthened to equivalences:

X1 = Y1 — S(Xl) = S(Yi)
Xi=YinNXo=Ye X2 Xo=Y Y, (45)
but in general, they cannot, e.g.
(X1 :Y1 /\XQZYQ)—) (X1 +X2 :Y1 +1/2)
(X1 =Y /\X2:Y2)_) (X1 <>Xs=Y <> Y2)

are one way only. Confusingly, the legal orientation of replacement axioms is often
the reverse of their implication direction, i.e.

X1+ Xo=Y1+Y2) = (X1 =Y1 A Xy =Y3)
(X1 <>Xo=V" <>Y2):>(X1:Y1/\X2:Y2)

This is because the usual use of these implicational rules is backwards and applied
to positions of positive polarity.

4.1.3. Examples: Base and Step Cases
We will illustrate the use of rewriting with two examples of their use: in the base
and step case of a simple inductive proof.

Consider the associativity of <>:

Va:list(T)Vy:list(T)Vzilist(r). 2 <> (y <> 2) = (x <> y) <> 2



14 ALAN BUNDY

We will choose a simple one-step list induction on = using the induction rule:

P(nil), VhrNtlist(r). P(t) - P(h::t)
Vi:list(T). P(l) (4.6)

The base case of the proof is”:
nil <> (y <> z) = (il <>y) <>z
This can be rewritten with two applications of (4.2) as follows:

nil <> (y <> z) = (il <>y) <>z
y<>z=(nil <>y) <>z
y<>z=y<>z2
In future, where two or more rewrites are independent, as here, we will save space

by applying them in parallel'°.
The step case of the proof is:

t<>Y <>Z2)=@t<>Y)<>ZF(hzt)<>@y<>2)=(h=t)<>y)<>=2

This can be rewritten with three applications of (4.3), followed by an application
of (4.5), the replacement rule for ::.

t<>Y<>2)=t<>Y)<>ZF(h=t)<>y<>2)=(h=t)<>y) <>z
Fha(<>y<>z2)=Mh:({E<>y) <>z
Fhu(t<>(y<>2)=hz(t<>y) <>2)
Fh=hAat<>y<>2z)=0t<>y) <>z

The induction conclusion now contains an instance of the induction hypothesis

and the proof can be simply completed (see §4.2, pl4). Note that ¥ and Z in

the induction hypothesis are free variables, as explained in §2.3, p6, but this extra
flexibility was not required in this simple proof.

4.2. Fertilization

The purpose of rewriting in the step cases is to make the induction conclusion look
more like the induction hypothesis. The hypothesis can then be used to help prove
the conclusion. This can be clearly seen in the example step case in §4.1.3. Here,
when rewriting terminated, an instance of the hypothesis was embedded in the
conclusion.

9Recall that induction rules are applied backwards.
10Unfortunately, this is not something that most rewrite based provers can manage.
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The next step is to use the induction hypothesis to prove the induction conclusion.
After rewriting we have the situation: TH F IC[IH4] i.e. the induction conclusion,
IC, contains an instance of the induction hypothesis, I H¢, embedded within it.
We can then use the rules of logic to rewrite this to: TH = IC[T]., i.e. we use the
following rule of inference backwards:

TH - IC[T]
IH + IC[IH¢)]

L we call this step strong fertilization: the hypothesis

Following Boyer and Moore!
fertilizes the conclusion.

In the example in §4.1.3 we go from:
t<>Y <>2Z2)=(t<>Y)<>ZFh=hAt<>[y<>2)={t<>y) <>z
to:
t<>Y <>Z)=t<>Y)<>ZFh=hAT

which rapidly simplifies to T, completing the step case.

Sometimes, rewriting gets stuck before a complete instance of the hypothesis
appears in the conclusion, but a large part of the hypothesis does appear in the
conclusion. For instance, if the conjecture is an equation then one side of the con-
clusion may have an instance of the corresponding side of the hypothesis embedded
in it. This will happen in our example if we do not have the replacement rule for ::
available as a rewrite rule. The final stage of the rewriting process is then:

t<>Y<>Z2)=t<>Y)<>ZFh:(t<>y<>2)=h:((t<>y)<>2)

An instance of each side of the hypothesis is embedded in each side of the conclusion.
We can choose one side of the conclusion and replace the embedded side of the
hypothesis with the other side of the hypothesis; effectively using the hypothesis as
a rewrite rule. In our example this produces either:

t<>Y<>Z2)=t<>Y)<>ZFh:(t<>y<>2)=h:({t<>(y<>2))
or:
t<>Y <>Z2)=t<>Y)<>ZFh:(t<>y)<>z)=h:=:(t<>y) <>2)

depending on which side we choose to replace. In either case the remaining goal is
now trivially proved. This is called weak fertilization. In general, weak fertilization
leaves a more complex goal to prove than is the case with strong fertilization, but
it can be applied in situations where strong fertilization cannot. The residue left
after weak fertilization often requires a nested induction to prove, whereas strong

U They called what we call weak fertilization, cross fertilization. We have dropped the “cross”
and introduced the terms “weak” and “strong” to distinguish two different forms of fertilization.
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fertilization usually completes the step case. So strong fertilization leads to shorter
proofs and is to be preferred when available. The general form of weak fertilization
is:

IH, =1Hs F IC|[IH2¢] = ICy

IH, = [H, - IC,[TH.¢] = IC>

or
IH, = IH, + IC, = IC5[TH, )

IH, = IHy + IC) = ICy[I Ho¢]

Note that these rules of inference can be further generalised to replace = with
any transitive relation with appropriate monotonicity properties, but we omit the
details of this here.

4.3. Destructor Elimination

In this section we redeem the promise of §2.2, p5 to show how destructor-style
proofs can be converted to constructor-style ones.

The discussion of rewriting (§4.1, pll) and fertilization (§4.2, pl4) above ad-
opted an implicitly constructor induction stance. The induction term occurred in
the induction conclusion; the rewriting was of the induction conclusion; and the
fertilization matched the induction hypothesis to a sub-expression of the induction
conclusion.

If a destructor style induction is used then the induction term appears in the
induction hypothesis. It would be tempting to think that a dual process could
then take place, with the hypothesis being rewritten and fertilization matching
the conclusion to a sub-expression of the hypothesis. Unfortunately, the dual of
fertilization is not true, i.e.

IH[T|FIC
TH[IC¢|+ IC

is not a sound rule of inference, and nor are the duals of weak fertilization.

One solution to this problem is to try to turn destructor style step cases into
constructor style ones, by replacing destructor functions in the hypothesis with
constructor functions in the conclusion. This process is usually called destructor
elimination, [Boyer and Moore 1988a][§10.4, p225]. Its application is not restricted
to step cases, and we define it for any formula. Moreover, the concepts of “destructor
function” and “constructor function” are interpreted loosely — they can be any
functions the user so specifies.

Suppose that a formula contains occurrences of the expressions d;(z), where each
d; is a destructor function. Destructor elimination takes place in two steps:

1. A (possibly conditional) rewrite rule of the form:

Cond - X = c(di (X),...,dn(X)) (4.7)
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where ¢ is a constructor function, is applied once to each occurrence of = not
dominated by a d;. Note that this may require a Cond/—-Cond case split if
Cond is not already true.
2. All occurrences of  now occur within some d;. Each d;(z) is generalised to a
new variable y;. See §6.3.2, p29 for an explanation of this form of generalisation.
If a rewrite rule of form (4.7) is available then the application of this destructor
elimination process will remove all occurrences of d; in favour of c.
To see the effect of destructor elimination on a destructor-style inductive proof,
consider the following schematic step case:

z#0A®(p(z)) - &(x) (4.8)
where z : nat. For stage 1 of destructor elimination we appeal to the rewrite rule:
X #0—- X = s(p(X))

to rewrite (4.8) to:

s(p(x)) # 0 A @(p(2)) - 2(s(p()))

Note that the condition of this rewrite rule is true by hypothesis. Stage 2 is to
generalise all occurrences of p(x) to y, giving:

s(y) Z0AD(y) - @(s(y))

All occurrences of the destructor function, p, have now been replaced by the con-
structor function, s. This step case can be further simplified to:

®(y) - 2(s(y))

which is a constructor style step case.
Destructor elimination is not restricted to structural inductions, like the example
above. It can also be used, for instance, to transform:

y # 0 A ®(remainder(z,y)) A ®(quotient(z,y)) - ®(x)
to:
YyZOADP(r)ANP(q) F Plgxy+r)

exchanging the destructor functions, remainder and quotient for the constructor
functions + and x. Stage 1 of this destructor elimination uses the conditional
rewrite rule:

Y #£0 - X = quotient(X,Y) X Y + remainder(X,Y)

In future we will usually assume that destructor elimination has been or could
be applied and draw most of our examples from constructor style inductive proofs.
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4.4. Termination of Rewriting

A common proof technique is to apply a set of rewrite rules to a goal until no
further rules apply. The rewritten goal is then said to be in normal form. It is
highly desirable if this rewriting process terminates. This question is equivalent to
the halting problem (the problem of proving that computer programs terminate) so
is undecidable. A partial solution has been provided by a collection of techniques
which, although necessarily incomplete, have a high success rate when applied to
the rewrite rule sets that arise in practical theorem proving. Each of these tech-
niques involve defining a measure from terms to a well-founded set, e.g. the natural
numbers, and showing that this measure decreases strictly each time a rewrite is
applied. Since the measure is well-founded it cannot decrease indefinitely, e.g. it
must eventually reach 0. More details about termination techniques can be found
in the chapter “Rewriting” by Nachum Dershowitz in this book.

A particular case of this problem of especial interest is the termination of the
rewrite rules which define a function. The proof of termination of these rules is
usually a condition of accepting the definition as well-formed. The termination
measures developed for this purpose are often recycled as the well-founded measures
of induction rules (see §6.1, p21 for more details).

4.5. Decision Procedures

Many of the problems to be solved by an inductive theorem prover fall within a

decidable class and can be solved by a decision procedure. This is especially true

of many of the subproblems generated during the proof of an inductive theorem.

So decision procedures are an important component of inductive provers. These

include the following:

Tautology Checkers: Many subproblems can be generalised into formulae of pro-
positional logic. This generalisation may require regarding non-propositional
formulae as propositional variables. If these generalised formulae are tautolo-
gies then the subproblem is true. Ordered Binary Decision Diagrams (OBDDs)
provide a basis for efficient tautology checking and were devised for use in
hardware verification, [Bryant 1992].

Congruence Closure: The propagation of equalities is an important ingredient
of efficient theorem proving, i.e. if two terms are known to be equal we need
to use this fact to simplify the conjecture. Congruence closure does this by
forming equivalence classes for all subterms in a conjecture and propagating
results between them. In its simplest version the negation of conjecture is put
in disjunctive normal form and equivalence classes are constructed for each
disjunct, [Nelson and Oppen 1980]. Positive equalities are used to update the
equivalence classes and negative equalities are tested against them to see if
there is a contradiction.

Presburger Arithmetic Procedures: Presburger identified a decidable frag-
ment of integer arithmetic, [Presburger 1930, Stansifer 1984]. It consists of
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formulae about equalities and inequalities between terms involving addition,
but not multiplication. The equivalent real number fragment is also decid-
able. The integer fragment is particularly important in software verification as
conjectures in Presburger arithmetic often arise from proof obligations about
iterative loops, for instance. Many decision procedures exist for these fragments
and are in common use in inductive provers, where they are often called linear
arithmetic procedures. [Boyer and Moore 1988b] is an interesting discussion of
the integration of one of these procedures into an inductive prover.

Combination Procedures: Decision procedures for two disjoint decidable theor-
ies can be combined. [Nelson and Oppen 1979, Shostak 1984] describe two such
combination mechanisms.

Decision procedures often have unattractive theoretical worst case complexity,
e.g. super-exponential. This does not always make them unusable. They can have
empirically acceptable average case complexity when applied to problems of prac-
tical interest. In any case, the theoretical complexity of the alternative, full-blown
inductive theorem proving, is usually much worse.

It is important to use decision procedures flexibly. [Boyer and Moore 1988b] re-
ports that very few subproblems in a standard corpus were exactly in the Presbur-
ger fragment, but many more were almost in it and could be solved by a decision
procedure augmented with a few additional facts about the terms, e.g. that the
minimum element of an array was not bigger than the maximum element. Boyer
and Moore flexibly interfaced their decision procedure to the rest of their theorem
prover so that each could call the other and, hence, provide these additional facts to
the decision procedure. Time spent by the interface components was much greater
than time spent in the theorem prover.

Decision procedures are described in more detail in the chapters “Model checking”
by Edmund Clarke and Holger Schlingloff and “Resolution decision procedures” by
Alexander Leitsch, Christian Fermiiller and Tanel Tammet in this book.

5. Theoretical Limitations of Inductive Inference

Some negative results from mathematical logic impose special restrictions on induct-
ive inference. In particular, results of Gédel and Kreisel introduce infinite branching
points into the search space and show that it is impossible to build a complete in-
ductive theorem prover.

5.1. The Incompleteness of Inductive Inference

Godel’s first incompleteness theorem, [Godel 1931, Heijenoort 1967], states that in
any formal theory of arithmetic there will be formulae which are true but unprov-
able. This incompleteness theorem is true of any non-trivial inductive theory. It
puts a limit on the power of any automated!? inductive theorem prover.

12 And any human one too.
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One way to see this result is as a limitation of our ability to construct the induc-
tion rule(s) required to prove each conjecture. We have already seen in §2, p4 that
there are an infinite number of different induction rules (or an infinite number of
ways of instantiating Noetherian induction). In §6.1, p21 we will investigate mechan-
isms for tailoring induction rules to the current conjecture. Gédel’s incompleteness
theorem tells us that, however sophisticated our induction rule construction mech-
anism, there will always be true formulae whose proof requires an induction rule
that it cannot construct.

This limitation is illustrated in [Kirby and Paris 1982]. The theory of natural
numbers can be formalised using Peano induction, (1.1). More complex induction
rules can be derived from Peano induction. However, Kirby and Paris show that the
termination of a simple recursive function (Goodstein’s function) cannot be shown
using any of these induction rules, but can be shown using the ¢y induction rule.
This induction rule is based on a complex well-founded relation which cannot be
derived from Peano induction. Of course, we could add the €y induction rule to our
theory of natural numbers, but G6del’s incompleteness theorem tells us there would
then be further true formulae, whose proof required even more complex forms of
induction, and which were unprovable even within our extended theory.

This limitation is also related to the undecidability of the halting problem [Turing
1936-7]. Turing showed that there was no algorithm which could determine whether
an arbitrary relation was well-founded. So we cannot construct all valid induction
rules by instantiating the Neetherian induction scheme with all possible relationss
and then rejecting those that are not well-founded. Turing’s result shows that this
programme will not work, since there is no algorithm for deciding which of these
potential induction rules is valid.

5.2. The Fuailure of Cut Elimination

Gentzen’s original formalisation of sequent calculus contained the cut rule:

A, FA, , FA
, FA

The cut rule allows us to first prove A with the aid of A and then eliminate A by
proving it from , . A is called the cut formula.

If the cut rule is used backwards by a theorem prover then it introduces infinite
branching into the search space; the cut formula can be any formula. The problem
cannot, be avoided by only using the cut rule forwards. Then we will be forced to
use other sequent calculus rules forwards too. Several of these have formulae in the
conclusion that do not occur in the premises, so will also cause infinite branching.

Gentzen recognised this problem and partially solved it by proving the cut elim-
ination theorem, [Gentzen 1969]. He showed that the cut rule was redundant for
first-order theories'®. Unfortunately, Kreisel has shown that Gentzen’s cut elim-

130ne source of confusion in this discussion is that the cut rule is similar to resolution. Of
course, resolution is used in a forwards direction, so it does not cause infinite branching.
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ination does not hold for inductive theories, [Kreisel 1965]. The cut rule must be
retained and is a source of infinite branching.

The problem of infinite branching cannot be avoided by using an alternate form-
alisation of logic, e.g. natural deduction, resolution, etc; it recurs, in a different
guise, in every formalism. It is possible to reorganise some of the infinite branching
points so that they occur as an infinite series of finite branching points, but this
does not significantly improve the size of the search space. Nor is this just a the-
oretical problem with little practical import. As we will see, the cut rule is needed
even for many quite simple theorems.

6. Special Search Control Problems

Inductive inference can be automated by adding one or more induction rules to
an automatic theorem prover. Unfortunately, this is not enough. An unbounded
number of induction rules are required'?. The cut rule is also needed. As we have
seen, these requirements introduce infinite branching points into the search space.
Thus inductive inference suffers from search control problems that do not arise in
non-inductive, first-order, automatic theorem proving. Specialised heuristics have
been developed for dealing with these search problems.

The cut rule is frequently required for two tasks: generalising the induction for-
mula; and introducing an intermediate lemma. The cut formula is the generalised
formula or the lemma. We, therefore, require heuristics for deciding when a gener-
alisation or lemma are required and for determining their form.

Below we discuss further the search control problems of: induction rule choice;
lemma introduction; and generalisation.

6.1. Constructing an Induction Rule

The success of an inductive proof attempt depends critically on the choice of induc-
tion rule. A good choice will lead to a short proof. For instance, a few rewritings
of the induction conclusion will lead to fertilization and a successful conclusion. A
bad choice may require multiple nested inductions or cause the proof to become
stuck altogether.

Since there are an infinite number of possible induction rules it is not possible to
prestore them; they must be constructed dynamically according to need. Heuristics
are used to construct an induction rule that has a good chance of success on the
current conjecture. The standard heuristic is called recursion analysis'®. It uses the
definitions of recursive functions appearing in the conjecture.

140r the ability to construct new well-founded relations for Ncetherian induction.
I5Walther, [Walther 1994a], calls it the induction heuristic, but we will see that there are al-
ternative heuristics.
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6.1.1. Recursion Analysis

The starting point is to identify occurrences of recursively defined functions in
the conjecture whose recursion arguments contain universally quantified variables.
These variables are candidate induction variables. The recursive definition of each
function suggests a dual induction rule. The idea underlying recursion analysis is
that using an induction rule based on recursive definitions will facilitate the use of
these recursive definitions in the base and step case proofs.

For instance, consider the conjecture:

Va:nat.Vynat. even(z) A even(y) — even(z +y) (6.1)

even is a recursively defined function and the occurrence of even(x) has a universally
quantified variable, z, in its recursion argument. From the recursive definition of
even, (3.3), we can construct the induction rule:

P(0), P(s(0)), Vx:nat. (P(x) — P(s(s(x))))
Vzmat. P(x) (6.2)

The occurrence of even(y) suggests the same induction rule, but with y as the
induction variable. The occurrence of even(z + y) does not suggest an induction
rule, because its recursion argument does not contain a variable. However, + is also
recursively defined and the occurrence of x + y has a variable, x, in its recursion
argument, which suggests the induction rule:

P(0), Va:mnat. (P(z) = P(s(z)))
Va:nat. P(x (6.3)

Note that + is defined on its first argument (see (4.1)), so that y is not a recursion
argument of + and, therefore, does not suggest an induction rule.

We now see how the right choice of induction rule facilitates the subsequent use of
recursive definitions. For instance, if the conjecture contains an occurrence of = + y
and we apply induction rule (6.3) then the induction conclusion will contain the
term s(x) + y. The step case of the recursive definition of + can then be applied to
this term. On the other hand, if we erroneously choose y as the induction variable
then the step case will contain the term x + s(y), and the recursive definition does
not apply to this term. So if we used one step induction on y this occurrence of s(y)
would be difficult to move and would prevent strong fertilization. Similar remarks
apply to the base case.

The above process produces a variety of suggestions for induction rules. Some of
these can be rejected as inferior to others and the rest can be combined together to
produce a final induction rule. In our example the choice of z as induction variable
is superior to y. This is because each occurrence of x in (6.1) is in a recursion argu-
ment position, so each occurrence of x in the induction conclusion can be potentially
be rewritten by a recursive definition, making an eventual fertilization more likely.
These occurrences of z are said to unflawed. Universal variables, like z, with only
unflawed occurrences are said to be unflawed induction variable candidates. In con-
trast, the second occurrence of y in (6.1) is not in a recursive argument, position.



THE AUTOMATION OF PROOF BY MATHEMATICAL INDUCTION 23

This occurrence will be replaced by s(s(y)), say, and it will not be possible to re-
write this occurrence, preventing strong fertilization. This occurrence of y is said
to be flawed. Universal variables, like y, with some flawed occurrences, are said to
be flawed induction variable candidates.

6.1.2. Subsumption of Induction Rules

So z is the best choice for induction variable, but this leaves two possibilities for
induction rule: (6.2) and (6.3). Fortunately, rule (6.2) subsumes rule (6.3), i.e. rule
(6.2) can stand-in for rule (6.3). This means that rule (6.3) is inferior to rule (6.2)
and can be rejected. Roughly speaking, induction rule A subsumes induction rule B
iff each induction term of a step case of A consists of repeated forms of an induction
term of a step case of B (see [Stevens 1988] for a more detailed discussion). In our
example s(s(z)) is a repeated form of s(z). Using induction rule (6.2) the induction
conclusion is:

Yy:nat. even(s(s(x))) A even(y) — even(s(s(x)) +y)

The expression even(s(s(z))) can be rewritten to even(z) using the recursive
definition of even. The expression even(s(s(z)) + y) can be rewritten first to
even(s(s(xz)+y)) and then to even(s(s(z+y))) by the recursive definition of + and
then to even(z + y) with the definition of even, i.e. induction rule (6.2) facilitates
a double application of the recursive definition of +, instead of the single applic-
ation we would have gotten from rule (6.3). Here we see consequences of using a
subsuming rule instead of the originally suggested rule. The induction conclusion
now matches the induction hypothesis and the step case is finished.
Note that the rule (6.3) does not work so well. The induction conclusion is:

Vy:nat. even(s(z)) A even(y) — even(s(x) +y)

Now the expression even(s(x)) cannot be rewritten and the step case proof is stuck.
Rule (6.3) applied to y would encounter the same problem, i.e. even(s(y)) cannot
be rewritten. So a subsumed induction rule cannot stand in for a subsuming one.

6.1.3. Containment of Induction Rules

Another way in which one induction rule can be inferior to others is containment.
Induction rule A contains induction rule B iff each step case of B is contained in

some step case of A. A step case

Cond* N\THM A ... ATH2 — IC

contains a step case
Cond? NTHE A ...NTHP — IC

iff Cond® — Cond” and each IH]B is also one of the TH'. Note that these con-
ditions make any instantiation of rule A logically easier to prove than a corres-
ponding instantiation of rule B. So rule A is preferred over rule B. [Walther 19944]
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provides a calculus for describing induction rules, called r-descriptions, and gives
a containment formula for defining and proving containment which is based on r-
descriptions. To illustrate containment, consider the following two induction rules
for S-expressions:

P(nil), Ve:sexpr.e # nil A P(cdr(e)) — P(e)
Ve:sexpr. P(e) (6.4)

P(nil), Ve:sexpr.e # nil A P(car(e)) A P(cdr(e)) — P(e)
Ve:sexpr. P(e) (6.5)

Note that the non-inductive conditions and induction conclusions of the step cases
of the two rules are the same and the induction hypotheses of rule (6.4) are a subset
of those of rule (6.5). Thus the step case of rule (6.5) contains that of rule (6.4),
so rule (6.5) contains rule (6.4). If both of these rules were suggested by recursion
analysis then rule (6.4) should be rejected as inferior.

Unfortunately, containment and subsumption can sometimes order induction
rules in opposite orders. Containment orders induction rules in terms of logical
implication, but subsumption is a more heuristically based order which orders
according to how easily standard proof methods will apply. Where they conflict
containment usually makes better suggestions. Subsumption can also be used to
tie-break where containment fails to distinguish. Unfortunately, containment has
only been defined for destructor-style induction rules, so subsumption is usually
used for constructor-style rules.

6.1.4. Combining Induction Rules

Sometimes no rule is suggested which subsumes or contains all the others. Then
it is necessary to generalise and combine the rule suggestions to construct a rule
which does subsume or contain them all. For instance, suppose our conjecture is
about S-expressions and recursion analysis yields the following two suggestions:

P(nil), Vessexpr.e # nil A P(car(e)) — P(e)
Ve:sexpr. P(e)

P(nil,) VYe:sexpr.e # nil A P(cdr(e)) — P(e)
Ve:sexpr. P(e)

Neither of these contains the other. However, both are contained by the more general

rule:
¢ P(nil), Ve:sexpr.e # nil A P(car(e)) A P(cdr(e)) — P(e)

Ve:sexpr. P(e)

which can be constructed from the two initially suggested induction rules by com-
bining them. In this case the combination consists of conjoining the induction hy-
potheses of the two original rules. [Walther 1994a] defines combination with respect
to containment as the separated union of the r-descriptions of two induction rules.
Combination can also be defined with respect to subsumption. Walther also defines
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various ways to generalise induction rules. Note that rule combination does not ne-
cessarily preserve the well-foundedness of the induction relation, so this may need
to be proved after a merge has been made.

Recursion analysis was invented by Boyer & Moore, [Boyer and Moore 1979]. It
was further developed by Stevens, [Stevens 1988], and Walther, [Walther 1994a].
Together they have constructed a range of techniques for preferring, generalising and
combining initial induction rule suggestions. These are often successful in producing
customised induction rules which lead to successful and short proofs of the current
conjecture. However, further research is required, e.g. to extend containment to
constructor-style induction rules and to incorporate within it some of the successful
features of subsumption.

6.2. Introducing an Intermediate Lemma

Sometimes a lemma required to complete the proof is not already available and is
not deducible from the existing theory without a nested application of induction.
This is a consequence of the failure of cut elimination for inductive theories (see
§5.2, p20). Such lemmata must be conjectured and then proved as sub-goals. In
non-inductive theorem proving, conjecturing lemmata is non-essential, because any
lemmas needed will be generated by inference with existing rules. However, if in-
duction is required to prove a lemma then inference alone is not sufficient, and the
lemma must be conjectured.

6.2.1. Example: Reverse-Reverse
As an example, consider the conjecture:

Vi:list(T). rev(rev(l)) =1
where rev reverses a list and is defined by the following rewrite rules:

rev(nil) = nil

rev(H :: T) = rev(T) <> (H :: nil) (6.6)

Recursion analysis will suggest the one-step list induction rule (4.6) on [. The
step case of this induction develops as follows:

rev(rev(t)) =tt+ rev(rev(h ::t)) =h:: t
Frev(rev(t) <> (h:nil))=h:t

but then gets stuck; no rewrite rules apply. Nor will strong fertilization apply'.
One solution is to introduce a distributive lemma of rev over <>., namely:

rev(X <>Y) = rev(Y) <> rev(X) (6.7)

16 Although weak fertilization will — see below §6.3.2, p29.
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This allows the step case to continue:

rev(rev(t)) =tk rev(rev(t) <> (h::nil)) =h:: t
Frev(h :: nil) <> rev(rev(t)) = h:: t
F (rev(nil) <> (h :: nil)) <> rev(rev(t)) = h = t
F (nil <> (h::nil)) <> rev(rev(t)) = h::t
F (h::nil) <> rev(rev(t)) = h:: t
F ko (nil <> rev(rev(t))) =h =t
Fh:rev(rev(t)) = h:t
Fh=hArev(rev(t)) =t
which contains the induction hypothesis. Fertilization leaves the trivial goal h =
hAT.

This does not solve the search problem. We need a heuristic to suggest or con-
struct lemma (6.7). We will provide such a heuristic in §8.1, p46.

6.2.2. Example: Generalised Rotate Length
As another example, consider the conjecture:

Vi : list(1).VEk : list(T). rotate(length(l),l <> k) =k <> 1 (6.8)

where rotate(n,l) removes the first n elements from list [ and appends them to
the end and length measures the length of the list. This conjecture says that if we
remove length(l) elements from | <> k and put them at the end then we form the
list & <> 1.

The functions rotate and length are defined by the following rewrite rules:

length(nil) = 0
length(H :: T) = s(length(T))

rotate(0,L) = L
rotate(s(N),nil) = nil
rotate(s(N), H :: T) = rotate(N,T <> (H :: nil))
Recursion analysis will suggest the one-step list induction rule (4.6) applied either
on [ or k. [ has two unflawed and one flawed occurrences and k has one unflawed
and one flawed occurrences. There is not much to choose between the two variables,

but some heuristics would give [ a slight edge, so we will choose it.
The step case of this induction develops as follows:

rotate(length(t),t <> K) = K <>t
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F rotate(length(h :: t),(h = t) <> k) =k <> (h:: t)
F rotate(s(length(t)),h :: (t <> k)) =k <> (h :: 1)
F rotate(length(t), (t <> k) <> (h::nil)) =k <> (h = t)

At this point the proof is stuck: no rewrite rules apply and both weak and strong
fertilization are inapplicable.

We need two new lemmas: one to unstick the LHS and one to unstick the RHS.
These are:

(X<>Y)<>Z=>X<> (Y <>2)
L<>(H:T)=(L<>(H:=nil)<>T

The first lemma is the associativity of list append and the second can be thought
of as a special case of associativity where the middle list is a singleton. Note that
they are required with the orientation given, although the opposite orientation is
equally natural. As in §6.2.1, p25 the question arises as to what heuristic might
suggest or construct these lemmas. Again we will return to this question in §8.1,
p46.

With these lemmas the step case of the proof can continue and is now successful:

rotate(length(t),t <> K) =K <>t
F rotate(length(t), (t <> k) <> (h::nil)) = k <> (h:: t)
F rotate(length(t),t <> (k <> (h ::nil))) = (k <> (h 2 nil)) <>t

Strong fertilization now applies. Note that K is instantiated to k <> (h :: nil).

As discussed in §2.3, p6, additional universal variables in the conjecture become
free variables in the induction hypothesis and arbitrary constants in the induc-
tion conclusion. These free variables can be instantiated to compound terms when
matching hypothesis to conclusion. This gives us more flexibility in the step case
of the proof; a flexibility which is exploited in this example.

6.3. Generalising Induction Formulae

Suppose we are trying to prove a conjecture, C'. Generalisation consists of con-
structing a generalised conjecture, G, and both proving G and G — C'.

Sometimes a conjecture cannot be proved without first being generalised. This
is another consequence of the failure of cut elimination for inductive theories. The
generalization must be strong enough that the induction hypothesis can be used to
prove the induction conclusion, but not so strong that it is not a theorem. Various
techniques for generalisation have been developed.
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6.3.1. Example: Generalising Apart
The need for generalisation can arise in even quite simple conjectures. Consider the
following special case of the associativity of <>.

Vidist(r). l<> (I <>1)=(1<>1) <>1

Where the only axioms available are the equality axioms and those arising from
recursive definitions, e.g. (4.3).

Recursion analysis will suggest the one-step induction rule (4.6) on [, even though
[ is flawed, because there is no alternative. Unfortunately, these flaws cause the
proof to fail. Note that the 3rd, 5th and 6th occurrences of [ are not in recursive
argument positions. However, the induction rule will replace these occurrences with
the induction term, h :: ¢. So the induction conclusion has the form:

(hut)y<>((h=t)<>(h=t)=((h:=t) <> (h:t)) <> (h:t)

The step case of the recursive definition of <>, rewrite rule (4.3), is able to rewrite
the 1st, 2nd and 4th occurrences of [, but not the other three occurrences. Moreover,
the 2nd occurrence can only be rewritten once. The induction conclusion, therefore,
gets stuck in the state:

ha(E<>hz@E<>((h=t))=h:((t<>(h:t) <> (h:t)

to which neither weak nor strong fertilization applies, causing the proof attempt to
fail if no generalisation is allowed.

To unstick the proof we must generalise apart the occurrences of [ to give the
conjecture:

Vidist(r).klist(r). 1 <> (k<> k) =(1<>k) <>k

Recursion analysis will still suggest a one-step induction on [, but this time it is
unflawed. The step case then proceeds as follows:
t<>k<>k)=t<>k)y<>kF(hzt)<>(k<>k)=((h=t)<>k)<>k
Fha(t<>(k<>k)=(h:({t<>k) <>k
Fho(@<>((k<>k)=h:(t<>k)<>k)
Fh=hAt<>(k<>k)=({t<>k)<>k
to which strong fertilization applies, allowing the proof to be completed.
The generalisation worked by restricting the occurrences of the induction variable
to unflawed ones. This removed from the induction conclusion those occurrences of
the induction term which could not be rewritten. Note that the 2nd occurrence of

[ was replaced by k even though it was unflawed. To have left it as [ would have
caused two problems. Firstly, it would have resulted in a non-theorem:

Vidist(r), kdist(t) Il <> (I <> k)= (1 <> k) <>k
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Secondly, the 2nd occurrence would have become stuck after the first rewrite. Decid-
ing which occurrences of the induction variable to generalise apart is a non-trivial
problem. It may be necessary to try several combinations before the correct one is
found. No one has yet found a heuristic which always chooses the correct combin-
ation first time.

We also need a heuristic to decide to try generalising apart in the first place.
Various heuristics have been proposed for this, all based on the analysis of initial
failed proofs (see, for instance, [Hesketh 1991]).

6.3.2. Example: Generalising a Sub-Term
Consider again the rev-rev conjecture:

Vi:list(T). rev(rev(l)) =1
from §6.2.1, p25 and the point at which the step case gets stuck:
rev(rev(t)) =t rev(rev(t) <> (h = nil)) =h:: t

An alternative method of unsticking this step case is to use weak fertilization (see
4.2, p14). The induction hypothesis is used as a rewrite rule right to left and
applied to the RHS of the induction conclusion. This yields:

rev(rev(t) <> (h : nil)) = h :: rev(rev(t))

We can now try to solve this new goal, using induction if necessary. Unfortunately,
the presence of nested rev functions will cause the step case again to get stuck.
However, note that term rewv(t) occurs on both sides of the equation. This can be
generalised to a new variable, e.g. k, and the resulting formula:

rev(k <> (h::nil)) = h = rev(k)

is still a theorem. Moreover, the problem of nested revs has now gone away. This

generalised conjecture is much easier to prove. For instance, the step case is now:
rev(t’ <> (h :nil)) = h:: rev(t')

(W ")y <> (h:nil)) =hzrev(h = t)

Frev(h' = (' <> (h = nil))) =h: (rev(t’) <> (b’ :: nil))

t' <> (h:nil)) <> (B =nil) = (b= revt)) <> (B = nil)  (6.9)

t' <> (h:nil)) =hzrev(t’) AW nil = b :onil

to which strong fertilization applies, completing the proof. This generalisation

worked by generalising away a subterm which caused difficulty during rewriting.
Note that in step (6.9) it was necessary to apply the rewrite rule (4.3) from right

to left, i.e. in the wrong orientation. We will propose a solution to this problem in
§7.6, p36.
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The most common heuristic for generalising subterms is to do so only when all
occurrences of a variable, say z, occur in a common term, say f(z). All occurrences
of f(z) (and hence z) are then replaced with a new variable y. Another heuristic is
to restrict generalisation to variables in recursive argument positions. The new vari-
able, y, will then be a candidate for an induction variable. The generalisation can
sometimes make possible an induction and subsequent rippling that were not previ-
ously available. Even with these heuristics, over-generalisation to a false conjecture
can occur — a problem we will address in §6.3.4.

6.3.5. Example: Introducing New Universal Variables
Another kind of generalisation is illustrated by the rotate length conjecture:

Vi : list(7). rotate(length(l),1) =1 (6.10)

which is a special case of conjecture (6.8). This conjecture says that if we remove
length(l) elements from [ and put them at the end then we recover the original list
l.

Recursion analysis will suggest the one-step list induction rule (4.6) on . The
step case of this induction develops as follows:

rotate(length(t),t) =t F rotate(length(h :: t),h = t) =h:: t
F rotate(s(length(t)),h ::t) = h =t
F rotate(length(t),t <> (h = nil)) = h:: t

At this point the proof is stuck: no rewrite rule applies and strong fertilization fails.
Weak fertilization succeeds, but the resulting conjecture is harder to prove than the
original one.

One solution is to generalise the original conjecture by introducing an additional
universally quantified variable. The generalised rotate length conjecture is:

Vi : list(1).VEk : list(T). rotate(length(l),l <> k) =k <> 1

which is conjecture (6.8) proved in §6.2.2, p26.

This generalisation succeeds because importing an additional universal variable
into the conjecture enables us to exploit the extra flexibility described in §2.3, p6.
In §8.2, p48 we describe a heuristic for suggesting and constructing this kind of
generalisation.

Many other forms of generalisation are possible. Figure 1 lists some of these.
More discussion can be found in [Hummel 1990].

6.3.4. The Problem of Over-Generalisation
A major problem with generalisation is the danger of over-generalisation, i.e. of
generalising a theorem into a non-theorem. For instance, consider the theorem:

Vi:list(nat). sort(sort(l)) = sort(l)
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Original | Generalisation | Discussion
A— B A& B implication to equivalence
A— B B dropping a condition
AV B A dropping a disjunct
A AANB adding a conjunct
fls)=f(t) s=t cancelling common structure

Figure 1: Some Other Forms of Generalisation

where sort is one of many functions for sorting lists of numbers into numerical order.
An automated inductive prover might generalise this theorem into the non-theorem:

Vk:list(nat). sort(k) = k (6.11)

by replacing the term sort(l) by the new variable k using the generalisation tech-
nique outlined in §6.3.2, p29.

One partial solution to this problem is to check any newly generalised formula
with a counter-example finder, [Protzen 1992]. A simple counter-example finder
might generate a small number of variable-free instances of the generalised formula
and check that each evaluates to T. For instance, if we checked (6.11) above with the
list [2,1] for k then sort(k) = k would evaluate to L and the generalisation could
be rejected. Simple checking of this kind works in the majority of cases because
over-generalisations are rarely false in any subtle way.

Another partial solution is to try to modify the over-generalised non-theorem back
into a theorem. For instance, non-theorem (6.11) can be modified to the theorem:

Vk:list(nat). ordered(k) — sort(k) =k

where ordered(k) means k is an ordered list. Conditions like ordered(k) can often
be generated automatically. Moore pioneered this technique in [Moore 1974], and
it has been further developed in [Franova and Kodratoff 1992, Monroy, Bundy and
Ireland 1994, Protzen 1994]. This technique has the advantage that we can continue
with the use of generalisation, instead of having to find an alternative approach.

However, it is not always possible to modify the non-theorem into a theorem
which still subsumes the original conjecture. For instance, the conjecture:

Vidist(r). I <> (I <>1)=(1<>1)<>1 (6.12)
can be generalised to the non-theorem:
Vidlist(r).klist(7). l <>k =k <>1
This can be modified to the theorem:
Vidlist(r).kilist(7). l =k >l <>k=k<>1

say, but this no longer subsumes the original conjecture, (6.12).
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7. Rippling

Rippling is a difference reduction technique developed for induction proofs. It
provides a partial solution to many of the special search control problems described
in §6, p21 above. Aubin was the first to notice a common pattern in the rewriting
of step cases, [Aubin 1976]. In [Bundy 1988] it was proposed to use this pattern to
drive the rewriting process and implementations of this proposal were first reported
in [Bundy, van Harmelen, Smaill and Ireland 1990, Bundy, Stevens, van Harmelen,
Ireland and Smaill 1993, Hutter 1990].

7.1. Rippling Out

Aubin observed that during the step case the differences between the induction con-
clusion and the induction hypothesis ripple-out of the induction conclusion, leaving
a complete copy of the induction hypothesis embedded in the induction conclusion.
The effect is emphasised by annotating these differences, e.g. by placing them in
grey boxes. Consider again the step case of the associativity of <> reproduced from
§4.1.3, p13, but this time with annotation.

* +
t<>Y <>2)=t<>Y)<>ZF hut <>@Wy<>z)=(hat <>y <>z

t *
Fhuot<>(@y<>z) =hut<>y) <>z

+ *
Fhot<>(@y<>z) =hu (t<>y <>z

4
Fh=hAt<>y<>z)=({t<>y) <>z

The grey boxes indicate the parts of the induction conclusion which differ from
the induction hypothesis. They are called wave-fronts. Each wave-front has one or
more wave-holes indicating sub-terms of the wave-fronts which correspond to parts
of the induction hypothesis. The parts of the induction conclusion outside the wave-
fronts or inside the wave-holes, are called the skeleton. The skeleton always matches
the induction hypothesis. The arrows indicate the direction of movement of the
wave-fronts — in this case outwards through the induction conclusion until they
completely surround the skeleton. Note how the grey boxes get bigger at each step
with more of the skeleton embedded within them, until they contain a complete
instance of the induction hypothesis. At this point, strong fertilization can take
place.

Rippling restricts the rewriting process so that the skeleton is preserved and
wave-fronts are only moved in desirable directions. This is achieved by annotating
both the rewrite rules and the induction conclusion and requiring the annotations
to match. Annotated rewrite rules are called wave-rules. The wave-rules required
in the example above are:

H:T ' <>L=H:T<>L '
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which are annotated versions of rule (4.3) and the replacement rule for ::. The wave-
rules are annotated so that the wave-fronts are further out in the skeleton on the
RHS than on the LHS. Any wave-fronts in the redex in the induction conclusion
must match corresponding wave-fronts in the LHS of the wave-rule which is applied
to it. This last condition reduces the search during rewriting by preventing rewrites
in which the annotation does not match.

7.2. Simplification of Wave-Fronts

It is sometimes necessary to apply regular rewrite rules as well as wave-rules during
rippling in order to simplify expressions. However, this simplification can be restric-
ted to wave-fronts. The skeleton must be preserved, so must not be rewritten. An
example occurs in the rev-rev example from §6.2.1, p25. In wave annotation the
step case of this proof is:

rev(rev(t)) =t rev(rev(hs £1) = ha t]
Frev( rev(t) <> h:: nil T) = h:t ! (7.1)
F rev(h :: nil) <> rev(rev(t)) f ht i (7.2)
F rev(nil) <> (h :: nil) <> rev(rev(t)) s onf
F nil <> (h :nil) <> rev(rev(t)) " onf
F (h::nil) <> rev(rev(t)) = ht !
b (il <> reo(reo(®)) = Bt (7.3)

F kb rev(rev(t)) f h:t

F h=hA rev(rev(t)) =t !

From step (7.2) to step (7.3) no rippling-out takes place, but a wave-front is simpli-
fied using rewrite rules from the recursive definitions of rev and <>, (6.6) and (4.3).
Note that the skeleton is not rewritten, since this would jeopardise the potential
for fertilization.

This example also illustrates that rippling can be used to guide the application
of lemmas as well as recursive definitions. At step (7.1) the lemma (6.7) is applied.
This can be annotated as a wave-rule as:

rev( X <> YT) = rev(Y) <> rev(X) ' (7.4)
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7.83. Rippling Sideways and In

Rippling wave-fronts right outside the skeleton is one way to enable fertilization, but
it is not the only way. We can also exploit the flexibility provided by additional uni-
versal variables in the conjecture (see §2.3, p6). These additional variables become
free variables in the induction hypothesis and arbitrary constants in the induction
conclusion. We will call the arbitrary constants, sinks. We can move wave-fronts to
surround the sinks. They will then be absorbed by the free variables during fertil-
ization. We will mark sinks thus: |¢|; you can think of these marks as representing
a kitchen sink with a plug hole at the bottom.

To see how this works consider again the example step case from §6.2.2, p26, but
this time annotated with wave fronts and sinks.

rotate(length(t),t <> K) =K <>t

F rotate(length( h :: t T), nf <> lk])=1k] <> h:t !
F rotate( s(length(t)) T, bt <> |k T) =|k| <> h:ut !
F rotate(length(t), t <> |k| <> (h :: nil) J') =|k| <> (h::t T) (7.5)

F rotate(length(t),t <> |k] <> (h :: nil) J') = |k| <> (h:nil) ! <> (7.6)
F rotate(length(t),t <> |k <> (h:nil)]) = |k <> (h = nil)| <>t (7.7)

At step (7.5) instead of moving the LHS wave-front further outwards we move
it sideways and then inwards towards the sink. We call these processes rippling-
sideways and rippling-in. The inwards direction of this wave-front is indicated by
the downwards arrow. At step (7.6) the RHS wave-front also moves sideways and
then inwards. When an inwards wave-front immediately dominates a sink, as at
step (7.6), then it can be absorbed into the sink. This has been done twice in the
last step (7.7). Strong fertilization is now possible with the free variable, K, being
matched to the contents of the sink, & <> (h :: nil).

To implement rippling-sideways and rippling-in we need wave-rules with a slightly
different kind of annotation. The sideways'” wave-rules used in the above example
are annotated as'®:

rotate( s( N ) T, H:T T) = rotate(N, T <> (H :: nil) l) (7.8)
'
L<>(H:T T): L <> (H :=nil) <>T

Functions defined by tail recursion are a good source of such sideways rules,
e.g. the definition of rotate. The inwards wave-rule used in the above example is

17 Also called transverse wave-rules, in contrast to longitudinal wave-rules, which ripple-out.
183ee §7.9, p42 for a discussion of the annotation of wave-rule (7.8).
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one of the many'® annotations of associativity:

1
(X<>Y)<>Z :>X<>(Y<>Zl)

One of the preconditions of rippling sideways and inwards is that any inwards
wave-front should have a target to ripple towards (see §7.7.4, p39) in one of its
wave-holes. This can be a sink, as above, or an outwards directed wave-front, with
which it can cancel. Without such a target the final fertilization will not be possible.
This precondition puts a further restriction on rippling.

7.4. The Advantages of Rippling

Rippling has the following advantages over conventional rewriting:

It is more restrictive: The condition that wave annotations match prevents re-
writings that would otherwise be allowed. This reduces the size of the search
space of rippling compared to that of unrestricted rewriting (see §7.5, p35). This
would be a disadvantage if desirable rewritings were disallowed, but experiment
shows that this does not happen.

It always terminates: A general termination proof can be given for all sets of
wave-rules (see §7.8, p39), whereas a separate termination proof has to be
given for each set of rewrite rules in conventional rewriting.

It allows rewriting in both directions: An equation can often be oriented as a
wave-rule in each direction by annotating it in two different ways (see §7.6, p36).
These different annotations prevent looping, so that termination is preserved.
This allows rewriting in different directions even within the same proof.

It supports various heuristics: The failure of rippling can be used to suggest
patches to a partial proof which help in the choice of generalisations, lemmas
and induction rules (see §8, p45).

7.5. Selective Rewriting

Suppose we had the goal of proving:

((c+d)+a)+b=(c+d)+42 (7.9)
from the hypothesis a + b = 42 with the aid of the associativity of 4+ rewrite rule:
X+Y)+Z=>X+ (Y +2) (7.10)

Using conventional rewriting goal (7.9) can be rewritten with rule (7.10) in three
ways:

((c+d)+a)+b=cH+ (d+42)
(c+(d+a)+b=(c+d)+42
(c+d)+ (a+b)=(c+d)+42 (7.11)

19See §7.6, p36 for more ways to annotate associativity.
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The first two of these three subgoals make no progress towards the hypothesis and
represented unwanted branches of the search space. Only subgoal (7.11) represents
progress. The hypothesis can now be applied to it, using weak fertilization, to
complete the proof.

Rippling can be applied to this problem by annotating the goal (7.9) and the
rewrite rule (7.10) with wave-fronts (see §7.9, p42 for how the annotation process
can be automated). (7.9) is annotated so that its skeleton is the hypothesis:

t t
((e+d)+a )+b= (c+d)+ 42
The rule (7.10) can be annotated in several ways, but only one of these permits any
rippling with (7.9):
t T
(X+Y )+Z= X+(Y+Z2)

The condition that wave annotations match only allows one ripple — the desired
one to:

(c+d)+(a+b)T: (c+d)+ 42 !

Thus, rippling limits the rewriting search space by eliminating unproductive rewrit-
ings.

7.6. Bi-Directional Rewriting

Equations can be annotated as wave-rules in more than one way. In particular, an

equation can often be annotated in either orientation. For instance, the associativity
law of <> can be annotated in the following six ways:

"

X<>(Y<>ZT):> (X <>Y)<>Z
1

X<>(Y<>ZT):> (X <>Y) <>Z7

1
X<>(Y<>2) :>(X<>Yl)<>Z

1
(X<>YT)<>Z:> X<>(Y<>2)

0 !
(X <>Y) <>Z=>X<>(Y<>7)

il !
(X <>Y)<>Z =>X<>(Y <>Z")

The first three are oriented in one direction and the second three are oriented in the
other. Moreover, all six wave-rules are measure decreasing, left to right. This means
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that we could use any combination of them in the same ripple sequence without
risk of non-termination. This is a surprising departure from the normal situation in
rewriting. Normally using an equation as a rewrite rule in both orientations could
cause looping. What prevents rippling from looping is that the wave annotations
will prevent the same equation being applied to reverse a previous rewrite, i.e. that
if you take the meta-functions into account then the equations are not reversible.

This ability to rewrite in either direction is frequently useful. We found a need
for it in step (6.9) in §6.3.2, p29. The step case of the generalised rev-rev conjecture
required a rewrite rule to be applied backwards. If we annotate this step case we
can see how rippling can enable this. The annotated step case is:

rev(t’ <> (h :nil)) = h:: rev(t')
Frev( b ¢ ! <> (h:=nil)) =hzrev(h' =t T)
Frev(h' =t <> (h :: nil) T) =hz:z rev(t') <> (h':: nil) ! (7.12)

Forev(t' <> (h::nil)) <> (h' :: nil) "o h:rev(t') <> (h' :: nil) T(7.13)

1
Forev(t’ <> (h::nil)) = h:rev(t’) AR nil = h' :: nil

Note that step (7.13) is achieved on the RHS with the wave-rule:
H:T<>L' = H:T <>L'

which is an annotation of rewrite rule (4.3), but in an inverted orientation. Step
(7.12) on the LHS, on the other hand, is achieved by a different annotation of
rewrite rule (4.3) in its given orientation, namely:

HeT <>L= H:T<>L

This bi-directional use of the same equation within the same derivation is handled
smoothly by rippling without looping.

Examples where the same equation needs to be used in different orientations
within the same proof are relatively rare (but do happen — see the example above).
However, it is very common for the same equation to be used in different orientations
within a family of proofs. For instance, associativity and distributivity laws are used
in both orientations quite frequently. Individual problem equations can be built-
into the unification algorithm, e.g. associativity, but there will always be equations
which have not yet been so built-in or which cannot easily be built-in. Rippling
gives a useful flexibility in such cases.

7.7. The Definition of Wave Annotation

Wave-rules can be formally defined as annotated rewrite rules which are skeleton
preserving and measure decreasing. Full definitions of the concepts of well annotated
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term, skeleton and measure can be found in [Basin and Walsh 1996], together with a
proof of the termination of rippling and an algorithm, called difference unification,
for annotating formulae. We give an overview of this account here.

7.7.1. Meta-Level Functions

Wayve annotations can be thought of as meta-level functions which are inserted into

the object-level terms. These meta-functions are:

wf: which defines a wave-front. This meta-function has a second argument of in
or out to indicate the direction of the wave-front.

wh: which defines a wave-hole within a wave-front.

snk: which defines a sink.

So rotate( h :: t T, [1]) is represented by rotate(wf(h :: wh(t), out), snk(l)).

7.7.2. Normal Forms and Well-Formedness
It is convenient for both technical and implementational reasons to put annot-
ated terms into a normal form in which wave-fronts are all one-functor thick,

i.e. to split wider wave-fronts into a nested sequence of wave-fronts and wave-holes,
T

t t
e.g. s(s(n)) isputinto the normal form s(/s(n) ) . Another part of the nor-
mal form is to absorb inward directed wave-fronts into sinks that they immediately

1
dominate, e.g. f(a, |b]) is rewritten to | f(a,b)].
Let f be a functor immediately dominated by wf. At least one of the argu-
ments of f must then be dominated by a wh, but several can be. For instance,

1
in f(a,b,c) f is dominated by wf and two of its three arguments are dom-
inated by wh. f and b are said to be in the wave-front and a and ¢ are said to
be in wave-holes. It is a condition of well-formedness that any wave-fronts nested

inside f must be nested in one of its wave-holes, i.e. the following is ill-formed
t

f(Cgla) ,b) .Sometimes matching inserts a wave-front in one of the non-wave-
hole arguments of f. The matcher must delete these meta-functions to make the

term well annotated, i.e. rewrite the above ill-formed term to?° f(g(a), b) " Apart
from this requirement, matching of the LHS of a wave-rule to a redex is done by
the standard matching algorithm with the meta-functions being treated as normal
functions. Note that this means that any wave annotation in the LHS must match
corresponding wave annotation in the redex and that any wave annotation in the
redex must match either a variable in the LHS or corresponding wave annotation
there.

7.7.8. Skeletons and Skeleton Preservation
The skeleton is a set of terms formed by deleting all the wave-fronts and their
contents, but retaining the contents of the wave-holes. A skeleton is a set because

20This wave-front is still one functor thick; only f dominates the wave-hole b.
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multiple wave-holes in a function give rise to multiple terms when wave-fronts

are deleted. For instance, the skeleton of rev( X <> Y T) is {rev(X),rev(Y)}. A
weakening of an annotated term is one in which all but one wave-hole is deleted from

each function. For instance, rev( X <>Y T) is a weakening of rev( X <> Y T).
The skeletons of weakenings are always singletons, e.g. {rev(X)} in the above ex-
ample.

A defining property of wave rules is that they are skeleton preserving. Skeleton
preservation means that the skeleton of the LHS of the wave-rule is a superset of the
skeleton of the RHS. Usually, they are equal, but in some cases this is not possible.
Consider, for instance, the replacement wave rule for <>.

T T T
X1 <> X = Y <> Y = X1=Y1 A Xo =Y

The skeleton of the LHS is {X; = Y1, X; = Y5, Xo =Y;, Xo = Y5} but that of the
RHS is only {X; = Y7, X» = Y5}. There is a way of excluding the unwanted elements
of the LHS skeleton, in this case, by associating colours with wave-holes, [Yoshida,
Bundy, Green, Walsh and Basin 1994]. In this example the wave-rule is viewed as
a doubleton whose members have different colours: a red member, X; = Y7, and a
blue member, X5 = Y5. The wave-holes in the wave-rule are coloured appropriately,

;(] <> ;(2 — 1] <> Y2 = X — Y] /\Xﬁ! — Y2

and these colours are taken into account in the definition of skeleton to ensure that
colours are not mixed. This makes the skeleton of both sides of the wave-rule be
{X; =Y1, X> = Y5}. Note that the = on the LHS is shared between the red and blue
skeleton members and must be labelled with the set {red,blue}. The advantage of
this colour labelling is that skeleton preservation in coloured wave-rules now means
equality of skeletons.

7.7.4. The Preconditions of Rippling
The preconditions of a ripple are as follows:
1. The induction conclusion contains a wave-front.
2. A wave-rule exists whose LHS matches a redex in the induction conclusion
containing this wave-front.
3. If the wave-rule is conditional then the condition can be proven.
4. Any inwards wave-fronts inserted into the induction conclusion contain either
a sink or an outwards wave-front in one of their wave-holes.
In §8, p45 we will consider various ways in which these preconditions might fail and
what patch might be applied to the proof in each case.

7.8. Termination of Rippling

To prove termination of rippling we need a measure onto a well-founded set and we
need to show that each ripple strictly decreases this measure. The intuition behind
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this measure is that it decreases when outward directed wave-fronts move towards
the root of a term and when inwards directed wave-fronts move towards the leaves.
[Basin and Walsh 1996] defines a simple measure with this property. They prove
that if the measure of the RHS of each wave-rule is strictly smaller than that of the
LHS then the measure of the result of applying this wave-rule will also be strictly
smaller than the goal to which it is applied. This means we can restrict our attention
to wave-rules when proving termination. We outline the Basin/Walsh measure in
three stages.

First, consider the case where an annotated term is a weakening, i.e. has a
singleton skeleton, and has only outwards directed wave-fronts. Consider this skel-
eton as a parse tree with each node labelled by the wave-fronts immediately dom-
inating that functor in the skeleton. An example is given in figure 2. Now abstract
this parse tree by replacing all the labels with the weight of the wave-fronts at that
point in the tree. There are various ways to calculate the weight, but the one we will
use is just the number of wave-fronts. Finally, we make a list where each element
corresponds to the depth of the tree and contains the total weight of wave-fronts at
that depth. Such lists can be well ordered by the lexicographic order in which the
element at greatest depth has highest precedence. In figure 3 is an example showing
how the measure decreases during rippling.

+ 0 0

VARN \ |

s( s(+) ) z 20 2

7 \ |

z  s(y) 01 1
0 ! '

s( s(z+s(y) ) )| += [1,2,0]

In the bottom left hand corner is the term whose measure is to be calculated. In
the top left hand diagram the wave-front is used to label the parse tree of the
skeleton. In the middle diagram the node labels are abstracted to show just the
weight of the wave-fronts at that point. In the top right hand diagram the parse
tree is replaced by a list with each element showing the total weight of wave-fronts
at that depth. This list is reproduced in the standard horizontal format at bottom
right.

Figure 2: The Outwards Measure of Annotated Terms

Secondly, consider the case where a term has a non-singleton skeleton, but still
contains only outwards wave-fronts. The measure of this term is the multi-set of the



THE AUTOMATION OF PROOF BY MATHEMATICAL INDUCTION 41

(5(2) +9)+2 (8(zt9))+z (s(@ry)+2)

4
+ + s(+)
/\ / N\ /\
+ 2 s(+) =z + oz
/ N\ /\ /\
s(z) y Ty Ty
[1,0,0] [0,1,0] [0,0,1]

In the top row are three annotated terms in successive stages of a ripple. In the
middle row these three terms are each represented by the parse trees of their skel-
etons annotated by the wave-fronts at each node. In the bottom row are the meas-
ures of these three terms. Note that under the lexicographic order each measure
1s strictly less than the one before.

Figure 3: The Strict Decrease of the Outward Measure

measures of each of its weakenings, ordered by the multi-set ordering. For instance,

the measure of rev( X <> Y T) is {[1,0],[1,0]}.

Thirdly, consider the case where a term contains a mixture of outwards and
inwards wave-fronts. We define an inwards measure exactly like the outwards one,
but with the lists lexicographically ordered in the reverse direction, i.e. with the
element at least depth having highest precedence. For instance, the inwards measure
of rev( X <> Y *)is {[0,1],[0, 1]}

The overall measure is the lexicographically ordered pair of the outwards and
inwards measures, with the outwards measure having precedence over the inwards

1
one. For instance, the overall measure of length( h :: t T) + s(s(dble(|x]))) is

({[1,0,0]},{[0,2,0]}). One consequence of the outwards measure having precedence
is that just reversing the direction of an outwards wave-front to direct it inwards
will result in a measure decrease, but not vice versa. Under this overall measure
rippling can be shown to always terminate.
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7.9. Automatic Annotation

Terms can be automatically annotated by a process called difference unification,
[Basin and Walsh 1993]. This is like regular unification but there is an additional
option to hide structure in wave-fronts. The conflict rule of unification fails the
unification attempt if the outermost functions of the unificands are not identical.
In difference unification the conflict rule is replaced with two hide rules: one to hide
the mismatching function on the left and one to hide the one on the right. The
choice of hiding rules makes difference unification non-deterministic; in general, it
returns several difference unifiers. If hiding is only allowed on one side we have
difference matching. If no instantiation of variables is allowed then we have ground
difference unification. Wave-rules and induction rules can be annotated by ground
difference unification.

Directions of wave-fronts can then be inserted by a generate and test process;
each possible combination of directions is tested for measure decrease. Because the
outwards measure is lexicographically ordered before the inwards one it is always
possible to obtain a measure decrease in a wave-rule by directing LHS wave-fronts
outwards and RHS wave-fronts inwards. In order to prevent over production of
wave-rules it is usual to restrict this device to those situations where it is strictly
necessary to enable a legal annotation. For instance, if difference unification has
found and inserted the following wave-fronts in the associative law of <>:

(X <>Y ) )<>Z=>X<>(Y<> Z)

then the only way that directions can be added to these wave-fronts to create a
measure decrease is:

(X <>YT)<>Z:>X<>(Y<> VA l)
However, the following wave-fronts of the step case of the rotate function:
rotate( (N ), H :: T ) = rotate(N, T <> (H ::nil) )
can be directed , for instance, as:
1 1 et
rotate( s(N ) , H:= T )= rotate(N, T <> (H ::nil) )

It is not necessary to direct the RHS wave-front inwards to get measure decrease,
i.€.

0 {
rotate(s(N ) , H:= T T) = rotate(N, T <> (H ::nil) )

But sometimes we do want a wave-rule of this form (see, for instance, wave-rule (7.8)
in §7.3, p34). To make such annotations available we can either remove the restric-
tion on non-minimal wave-rule annotations and allow (7.8) as a legal annotation or
we can employ a meta-rule that any outwards wave-front in the induction conclu-
sion can be turned inwards provided it contains a sink or an outwards wave-front
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in one of its wave-holes. Of course, we cannot turn inwards wave-fronts outwards
since this would usually increase the measure.

There is a similar choice over weakenings. Sometimes weakened forms of wave-
rules are required for a proof. Consider, for instance, the use of wave-rule (7.4) in
§7.2, p33.

"
rev( X <>YT) = rev(Y) <> rev(X)

This wave-rule is a weakening of:

1
rev( X <>Y T) = rev(Y) <> rev(X)

We can either generate such weakenings explicitly or adapt wave-rule matching to
automatically weaken the wave-rule as required. This is a space/time tradeoff.

7.10. Ripple Analysis

Rippling suggests a useful alternative to recursion analysis (see §6.1.1, p22) for
providing initial induction rule suggestions to prove a conjecture. In recursion ana-
lysis we use the recursive arguments of functions in conjectures to suggest induction
rules. In ripple analysis we look ahead into the rippling process to see which in-
duction rules will support the initial stage of rippling. This will allow us to use
any argument of a function, provided there is a wave rule in which this argument
contains a wave-front. Since recursive definitions provide wave-rules in which the
recursive arguments contain wave-fronts, ripple analysis includes but extends re-
cursion analysis.
To see how this works, consider the conjecture:

Vy:r, xs:list(T). y @ foldleft(®,e,xs) = foldleft(®,y,xs) (7.14)
where foldleft is a functional defined by:
Foldleft(F, X, nil) = X
foldleft(F, X, H = T1") = foldleft(F, F( X ,H) ", T) (7.15)

and @ is an associative function with a right identity e:

A
xolYezh=Xev) @z (7.16)
XPde=> X

Assume, in addition, that the following wave-rule is also available as a lemma:

foldleft(F,Z, L <> (X snil) ) = F( foldieft(F,2,L),X) " (7.17)
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Since foldleft recurses on its third argument, zs is unflawed in (7.14). Thus
recursion analysis will suggest a one-step induction on xs using (4.6). However, this
induction does not lead to fertilization. The step case will proceed as follows:

Y @ foldleft(®,e,xs) = foldleft(d,Y, xs)
Fly] @ foldleft(®,e, h:: zs T) = foldleft(®, |y|, h: zs T) (7.18)

Fly| ® foldleft(®,e, h:: xs T) = foldleft(®, |y ® h|,xs) (7.19)
blocked

at which point the left-hand side wave-front is blocked because there is no sink in
the second argument of foldle ft. Weak fertilization can take place to yield:

y® foldleft(d,e,h::xs) = (y® h) ® foldleft(D,e,xs)

but again one-step induction on zs is suggested and this time no rippling is possible,
resulting in a failed proof.

We now consider how rippling analysis will deal with this example. We look ahead
into the rippling process and for each combination of occurrences of universally
quantified variables in the conjecture we ask if they were replaced by suitable wave-
fronts, whether a wave-rule would then apply. Consider, for instance, the second

occurrence of xs in (7.14). If this occurrence of xs were replaced by h :: s ! then
wave-rule (7.15) from the recursive definition of foldleft would apply to (7.14), as
at step (7.18) above. So the second occurrence of zs suggests an induction on xs
using the one-step list induction (4.6). To implement this ripple analysis process
efficiently we can invert the reasoning described above, i.e. we can use the available
wave-rules to suggest which combinations of variables to replace with which wave-
fronts, so that those wave-rules will apply.

So far, this reasoning merely recapitulates recursion analysis in different termin-
ology. The first difference comes when we consider the first occurrence of xs. Under
recursion analysis this also suggested induction rule (4.6), since it also occurred in
the recursion argument of foldleft. However, under ripple analysis, if this occur-

rence of xs were replaced by h :: s ' then wave-rule (7.15) would not apply, but
would be blocked due to the absence of an appropriate sink, as in step (7.19) above.

The second difference with recursion analysis, is that ripple analysis can use
lemma (7.17) with both occurrences of xs to suggest a different induction rule. If
either occurrence of zs is replaced by zs <> (z :: nil) f then wave-rule (7.17) will
apply. This wave-front suggests the induction rule:

P(nil), Vawr, Llist(r). P(l) —» P( 1 <> (@ = nil) )
Vi:list(T). P(l) (7.20)

Since both occurrences of s suggest induction rule (7.20) and only one occurrence
suggests induction rule (4.6) then rule (7.20) is preferred. Under this rule the step
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case is successful:

ly] @ foldleft(d,e, xs <> (x :: nil) T) = foldleft(®, |y|, zs <> (z :: nil) T)

ly] ® ( foldleft(®,e,xs) & x T) = foldleft(®, |y, zs) &z !

(ly] ® foldleft(d,e,xzs)) &z f foldleft(®, |y|,xs) ®x !
ly] & foldleft(®,e,xs) = foldleft(®d, |y],zs)

using two applications of lemma (7.17), one of associativity law (7.16) and the
replacement rule for @. Strong fertilization is now possible.

Recursion analysis suggests induction rules dual to the recursive definitions of
functions in the conjecture. Ripple analysis uses the available wave-rules to suggest
induction variables and rules. The wave-fronts in these wave-rules suggest the form

1
of induction. In example (7.14), zs <> (z :znil) was used to replace both oc-

currences of xs. This is the wave-front which occurs in induction rule (7.20). For
ripple analysis to recover the appropriate induction rule, each induction rule must
be indexed by the wave-fronts in its induction term, e.g. (7.20) must be indexed by

xs <> (z :: nil) T. Unfortunately, no-one has yet developed a mechanism which
given an induction term creates a corresponding induction rules. So, in our example,
if rule (7.20) is not already pre-stored then it cannot be used. We return to this
issue in §9.4, p53.

So, just as in recursion analysis, induction rules must be constructed from the
termination proofs of recursive functions in conjectures. In addition the induction
hypotheses and induction conclusions of these induction rules must be difference
matched and annotated with wave-fronts. The induction rules must then be in-
dexed by the wave-fronts they contain, so that ripple analysis can access induction
rules containing appropriate wave-fronts. Induction rules created by other means,
e.g. provided by a user, must, be indexed in a similar way.

Ripple analysis, like recursion analysis, only supplies the initial induction rule
suggestions. Where these suggestions are incompatible it may be necessary to reject
inferior suggestions and combine the remainder using the techniques described in
§6.1.4, p24 for recursion analysis.

8. The Productive Use of Failure

The discussion of search control problems in §6, p21 identified lots of places where
guidance was needed during inductive proofs. For instance, when is it necessary
to introduce a lemma or generalisation and which lemma or generalisation should
be used? One successful approach to inductive search control is: to detect when
a proof attempt is breaking down; analyse the cause of the failure; and use this
analysis to direct the search process. This approach is usually called the productive
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use of failure. See [Ireland 1992, Ireland and Bundy 19965], for instance, for more
discussion of this approach.

In order to detect proof failure you have to have a strong expectation of how it
should have gone. Such a strong expectation is provided, for instance, by rippling. So
we will illustrate the detection, analysis and correction of failure with two examples
based on the breakdown of rippling. In both cases the initial proof attempt has
reached the step case of an inductive proof and rippling has been initiated. It has
then failed because the preconditions of a particular ripple (see §7.7.4, p39) were
not met. Differences in the precondition failure, however, suggest a different proof
patch in each case.

8.1. Example: Speculating a Lemma

Consider again the generalised rotate length conjecture, (6.8) from §6.2.2, p26. We
saw how an attempt to prove this conjecture without lemmas would get stuck in
the step case after the following ripple:

rotate(length(t),t <> K) =K <>t

F rotate(length( b :: t T), hetl <> k) = k] <> h t !

F rotate( s(length(t)) T, bt <> |k T) =|k| <> h:t !

F rotate(length(t), t <> |k| <> (h :: nil) J') =kl <>(h:=t T)

At this point no further wave-rules apply.
In terms of the preconditions of rippling we have the following situation:

1. Both sides of the induction conclusion contain wave-fronts.

2. No wave-rule exists whose LHS matches any redex in the induction conclusion
containing these wave-fronts. There isn’t even a near match. So this precondition
fails.

3. With no wave-rule there is no condition to check.

4. Similarly, there are no inwards wave-fronts to check.

In such cases the best bet seems to be to introduce a lemma which can be
annotated as the missing wave-rules. We can say a lot about the structure of this
missing wave rule. For instance, on the LHS of our example above the redex we

!
want to rewrite is: (¢t <> |k] ) <> (h :: nil) . So the LHS of the missing wave-

rule must have the form: (X <>V ) <> Z l. Note that we must preserve all the
structure of the skeleton, but can generalise the contents of the wave-front to a
new variable. We can also say a lot about the RHS of the missing wave-rule. It
should have the same skeleton as the LHS, but the wave-front can take any form.
We can represent this uncertainty about the wave-front by using a second-order
meta-function, F, to represent it. Since the point of this wave-rule is to ripple the



THE AUTOMATION OF PROOF BY MATHEMATICAL INDUCTION 47

wave-front towards the sink, [k|, we can say that the wave-hole of F' should be Y,
the free variable that will match |k]. So we can speculate the missing wave-rule to
be:

' '
IFVX,Y,Z. (X <>V )<>Z = X <> F(Y,Z2) (8.1)

Quantifiers have been inserted to clarify the status of the variables in the proof,
but types have been omitted to facilitate readability.

(8.1) can now be fed to the inductive theorem prover as a new conjecture. The
proof of conjectures containing second-order meta-functions requires special treat-
ment. In particular, instead of using rewriting we need to use narrowing, i.e. rewrit-
ing in which free variables in the redex can be instantiated by unification with the
rewrite rule. It will also be necessary to use second-order unification during narrow-
ing. Note that universal variables like X, Y and Z should not be instantiated, but
existential variables like ' can be. During the proof of (8.1) the second-order vari-
able F'is instantiated to <>, so the missing rule turns out to be the associativity
of <> annotated as:

1
(X<>Y)<>Z :>X<>(Y<>Zl) (8.2)

as expected.
Similar reasoning will speculate the missing RHS wave-rule as:
1 !
L<>(H=T )= G(L,H) <>T

during the proof of which G is instantiated to reveal the wave-rule as:
4
L<>(H=T Y= (Li<>H=nil) ) <>T (8.3)

again, as expected.

This lemma speculation mechanism can also be used to suggest the missing wave-
rule (6.7) from §6.2.1, p25. Analysis of the stuck ripple suggests that the form of
the missing wave-rule is:

rev( X <>YT) = F(X,Y, rev(X))T

The meta-variable F' will be instantiated during subsequent proof to: F/(X,Y, Z) =
rev(Y) <> Z, so that the missing wave-rule is revealed as:

1
rev( X <>YT) = rev(Y) <> rev(X)

as required.

Second and higher-order unification algorithms are non-deterministic. The
branching rate can be very high and can cause severe search problems. In this ap-
plication we can exploit the wave annotations to reduce the branching significantly,
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i-e. we insist that wave-fronts unify with wave-fronts and skeletons with skeletons.
These additional constraints make the lemma speculation technique tractable in
many practical cases. [Hutter and Kohlhase 1997] describes a higher-order unifica-
tion algorithm for annotated terms which embeds these additional constraints.

In addition, the termination of rippling is lost when meta-variables are present
in the conclusion. The search control must avoid infinite branches, e.g. by some
element of parallelism in the search using breadth-first or iterative deepening, and
by using eager fertilization to terminate branches whenever this is possible.

8.2. Example: Introducing a Sink

Now counsider the rotate length conjecture, (6.10), from §6.3.3, p30. An attempt to
prove this conjecture using rippling will get stuck in the step case after the following
ripple:

rotate(length(t),t) = t - rotate(length( h :: t T), hit )= h:u:t
t
F rotate( s(length(t)) , h=t )= h:ut

At this point no further wave-rules apply.
In terms of the preconditions of rippling we have the following situation:
1. Both sides of the induction conclusion contain wave-fronts.
2. A wave-rule exists whose LHS matches a redex containing both the LHS wave-
fronts, namely:

t 4
rotate( s(N) , H:= T T) = rotate(N, T <> (H ::nil) )

3. The wave-rule is unconditional so there is no condition to prove.
4. The inwards wave-front inserted into the induction conclusion would be
t <> (h:nil) . This contains neither a sink nor an outwards wave-front
in its wave-hole. So this precondition fails.

Since we have a matching wave-rule already, there seems little point in looking for
another one, until we have tried harder to make the existing one applicable. What
is preventing it from applying is the absence of a sink or an outwards wave-front in
the appropriate place. So in such cases we should try to insert one of these, starting
with a sink. Sinks are created by the presence of additional universal variables in
the conjecture. So this analysis suggests generalising the theorem to introduce an
additional universal variable.

The original conjecture is:

Vi : list(T). rotate(length(l),1) =1

We need a sink in the second argument of rotate. Since we don’t know how it is
attached to the existing argument we can link it with a meta-variable, i.e.

Vi, k : list(T). rotate(length(l), F (I, k)) =1
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To balance up this conjecture we had better add the new variable to the RHS too.
VI, k : list(T). rotate(length(l), F'(k,1)) = G(k,1)

We can now prove this generalised conjecture using narrowing with second-order
unification to instantiate F' and G. Assuming that the lemmas (8.2) and (8.3) are
available the step case of the proof proceeds as follows:

rotate(length(t), F(K,t)) = G(K, 1)

F rotate(length( h :: t T),F(Lk], ht T)) =G(|k], h= t T)
F rotate( s(length(t) ) T, hat<>F(lk], hat T) y=G(|k], h:= t T)
J,
F rotate(length(t), t <> Fy(lk], b t T) <> (h=nil) ) =
i

(Gollk], B t1) <> (hmil) ) <>t

where F(k,1) =1 <> Fy(k,l) and G(k,l) = G2(k,l) <> I. These instantiations
are made by second-order unification during the application of wave-rules (4.3) and
(8.3), respectively. The step can now be completed by strong fertilization, with Fb
and G5 both being instantiated to projection functions onto their first arguments
in the process. These instantiations of the meta-functions reveal the generalised
conjecture to be:

Vi : list(1).VEk : list(T). rotate(length(l),l <> k) =k <> 1

as expected.

As with lemma speculation (see §8.1, p46) the presence of these meta-functions
creates branch points in the proof search, but the extra constraints provided by the
wave annotation reduce the search and make it tractable in many practical cases.
We must also take care to avoid infinite regress in the rippling search process.

9. Existential Theorems

The discussion so far has mostly been restricted to conjectures containing only
universal variables (see §1.2, p4). Dealing with conjectures which include existential
variables requires extending the techniques described above.

9.1. Synthesis Problems

Existential variables are required to represent synthesis problems as theorem prov-
ing problems. For instance, suppose the task of sorting a list has been specified as
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producing an ordered permutation of the original list. The problem of synthesising
a sorting algorithm can be represented as the conjecture:

Vi : list(7).3k : list(T). ordered(k) A perm(l, k)

where ordered(k) means k is ordered and perm(l, k) means k is a permutation of [. If
this conjecture is proved in a constructive logic then a program for sorting lists can
be recovered from the proof. Various techniques have been devised for extracting
the synthesised program from the proof, but the simplest is as the witness of the
existential variable k, i.e. during the proof k& will be instantiated to a term sort(l)
and the proof will ensure that:

VI : list(). ordered(sort(l)) A perm(l, sort(l))

The synthesis proof of sort will require induction and this will cause sort to be
defined recursively: the form of induction determining the form of recursion. Differ-
ent proofs of the theorem will synthesise different algorithms for the same function,
e.g. bubble-sort, merge-sort, quick-sort, etc (see [Darlington 1978] for a detailed
discussion).

Synthesis of recursively defined software, hardware, etc is an important applica-
tion of inductive theorem proving. So it is important that inductive theorem proving
techniques can handle existential variables, in particular, conjectures of the form:

Vi#. 307" spec(i, 0)

where spec(_z'), o) specifies the relationship between the inputs, 7, and the output,
o, of the object to be synthesised. Note that spec may contain further quantifiers.
Unfortunately, automated synthesis is an area where current technology is weak.

9.2. Representing Ezistential Theorems

There are a variety of techniques for representing existential variables during auto-
mated proof.

9.2.1. Existential Variables as First-Order Free Variables

The classic technique, which is standard in resolution theorem proving, for instance,
is to dual skolemise the conjecture, replacing universal variables with skolem func-
tions and existential variables with free variables. So our sort example will become:

ordered(K) A perm(l, K)

This conjecture will then be proved with first-order unification instead of matching,
so that K can be instantiated as a side effect of the proof. At the end of the proof
K will be instantiated to sort(l) and a recursive definition of sort will be extracted
from the inductive proof.
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9.2.2. Euxistential Variables as Second-Order Free Variables
An equivalent?! formulation of the sorting algorithm synthesis problem is as the
second-order conjecture:

af :list(r) > list(1).Vl : list(T). ordered(f(1)) A perm(l, f(1))
This can be dual skolemised to:
ordered(F (1)) A perm(l, F(1))

and second-order unification used to instantiate F' to sort (see §8.1, p46 and §8.2,
p48 for examples of this technique). Again the recursive definition of sort must be
extracted from the proof.

9.2.3. Existential Variables as Skolem Functions
Notice that these techniques of instantiating free variables during the proof do not
buy us very much. The variable is merely instantiated to the name of the synthesised
object, e.g. sort, and most of the work of extracting the recursive definition of this
object remains. So we might as well do the instantiation at the outset, i.e. prove
the conjecture:

Viz. spec(i, prog(i))

where prog is the object to be synthesised. This technique was originally developed
by Biundo, [Biundo 1988]. We then need to extract a recursive definition of prog
from the inductive proof.

9.3. Ezxtracting Recursive Definitions

We discuss two techniques for extracting programs from proofs.

9.3.1. Proofs as Programs
The proofs as programs technique was designed for the extraction of programs
from synthesis proofs. It uses a constructive type theory, like that due to Martin-
Lof, [Martin-Lof 1979] and implemented in NUPRL, [Constable, Allen, Bromley
et al. 1986]. From our viewpoint the idea is to associate with each rule of inference,
a program construction rule. Initially, the program is represented by a free variable.
Each time the prover applies a rule of inference the program is instantiated by the
associated program construction rule. This instantiation usually introduces further
free variables which are instantiated by subsequent proof steps. At the end of the
proof the program can be read off as the instantiation of the original free variable.
The proofs as programs technique is based on the Curry-Howard isomorphism,
[Howard 1980], which draws on an analogy between logical rules and type con-
struction rules. Specifications are represented as types and programs meeting these

21Modulo the axiom of choice.
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specifications as members of those types, i.e. prog : spec. The logical rules ma-
nipulate the types and the program construction rules manipulate their members
(roughly speaking). Both parts are based on a sequent calculus presentation of A
calculus. Higher-order functions and A abstraction both play an essential role. They
are needed in some of the tricky manipulations required in the program construc-
tion rules, especially the rules that construct recursive programs from induction
proof steps. The program associated with the induction hypothesis must be embed-
ded as the recursive call in the program associated with the induction conclusion.
This embedding is neatly done in Martin-Lof Type Theory by representing recur-
sion with recursive functionals, i.e. higher-order functions which create recursive
functions from their defining functions. The extracted program is a A calculus func-
tion which can be interpreted as a program in a functional programming language.
Proofs as programs can also be adapted to the synthesis of hardware and other
kinds of objects.

9.3.2. The Speculation of Program Definitions

An alternative approach to synthesis is to try to recognise definition-like subgoals
during the synthesis proof and convert them into program definitions. These defini-
tions can then be used to complete the proof and to define the synthesised program.
This has been explored in different forms by Biundo, [Biundo 1988], and Kraan,
[Kraan, Basin and Bundy 1996]. We illustrate the general idea by adapting the tech-
nique of lemma speculation of §8.1, p46 using the skolem function representation
of §9.2.3, p51 on the sort example.

We start with the synthesis conjecture:

Vi : list(7). ordered(sort(l)) A perm(l, sort(l))

We cannot prove this because we lack a definition of sort. This lack may manifest
itself during the course of the proof attempt by the failure of rippling. Using the
techniques of §8.1, p46 we may speculate the wave-rule:

sort(H = T T) = F(H, sort(T)) !

Instead of trying to prove this we can adopt it as the step case of the recursive defin-
ition of sort. The second-order, meta-variable F' can be instantiated to a constant
and becomes a new program to be synthesised by the remainder of the synthesis
proof. If we instantiate F' to insert, say, then the partial definition of sort is:

sort(H :: T) = insert(H, sort(T"))

This alternative technique has the advantage of requiring theorem proving only
in the universal fragment of first-order logic??. It has the disadvantage of currently
lacking the theoretical underpinning of proofs as programs.

22Unless we want to use it to synthesis higher-order functions, of course.
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9.4. Problems with Recursion Analysis

If recursion analysis (see §6.1.1, p22) is used to construct the induction rule in
the synthesis proof of a recursive program then we run into the following prob-
lem. The form of induction constructed is based on the forms of recursion in the
functions in the conjecture. These functions are all drawn from the specification of
the program. The induction rule used will determine the recursive structure of the
synthesised program, and thus its essential algorithmic structure. This means that
the algorithmic structure of the synthesised program is already implicitly present
in its specification.

This puts a limit on the practical creative power of synthesis by proof. The
technique cannot break out of the circle of forms of recursion known to it, except
by combination and merging of existing forms of recursion. Something radically new
(as, for instance, quick-sort historically was) cannot be built without user assistance.
Moreover, it is necessary to include algorithmic content in specifications, in the
sense that they must include functions with essentially the same kind of recursion
as needed in the synthesised program.

Ripple analysis (see §7.10, p43) gives a pointer as to how to break out of this
circle. In ripple analysis, induction rules are cued on the basis of wave-fronts in
known wave-rules, not recursive functions in the specification. These wave-fronts
need not (and often do not) index an induction rule dual to any recursion present
in the specification. This frees specifications from being algorithmic. Consider, for
instance, the problem of synthesising quicksort from the specification:

Vi:list(r).3k:list(T). ordered(k) A perm(l, k)
where ordered and perm are defined as:
ordered(nil) <> T
ordered(H ::nil) < T
ordered(Hy :: (Hy :: T)) <> Hy < Hy A ordered(Hs :: T)

perm(nil, L) < L = nil
perm(H :: T, L) + perm(T,delete(H, L))
where delete(H, L) deletes one copy of H from L. Note that recursion analysis
will suggest a simple two-step structural induction rule, leading to a similar two-
step recursion in the synthesised sorting algorithm, which is not what is required.

Ripple analysis, on the other hand, could suggest the correct form of induction for
this synthesis problem using the wave-rule:

ordered( lesseq(H, T') <> (H :: greater(H, T)) T) = ordered(T) (9.1)

assuming it was available as a lemma?3,

23Which is, admittedly, a strong assumption
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Suppose the the wave-front is just used to index an induction rule already known
to the prover, i.e. in practice, one that has arisen from the termination proof of a
known recursive function. The synthesis technique will then not be able to break
out of the circle of known forms of recursion and simple combinations of them.
To construct a radically new form of recursion it is necessary to synthesise new
induction rules from wave-fronts. In our example it would be necessary to use the
wave-fronts in wave-rule (9.1) to synthesise the special-purpose induction rule:

P(nil) Vh:rVtlist(r). P(lesseq(h,t)) A P(greater(h,t)) — P(h :: t)
Vi:list(T). P(l)

which is a special case of Neetherian induction, §2.1, p5, where < is the relationship
of one list being shorter than another. This problem has been addressed by Protzen,
[Protzen 1994], who uses Walther’s techniques for proving termination, [Walther
19940], to construct a < from the wave-front and hence construct an induction rule
customised for the conjecture. In general, synthesising induction rules from wave-
fronts is a hard problem (since it embeds the halting problem) and only partial
solutions are possible.

10. Interactive Theorem Proving

The difficulty of the search control problems that arise in inductive theorem proving
means that all current automatic provers fail on some apparently simple conjec-
tures. Even totally automatic provers are often sensitive to the precise definitions
of functions in, parameterisations of or lemmas available to the prover. Until the
technology is significantly improved it is, therefore, necessary to involve a human
user in assisting with proof search.

10.1. Division of Labour

There is a continuum from purely interactive to purely automatic provers, and most
provers lie somewhere in the middle of this continuum; routine proof tasks are auto-
mated and hard proof tasks require human interaction. Examples of routine tasks
which are often automated are: keeping track of the state of the proof; matching
and unification of expressions; the simplification of expressions; the application of
decision procedures; and the exhaustive application of a set of rewrite rules. Typ-
ically, these require the application of a straightforward algorithm, so are easy to
automate, but are long-winded manipulations in which humans can easily become
lost or make errors. Examples of hard tasks which are sometimes left to human
interaction are: the choice of induction rule; the decision to split into cases; the
application of a lemma; and the generalisation of the conjecture. Typically, these
involve a crucial search decision or construction of a key expression which require
some insight into the structure of the proof.
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10.2. Tactic-Based Provers

A popular framework for semi-automated theorem proving is the use of tactics. A
tactic is a computer program for guiding the proof search. This program may apply a
rule of inference or combine two or more tactic applications using tacticals. There are
tacticals for successive application, repeated application, conditional application,
etc. Tactics are constructed for a variety of routine tasks, e.g. simplification of
expressions, applying decision procedures, applying sets of rewrite rules, applying
induction, generalising formulae, etc. The user can then direct the proof search
either by calling individual rules of inference or by calling a tactic, which will apply
several rules of inference. Much of the tedium and error is thus removed from
the interactive process. The user may assist the tactic application by providing
key parameters, e.g. which induction rule to use, which formula to generalise the
current conjecture to. The user can view the proof either at the high level of tactic
applications or at the low level of individual rules.

Tactics were invented by Milner and his co-workers and first implemented in the
LCF system, [Gordon, Milner and Wadsworth 1979]. They developed the ML (Meta-
Language) functional programming language to describe tactics in LCF. Each tactic
is an ML program which can construct new theorems from old ones. ML uses types
to ensure the soundness of the tactics. “Theorem” is an ML type; an expression
cannot be of type theorem unless it is the result of a proof. A whole family of
tactic-based provers have been built in the LCF tradition, including Coq, HOL,
Isabelle, NuPrl and Oyster.

10.3. User Interfaces

To enable users to guide semi-automated inductive provers it is necessary to provide
a user interface. Such interfaces need to be designed with the problems of inductive
search control in mind so that the user gets maximum assistance when making
difficult search control decisions.

The design of a theorem prover interface depends on the intended user. Novices
need some way to define the conjecture, to view the proof and to provide proof
guidance. More experienced users may also require ways to define new theories,
to browse through libraries of conjectures, definitions, lemmas, etc, and to switch
between one part of a proof attempt and another. System developers want access
to the underlying system and want to interleave testing the prover and modifying
it. Novices want a simple interface with limited functionality, so that they do not
become confused and/or issue instructions at variance with their intentions. Experts
want multiple views onto the prover and proof process and want a rich functionality.

User interfaces to theorem provers have exploited many interface design tech-
niques advocated by the human computer interaction (HCI) community. These in-
clude: simple command line interfaces; via text editors (including structure editors);
and graphical user interfaces (GUIs) with multiple windows, menus and icons. Each
approach has its advantages and disadvantages for different groups of users. For in-
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stance, GUIs and structure editors are particularly attractive for novices, since they
provide limited functionality in a readily understood format which minimises the
memory requirements on the user. Experts, on the other hand, often require a richer
functionality and require access to a command line interface. For convenience, this
is often called from within a text editor, which facilitates recording, cutting and
pasting of interactions. Many interfaces provide a combination of these techniques,
so that users have access both to multiple graphical views and memory aids, on
the one hand, and to rich functionality and the innards of the prover, on the other.
This may enable one interface design to satisfy several different kinds of user.

The design of user interfaces to theorem provers provides a tough challenge to
HCI. To guide the prover effectively requires a good understanding of the current
state of the proof and the reasons for previous failures. Mathematics is inherently
difficult and proofs can be very complex and subtle. Some potential users (e.g. sys-
tems designers using formal methods) may not be familiar with formal proof. A
good interface must: assist users to understand the current proof attempt; provide
mechanisms for them to interact with the proof process; avoid bewildering them
with too much information, while providing what is required; and help them ex-
plore their options without imposing too high a cognitive load. This problem is
by no means solved. Research on the various approaches to it can be found in the
proceedings of the Workshops on User Interfaces for Theorem Provers.

11. Inductive Theorem Provers

Many theorem provers have been built with some kind of inductive capability.
In this brief survey we restrict our attention to those explicit induction provers
used as vehicles for significant advances in the automation of inductive reasoning.
Interactive systems were briefly discussed in §10, p54. Implicit induction provers
are dealt with in the chapter “Inductionless induction” by Hubert Comon in this
book.

11.1. The Boyer/Moore Theorem Prover

Nqthm, better known as the Boyer/Moore theorem prover, was the first theorem
prover to focus specifically on the problems of search in inductive proof. It has a
long history starting at the University of Edinburgh in the early 70s, [Boyer and
Moore 1973], and undergoing development at SRI International, Xerox PARC and
the University of Texas at Austin, before becoming the main development system
of the company, Computational Logic Inc (CLInc), founded by Boyer and Moore.
It has been the subject of two books, [Boyer and Moore 1979, Boyer and Moore
19884] and has recently been completely re-implemented as ACL2, [Kaufmann and
Moore 1997, Brock, Kaufmann and Moore 1996]. There is also a version, PC-Nqthm,
[Kaufmann 1988], with improved interactive facilities.

It has been applied to a massive number of conjectures — its standard corpus now
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stands at 24 megabytes — including some very hard problems like the verification of
complete microprocessors and the proof of Gédel’s incompleteness theorem. During
most of its history it has been regarded as the state of the art inductive prover.
More details can be found on the following web pages:
ftp://ftp.cs.utexas.edu/pub/boyer/nqthm/index.html
ftp://ftp.cs.utexas.edu/pub/boyer/nqthm/nqthm-bibliography.html
http://www.cs.utexas.edu/users/moore/acl2/

Both Ngthm and ACL2 use a simple, sub-first-order, type-less logic, based on
Goodstein’s primitive recursive arithmetic adapted from numbers to lists. Vari-
ables are regarded as implicitly universally quantified, so there is no existential
quantification. There are no explicit types in the language but implicit types can
be imposed either by adding conditions to conjectures or by using coercion func-
tions which limit expressions to an appropriate range. An example of a coercion
function is num, which makes any term into a natural number, i.e.

(2) z if z : nat
num(x) =
0 otherwise

Many of the proof techniques described above were invented by Boyer and Moore
and first implemented in Ngqthm. These include: recursion analysis; destructor elim-
ination; generalisation of subterms; the flexible use of decision procedures; and the
productive use of failure to decide when to apply induction. Most of these are de-
scribed in [Boyer and Moore 1979, Boyer and Moore 19884, Boyer and Moore 1988b].

11.2. RRL

The RRL (Rewrite Rule Laboratory) system was initially developed in the early 80s
by Kapur, Sivakumar and Zhang at General Electric and Rensselaer Polytechnic,
[Kapur, Sivakumar and Zhang 1986]. Following the move of Kapur to SUNY at
Albany, the main development moved there, [Kapur and Zhang 1995]. Initially RRL
used only implicit induction techniques, but subsequently it also included explicit
induction, to which it made significant advances, justifying its inclusion in this
survey. It has been used for the proof of some significant mathematical theorems
including the Chinese remainder theorem and Ramsey’s theorem.

RRL, as its name implies, is based exclusively on rewriting with, possibly condi-
tional, equations. This is not as limiting as it first appears since any predicate can
be encoded as an equation by making the boolean truth values into terms. Indeed,
RRL has competed against resolution theorem provers by translating resolution
and paramodulation into forms of conditional rewriting.

One of RRLs’ main contributions has been to adapt the techniques of implicit
induction ) to explicit induction, using a technique called cover-sets, [Zhang, Kapur
and Krishnamoothy 1988]. This constructs induction rules whose well-founded re-
lation is based on syntactic orderings developed for orienting rewrite rules, e.g. re-
cursive path orderings. RRL also uses Knuth-Bendix completion for improving
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the computational power of the set of rewrite rules provided. More recently, it
has been used as a vehicle to develop ideas about lemma discovery, [Kapur and
Subramaniam 1996].

11.3. INKA

The INKA prover was initially developed in the 80s by a team of four researchers:
Biundo, Hummel, Hutter and Walther, from the University of Karlsruhe, [Biundo,
Hummel, Hutter and Walther 1986]. When this team broke up separate develop-
ment continued at Darmstadt by Walther and Saarbriicken by Hutter, [Hutter and
Sengler 1996]. INKA is based on a resolution theorem prover for clausal, first-order
logic. At various times in its history it has formed the inductive component of lar-
ger provers, e.g. the MarkGraf Karl prover, [Eisinger, Siekmann, Smolka, Unvericht
and Walther 1980], the dmega prover, [Benzmiiller, Cheikhrouhou, Fehrer, Fiedler,
Huang, Kerber, Kohlhase, Meirer, Melis, Schaarschmidt, Siekmann and Sorge 1997],
and the VSE system, [Hutter, Langenstein, Siekmann and Stephan 1996]. It has
been used for the verification of software of industrial interest and significant size.
More details can be found on the following web page:
http://www.dfki.de/vse/systems/inka/

Each of the INKA authors has made significant contributions to the proof tech-
niques described above. Walther’s contributions have been the proof of termin-
ation of recursive functions, [Walther 1994b], and the construction of induction
rules, [Walther 1992, Walther 1993]. Hutter’s contributions have been in tech-
niques for guiding search, especially the development and application of rippling,
[Hutter 1990, Hutter 1997, Hutter and Kohlhase 1997]. Hummel’s contribution
was the development of heuristics for generalisation, [Hummel 1990]. Biundo’s
contribution was the synthesis of programs by the proof of existential theorems,
[Biundo 1988].

11.4. Oyster /CIAM

The Oyster/CIAM was developed at the University of Edinburgh in the 90s by
a large team led by the author, [Bundy, van Harmelen, Horn and Smaill 1990].
Oyster is a Prolog re-implementation by Horn of NUPRL, i.e. it is a tactic-based
proof editor based on Martin-Lof constructive type theory. CIAM is a proof planner
which guides Oyster. The behaviour of each Oyster tactic is specified in a meta-
language. CIAM reasons in this meta-language to construct a customised tactic
for each conjecture and then supplies this tactic to Oyster. These tactics include
rippling. The combined system has been used for the verification of a complete
microprocessor and the synthesis of the rippling tactic. More details can be found
on the web page:

http://dream.dai.ed.ac.uk/home.html
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The contributions of the Edinburgh team include: proof planning, [Bundy 1988,
Bundy, van Harmelen, Hesketh and Smaill 1991, Bundy 1991]; rippling, [Bundy
1988, Bundy et al. 1993]; recursion analysis and ripple analysis, [Stevens 1988,
Bundy, van Harmelen, Hesketh, Smaill and Stevens 1989];, and the productive use
of failure including techniques for choosing induction rules, speculating lemmas
and generalising conjectures, [Ireland 1992, Ireland and Bundy 1996b, Ireland and
Bundy 19964]. Proof planning has also been adapted to lift the level of interaction
and implemented in the semi-automated prover, Barnacle, [Lowe and Duncan 1997,
Lowe, Bundy and McLean 1995].

12. Conclusion

In this chapter we have surveyed the automation of inductive inference. We have
seen that automating induction is necessary for some of the most important applica-
tions of automated reasoning, in particular, meeting the proof obligations that arise
from formal methods of system development. But we have also seen that inductive
proof raises difficult search control problems for automation. The construction of
appropriate induction rules, the use of intermediate lemmas and the generalisation
of conjectures all introduce infinite branch points into the search space.

It is necessary to develop special search control techniques to solve these prob-
lems. Since they are undecidable problems, these search control techniques are
necessarily partial and heuristic, i.e. they will sometimes fail and are always open
to improvement. We can hope only that they help prove a significant proportion of
the inductive theorems that arise in practice. Sometimes the failure of a particular
technique can be analysed to suggest what additional techniques should be applied
to patch the initial proof attempt.

There has been significant progress over the last three decades of research. Some
quite subtle and long proofs can be found automatically. Unfortunately, automated
inductive theorem proving is not yet robust enough to be used unaided and reliably
on problems of industrial interest. For practical inductive theorem proving it is
currently necessary to use an interactive system where the user provides guidance
to the proof at critical stages. However, automation is a vital adjunct to interactive
proof to reduce the burden on the user so that proofs can be completed within a
reasonable timescale.

The following are some of the key research issues for future research in inductive
theorem proving.

1. Practical proof problems do not consist of induction alone. It is vital to integ-
rate inductive techniques with non-inductive proof techniques, in particular,
successful techniques like model checking, decision procedures, rewriting, built-
in unification, etc. Much progress has already been made in this area by systems
in everyday use, but more is needed.

2. In semi-automated systems it is sometimes difficult for users to orient them-
selves within a failed automatic proof attempt to suggest an appropriate patch.
More automatic analysis of the failed attempt is required to put the user in
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context and suggest what kinds of interaction might be most effective.

3. The heuristics for lemma speculation, generalisation and induction rule choice
are always in need of improvement. The first two are especially weak at present.

4. Most work on automation has focussed on the universal fragment of first-order
logic, but many practical problems are not naturally formulated within this
fragment. More work is needed to extend existing heuristics to deal with exist-
ential quantification and higher-order logic.

For a longer introduction to automated inductive theorem proving the reader is

recommended to read, [Walther 19944].
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