
T
H

E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Division of Informatics, University of Edinburgh

Institute for Representation and Reasoning

The Automation of Proof by Mathematical Induction

by

Alan Bundy

Informatics Research Report Number 2

Division of Informatics April 1999
http://www.informatics.ed.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429716797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Automation of Proof by Mathematical Induction

Alan Bundy

Informatics Research Report Number 2

DIVISION of INFORMATICS
Institute for Representation and Reasoning

April 1999

To appear in the ”Handbook of Automated Reasoning”

Abstract : This paper is a chapter of the Handbook of Automated Reasoning edited by Voronkov and Robinson. It
describes techniques for automated reasoning in theories containing rules of mathematical induction. Firstly, inductive
reasoning is defined and its importance fore reasoning about any form of repitition is stressed. Then the special search
problems that arise in inductive theories are explained followed by descriptions of the heuristic methods that have been
devised to solve these problems.

Keywords :

Copyright c 1999 University of Edinburgh. All rights reserved. Permission is hereby granted for this report to be
reproduced for non-commercial purposes as long as this notice is reprinted in full in any reproduction. Applications to
make other use of the material should be addressed to Copyright Permissions, Division of Informatics, University of
Edinburgh, 80 South Bridge, Edinburgh EH1 1HN, Scotland.

Chapter 1

The automation of proof by mathematical

induction

Alan Bundy

Division of Informatics, University of Edinburgh

Contents

1 Introduction . 3
1.1 Explicit vs Implicit Induction . 4
1.2 Conventions . 4

2 Induction Rules . 4
2.1 N�therian Induction . 5
2.2 Constructor vs Destructor Style Induction Rules 5
2.3 Additional Universal Variables . 6

3 Recursive De�nitions and Datatypes . 7
3.1 Recursive Datatypes . 7
3.2 Recursive De�nitions . 8
3.3 Recursion/Induction Duality . 10
3.4 The Need for Induction . 10

4 Inductive Proof Techniques . 11

4.1 Rewriting . 11
4.2 Fertilization . 14
4.3 Destructor Elimination . 16
4.4 Termination of Rewriting . 18
4.5 Decision Procedures . 18

5 Theoretical Limitations of Inductive Inference . 19
5.1 The Incompleteness of Inductive Inference . 19
5.2 The Failure of Cut Elimination . 20

6 Special Search Control Problems . 21
6.1 Constructing an Induction Rule . 21
6.2 Introducing an Intermediate Lemma . 25
6.3 Generalising Induction Formulae . 27

7 Rippling . 32
7.1 Rippling Out . 32
7.2 Simpli�cation of Wave-Fronts . 33

7.3 Rippling Sideways and In . 34
7.4 The Advantages of Rippling . 35
7.5 Selective Rewriting . 35
7.6 Bi-Directional Rewriting . 36
7.7 The De�nition of Wave Annotation . 37
7.8 Termination of Rippling . 39

HANDBOOK OF AUTOMATED REASONING

Edited by Alan Robinson and Andrei Voronkov
c Elsevier Science Publishers B.V., 1999

7.9 Automatic Annotation . 42
7.10 Ripple Analysis . 43

8 The Productive Use of Failure . 45
8.1 Example: Speculating a Lemma . 46
8.2 Example: Introducing a Sink . 48

9 Existential Theorems . 49
9.1 Synthesis Problems . 49
9.2 Representing Existential Theorems . 50
9.3 Extracting Recursive De�nitions . 51
9.4 Problems with Recursion Analysis . 53

10 Interactive Theorem Proving . 54

10.1 Division of Labour . 54
10.2 Tactic-Based Provers . 55
10.3 User Interfaces . 55

11 Inductive Theorem Provers . 56
11.1 The Boyer/Moore Theorem Prover . 56
11.2 RRL . 57
11.3 INKA . 58
11.4 Oyster/CLAM . 58

12 Conclusion . 59
Bibliography . 60
Main Index . 64
Name Index . 66

The automation of proof by mathematical induction 3

1. Introduction

Inductive inference is theorem proving using induction rules. It is required for reas-
oning about objects, events or procedures containing repetition. As well as mathem-
atical objects, like the natural numbers, these include: recursive data-structures, like
lists or trees; computer programs containing recursion or iteration; and electronic
circuits with feedback loops or parameterised components. Many properties of such
objects cannot be proved without the use of induction (see x3.4, p10). Inductive
inference is thus a vital ingredient of formal methods for synthesising, verifying and
transforming software and hardware.
Induction rules infer universal statements incrementally. The premises of an in-

duction consist of one or more base cases and one or more step cases. In a base
case the conclusion of the rule is proved for a particular value; in a step case the
conclusion is proved for a later value under the assumption that it is true for one or
more previous values. The classic example of an induction rule is Peano induction:

P (0); 8n:nat: (P (n)! P (s(n)))

8n:nat: P (n) (1.1)

where x:� means x is of type � , nat is the type of natural numbers and s(n) = n+1.
s is the successor function for natural numbers. This induction rule has one base
case and one step case. In the base case the conclusion is proved for the value 0.
In the step case the conclusion is proved for s(n) under the assumption that it is
true for n. P (n) is called the induction hypothesis, P (s(n)) is called the induction
conclusion, n is called the induction variable and s(n) is called the induction term.
Unfortunately, the word \induction" is ambiguous in English. To avoid any mis-

understanding we contrast mathematical induction with inductive learning. Induct-
ive learning1 is a rule of conjecture which takes the form:

P (c0); P (c1); P (c2); : : : ; P (cm)

8n:nat:P (n)

i.e. if P(n) can be proved for a su�ciently large number of particular cases then it
is assumed true in general. It is a rule of conjecture rather than a rule of inference.
In this chapter we will not be concerned with inductive learning.
Inductive inference requires special study because of negative theoretical results

which do not apply to �rst-order theorem proving (see x5, p19). These cause it to
su�er additional search control problems. For instance, it is sometimes necessary
to choose an induction rule, generalise the conjecture or to discover and prove an
intermediate lemma. Any of these can introduce in�nite branching points into the
search space. New kinds of heuristic control are needed to deal with these special
search problems.

1Also called philosophical induction.

4 Alan Bundy

1.1. Explicit vs Implicit Induction

There have been two major approaches to the automation of inductive proof: ex-
plicit and implicit. This chapter is concerned with explicit induction, in which
induction rules are explicitly incorporated into proofs.
In implicit induction the conjecture to be proved is added to the axioms. A

Knuth-Bendix completion procedure is then applied to the whole system. If no in-
consistency is derived by the procedure, then the conjecture is an inductive theorem.
This method is also called inductionless induction or inductive completion. More
details can be found in the chapter \Inductionless induction" by Hubert Comon in
this book.

1.2. Conventions

In this chapter we will use the following conventions. The double shafted arrow,),
will be used to indicate the directed equality used in rewriting. The single shafted
arrow, !, will be used to represent logical implication.
Most research into inductive theorem proving has been restricted to the, so called,

quanti�er-free fragment of �rst-order logic. This means that all variables are free
and, hence, implicitly universally quanti�ed. The discussion below will be restric-
ted to this fragment of logic, except in x8, p45 when we will consider existentially
quanti�ed second-order variables and x9, p49 when we will consider existentially
quanti�ed �rst-order variables. Also, conjectures and induction rules will usually be
presented in fully quanti�ed form so that the types of the variables can be emphas-
ised. Note that in quanti�er-free form universal variables become free variables2 in
axioms and hypotheses, but become arbitrary constants3 in goals. We will follow
the Prolog convention of starting all free variables with an upper case letter. Bound
variables and constants will start with lower case letters.
Most of the example proofs discussed below will use backwards reasoning, from

the original conjecture to derive >, the truth value \true". So rules of inference,like
rewriting (see x4.1) and induction (see x2), will be applied backwards. The current
goal will be matched to the conclusion of the rule of inference and the premises of
the rule will become the new goals.

2. Induction Rules

Peano induction is merely the simplest and best known inductive rule of inference.
Similar structural induction rules are available for every kind of recursively de�ned
data-structure, e.g. integers, lists, trees, sets, etc. Moreover, it is not necessary to

2Also called meta-variables. The translation of universal variables into free variables is a�ected
by skolemisation.

3Also called skolem constants. This translation is a�ected by skolemising their negations and
then re-negating. This is also called dual skolemisation.

The automation of proof by mathematical induction 5

traverse such data-structures in the obvious, stepwise manner; they can be traversed
using any well-ordering. An extreme example occurs in a standard proof that the
arithmetic mean is greater than or equal to the geometric mean. This uses an
induction rule that traverses the natural numbers by �rst going up in multiples of
2 and then �lling in the gaps by coming in down in steps of 1. Nor is induction
restricted just to data-structures; it is possible to induce over the control ow of a
computer program or the time steps of a digital circuit.

2.1. N�therian Induction

All of these forms of induction are subsumed by a single, general schema of
N�therian induction4:

8x:�: (8y:�: y � x! P (y))! P (x)

8x:�: P (x) (2.1)

where � is some well-founded relation on the type � , i.e. � is an irreective, anti-
symmetric relation and there are no in�nite, descending chains, like : : : � an �
: : : � a3 � a2 � a1. The data-structure, control ow, time step, etc., over which
induction is to be applied, is represented by the type � . The inductive proof is
formalised in a many-sorted or many-typed logical system.
Success in proving a conjecture, P , by induction is highly dependent on the choice

of x and �. There is an in�nite variety of possible types, � , and for most of these
types, an in�nite variety of possible well-orderings,�. Thus choosing an appropriate
induction rule to prove a conjecture also introduces an in�nite branching point into
the search space. Controlling it, therefore, requires special heuristic techniques.

2.2. Constructor vs Destructor Style Induction Rules

Most inductive theorem proving systems construct customised induction rules for
each conjecture rather than use the general well-founded induction rule directly.
Such customised induction rules fall into two broad camps: constructor-style and
destructor-style. In constructor-style rules the step cases have the form:

P (x1) ^ : : : ^ P (xm)! P (c(x1; : : : ; xm))

where 8i: xi � c(x1; : : : ; xm). Peano induction is an example of a constructor-style
rule. In destructor-style rules the step cases have the form:

P (d1(x)) ^ : : : ^ P (dm(x))! P (x)

where 8i: di(x) � x. In destructor-style, Peano induction would take the form:

P (0); 8n:nat: (n > 0 ^ P (p(n))! P (n))

8n:nat: P (n)

4Also known as well-founded induction.

6 Alan Bundy

where p is the predecessor function for natural numbers, i.e..

p(n) =

(
0 if n = 0

m if n = s(m)

In this chapter we will usually give constructor-style induction rules, recursive
de�nitions and, hence, proofs. This is because most inductive proving techniques are
more naturally described in constructor-style. In fact, when conjectures are stated
in destructor-style it is usual to convert the resulting proof attempt to constructor-
style at an early stage (see x4.3, p16, for instance).
There are destructor-style induction rules which have no direct counterpart in

constructor-style, for instance:

P (nil); 8x:list(nat):8n:nat: (n 2 x ^ P (delete(n; x))! P (n))

8x:list(nat): P (x)

but this can be converted into:

P (nil); 8x:list(nat):8n:nat: (P (x)! P (n :: x))

8x:list(nat): P (x)

2.3. Additional Universal Variables

If an induction formula contains more than one universally quanti�ed variable then
there is a choice of induction variable. It is interesting to see what becomes of the
universal variables which are not chosen as an induction variable. Consider, for
instance, the induction formula 8n:nat:8m:nat: Q(n;m). Suppose we choose n as
the induction variable. We can then apply the Peano induction rule (1.1) backwards
with 8m:nat: Q(n;m) as P (n). The step case of this induction is:

8n:nat: [(8m:nat: Q(n;m))! (8m:nat: Q(s(n);m))]

Note that the scope of the quanti�cation of n is the whole step case, but the scopes of
the two quanti�cations of m is restricted to the induction hypothesis and induction
conclusion, respectively.
It is standard to strip the quanti�ers from step cases and replace the implication

with a turnstile. In this format the step case is:

Q(n;M) ` Q(s(n);m)

Note that the induction variable, n, becomes an arbitrary constant in both induction
hypothesis and induction conclusion. The other universal variable, m, becomes
an arbitrary constant, m, in the induction conclusion but a free variable in the
induction hypothesis5. This means that when using the induction hypothesis to

5These translations are the e�ect of dual skolemisation of the step case. Note that the 8m in
the induction hypothesis is in a position of negative polarity, so dual skolemisation turns this m
into a free variable.

The automation of proof by mathematical induction 7

help prove the induction conclusion (see x4.2, p14) we are not bound to match
M to m. We can match M to any term, including one properly containing m, if
desired. It is sometimes valuable to exploit this exibility (see, for instance, x6.2.2,
p26).

3. Recursive De�nitions and Datatypes

Recursion is frequently used in mathematics and programming both in the con-
struction of classes of objects and in the de�nition of functions and programs. We
call the former recursive datatypes and the latter recursive de�nitions. Induction is
needed to reason about both of these.

3.1. Recursive Datatypes

Recursive datatypes are constructed by providing a set of constructor functions and
then de�ning the datatype as the set of terms formed from them. If syntactically
distinct terms are unequal then the datatype is called free, otherwise it is non-free.
We discuss the free datatypes �rst.

3.1.1. Free Recursive Datatypes
We have already met one recursive datatype: the natural numbers. These are de�ned
with the successor function s and the constant 0 as the constructor functions. For
instance, the natural numbers are the set of terms: f0; s(0); s(s(0)); s(s(s(0))); : : :g,
which we have abbreviated as nat. Note that we have been using the binary function
: to represent type membership, i.e. n:nat says that n is a natural number.
Another recursive datatype we will meet frequently below is lists. Lists are a

parameterised datatype, i.e. lists are of elements of some underlying type, e.g. nat-
ural numbers or letters. The constructors for lists are the empty list, nil, and the
in�x binary function ::. The function :: takes an element of the underlying type and
a list and returns a new list with the new element on the front of the old list. So the
lists of type � have the form: fnil; �1 :: nil; �2 :: �1 :: nil; �3 :: �2 :: �1 :: nil; : : :g,
where the �i are elements of type � . We will abbreviate this as list(�), i.e. the
type of lists of natural numbers is list(nat). Lisp-style S-expressions (abbreviated
as sexpr) di�er from lists in permitting nesting of lists to any level. This datatype
can be de�ned with the constructors nil and cons, where cons di�ers from :: by
being able to take an S-expression as its �rst argument as well as its second. Sim-
ilarly, we can construct one type of binary trees (abbreviated as tree(�)) from the
unary function leaf on labels and the binary function node on two trees.
The recursive datatypes of natural numbers, lists, S-expressions and trees are

examples of free datatypes because terms are only equal if they are syntactically
identical, e.g. s(s(0)) 6= s(0).

8 Alan Bundy

3.1.2. Non-Free Recursive Datatypes
However, it is sometimes necessary to use non-free datatypes, i.e. datatypes in
which syntactically di�erent terms may be equal. A simple example is the in-
tegers de�ned with the constructors 0, succ and pred, where the �rst two are like
0 and s for the natural numbers, but pred is the predecessor function for integers6,
i.e. pred(n) = n � 1. The predecessor function is needed to de�ne the negative
integers: f0; pred(0); pred(pred(0)); pred(pred(pred(0))); : : :g. Unfortunately, this
representation is redundant, since for instance succ(pred(n)) = pred(succ(n)) = n
for all n.
Another example of a non-free datatype is the sets. We can de�ne set(�), sets

of elements of type � , with the constructors empty and insert, analogous to nil
and :: for lists. But this is not a free datatype because we have, for instance, the
equalities:

insert(�; insert(�; set)) = insert(�; set)

insert(�; insert(�; set)) = insert(�; insert(�; set))

between non-identical terms.

3.2. Recursive De�nitions

Functions are said to be de�ned recursively when the body of the de�nition refers
to the function itself. We usually demand that such recursive de�nitions are ter-
minating, i.e. that given some particular inputs the function will call itself only a
�nite number of times before stopping with some output. See x4.4, p18 and the
chapter \Rewriting" by Nachum Dershowitz in this book for more discussion of
termination.

3.2.1. Structural Recursion
A common form of recursion is based on recursive datatypes and is called structural
recursion. In its simplest form there is one equation for each constructor function
of the datatype, e.g. the function + can be de�ned on datatype nat as:

0 + Y = Y (3.1)

s(X) + Y = s(X + Y) (3.2)

Note that the recursive call of + on the RHS of the second equation has as its �rst
argument,X , which is the argument of the constructor s on the LHS. It is clear that
structural recursions like this terminate since + is called on a syntactically simpler
�rst argument on the RHS than on the LHS. For free datatypes, like nat, it is

6Note that pred di�ers from p, the predecessor function for natural numbers, since p(0) = 0,
whereas pred(0) = �1.

The automation of proof by mathematical induction 9

also clear that structural recursion is well-de�ned, i.e. + is neither under- nor over-
de�ned. It is not under-de�ned because there is an equation for each combination of
inputs. It is not over-de�ned because there is only one equation for each combination
of inputs.

3.2.2. Non-Free Datatypes and Over-De�nition
This is not clear for non-free datatypes. There is a danger here of over-de�nition,
i.e. of giving di�erent values to calls with equal inputs. Consider, for instance, the
de�nition of + for integers.

0 + Y = Y

succ(X) + Y = succ(X + Y)

pred(X) + Y = pred(X + Y)

Since succ(pred(n)) = pred(succ(n)) = n we have to check the side-condition:

succ(pred(n)) +m=pred(succ(n)) +m=n+m
otherwise, the de�nition of + could introduce a contradiction into the theory. In
this case this side-condition is easily proved. However, if we had erroneously de�ned
+ as:

0 + Y = Y

succ(X) + Y = succ(X + Y)

pred(X) + Y = 0

then we would �nd that:

succ(0) = succ(pred(0) + 0) = succ(pred(0)) + 0 = pred(succ(0)) + 0 = 0

i.e. that + is now over-de�ned, enabling a proof of succ(0) = 0. So recursive de�n-
itions over non-free datatypes carry additional proof obligations to ensure that
functions are not over-de�ned. For a discussion of some additional problems with
non-free datatypes and one way to solve them see [Sengler 1996].

3.2.3. Non-Structural Recursions
Recursive de�nitions can take many other forms than constructor-style structural
recursions. For instance, destructors can be used instead of constructors. Consider,
for instance, this alternative de�nition of + on the natural numbers:

X + Y = if X = 0 then Y

else s(p(X) + Y)

Sometimes the recursive calls of the algorithm are not simply on the arguments
of the constructors. Consider, for instance, this de�nition of quicksort.

quicksort(nil) = nil

quicksort(H :: T) = quicksort(lesseq(H;T)) <> (H :: quicksort(greater(H;T)))

10 Alan Bundy

where the recursive calls are on terms containing the arguments of the constructor
function. Termination of such de�nitions is non-trivial. We need to �nd a well-
founded relation, �, such that lesseq(H;T) � H :: T and greater(H;T) � H :: T .
In this case � can be de�ned as:

K � L$ length(K) < length(L)

3.3. Recursion/Induction Duality

There is an intimate relationship between induction rules and recursive de�nitions.
Not only is induction required for reasoning about recursively de�ned objects, but
there is a duality between the forms of recursive de�nitions and the forms of in-
duction rules. For instance, the two step recursion below that de�nes the even
predicate:

even(0)$ >

even(s(0))$?

even(s(s(N)))$ even(N) (3.3)

(where > is \true" and ? is \false") is structurally similar to the following two step
induction rule:

P (0); P (s(0)); 8n:nat: (P (n)! P (s(s(n))))

8n:nat: P (n)

We will see in x6.1.1, p22 that this duality between recursion and induction can
be exploited when choosing an induction rule to prove properties of recursive func-
tions. We can also construct new induction rules by analogy to recursive de�nitions.
When proving that a recursively de�ned function terminates we must exhibit a well-
founded relation that decreases when the function is applied. This relation can then
be used to instantiate the N�therian induction schema, (2.1).
We will see examples below of inductions and recursions based on more com-

plex well-founded relations than the simple structural ones provided by recursive
datatypes.

3.4. The Need for Induction

Inductive inference is an essential tool for reasoning about recursively de�ned data-
types and functions. Without it, many true formulae cannot be proved. Recursive
and induction are opposite sides of the same coin. Recursion speci�es the beha-
viour of a function over all members of a datatype; induction allows us to exploit
the restriction of variables to that datatype.
For instance, consider the formula:

8x:nat: x+ 0 = x (3.4)

The automation of proof by mathematical induction 11

This is true for the natural numbers and is readily proved by induction from the
recursive de�nition of +. Peano induction reduces it to two cases: the base case
0 + 0 = 0 and the step case x+ 0 = x ` s(x) + 0 = x. The base case is an instance
of (3.1), the base equation of the de�nition of +; the step case is readily proved
by applying (3.2), the step equation of the de�nition of +, and then the induction
hypothesis.
However, without the use of induction (3.4) is not provable. To see this we need

only exhibit a model of the recursive de�nition of + in which (3.4) is false. To
form this model we augment the natural numbers with the additional base element
00 to form the datatype nat0. Think of nat0 as the disjoint union of `red' naturals
(0; s(0); s(s(0)); : : :) and `blue' naturals (00; s(00); s(s(00)); : : :). Let the true formulae
in this model be just those formulae made true by the de�nition of +. So, in
particular, 00 + 0 = 00 is false. Therefore,

8x:nat0: x+ 0 = x (3.5)

is false. But if (3.4) were provable solely from the recursive de�nition of + then
(3.5) would also be provable from them. Therefore, induction7 is needed to prove
(3.4). Induction allows us to exploit the fact that x in (3.4) ranges over nat and
not some larger datatype, like nat0.

4. Inductive Proof Techniques

Apart from the application of induction rules, a number of proof techniques are
used in inductive proofs. These range from standard techniques, like rewriting, to
more specialised techniques like fertilization, [Boyer and Moore 1988a][x10.5], where
the induction hypothesis is used to prove the induction conclusion.
Many of these techniques are of use in non-inductive proofs as well as inductive

proofs and some of these are discussed in more detail in other chapters of this book.
In these cases a short account is included here for completeness and a pointer is
given to the other chapters for more detail.

4.1. Rewriting

The de�nition of a function or predicate is often given as a set of recursion equations
or equivalences8. Many of the lemmas required in proofs are also often equations.
A common technique in inductive theorem proving is to express these equations as
rewrite rules and apply them using the rewrite rule of inference backwards:

lhs) rhs; P [rhs�]

P [sub]

7Or some principle of equivalent power.
8Note that equivalences can be regarded as equations over the booleans, so references to \equa-

tions" below will include equivalences.

12 Alan Bundy

where P [sub] means sub is a sub-term of formula P , called the redex, rhs� means
� is a substitution of terms for variables which is applied to rhs and lhs� � sub.
An example is:

2�X) X +X; even(n+ n)

even(2� n)

Sometimes we will want to use conditional rewrite rules. To apply these we will
need following modi�ed version of the rule of inference:

Cond! lhs) rhs; P [rhs�]; Cond�

P [sub]

where Cond is the condition. Recall that we will usually be applying the rewriting
rule of inference backwards.
For more details about rewriting see the chapter \Rewriting" by Nachum Der-

showitz in this book.

4.1.1. De�nitions and Lemmas as Rewrite Rule Sets
It is standard to turn recursive de�nitions of functions into sets of rewrite rules,
oriented so that the de�ned term is replaced by its de�nition. Thus the de�nitions
of in�x addition, +, on nat and in�x list append, <>, on list(�) will be given as
rewrite rules as follows:

0 + Y) Y

s(X) + Y) s(X + Y) (4.1)

nil <> L) L (4.2)

(H :: T) <> L) H :: (T <> L) (4.3)

Functions can be de�ned recursively on one or more of their arguments. These are
called their recursive arguments. The recursive arguments of + and <> are their
�rst arguments.
Lemmas can also be presented as rewrite rules. The decision to represent them in

this way constitutes a commitment to their direction of application. In some cases
this is uncontroversial, for instance the commuted version of rule (4.1) is often useful
as the rule:

X + s(Y)) s(X + Y) (4.4)

But in other cases it is more problematic. For instance, both orientations of asso-
ciative laws are frequently required.

X <> (Y <> Z)) (X <> Y) <> Z

(X <> Y) <> Z) X <> (Y <> Z)

The automation of proof by mathematical induction 13

But if both are included their unrestricted use can cause non-termination of re-
writing. Commutative laws cannot be included in either orientation without risking
non-termination.

X + Y) Y +X

One solution to such problems is to build such problematic lemmas into the uni-
�cation algorithm, so that they are not needed as rewrite rules. For more details
on how this is done see the chapter on \Uni�cation theory" by Franz Baader and
Wayne Snyder in this book.

4.1.2. Implicational Rewrites
We can use rewrite rules based on implication as well as equations and equivalences.
Care needs to be taken with such rules to ensure that their application is sound. In
particular, the direction of their application depends on the polarity of the redex
and also on the direction of reasoning. An example of a frequently used family of
implications is the replacement axioms of equality:

X1 = Y1 ^ : : : ^Xn = Yn ! f(X1; : : : ; Xn) = f(Y1; : : : ; Yn)

Where f is the constructor of a free datatype, e.g. s or ::, these implications can
be strengthened to equivalences:

X1 = Y1 $ s(X1) = s(Y1)

X1 = Y1 ^X2 = Y2 $ X1 :: X2 = Y1 :: Y2 (4.5)

but in general, they cannot, e.g.

(X1 = Y1 ^X2 = Y2)! (X1 +X2 = Y1 + Y2)

(X1 = Y1 ^X2 = Y2)! (X1 <> X2 = Y1 <> Y2)

are one way only. Confusingly, the legal orientation of replacement axioms is often
the reverse of their implication direction, i.e.

(X1 +X2 = Y1 + Y2)) (X1 = Y1 ^X2 = Y2)

(X1 <> X2 = Y1 <> Y2)) (X1 = Y1 ^X2 = Y2)

This is because the usual use of these implicational rules is backwards and applied
to positions of positive polarity.

4.1.3. Examples: Base and Step Cases
We will illustrate the use of rewriting with two examples of their use: in the base
and step case of a simple inductive proof.
Consider the associativity of <>:

8x:list(�)8y:list(�)8z:list(�): x <> (y <> z) = (x <> y) <> z

14 Alan Bundy

We will choose a simple one-step list induction on x using the induction rule:

P (nil); 8h:�:8t:list(�): P (t)! P (h :: t)

8l:list(�): P (l) (4.6)

The base case of the proof is9:

nil <> (y <> z) = (nil <> y) <> z

This can be rewritten with two applications of (4.2) as follows:

nil <> (y <> z) = (nil <> y) <> z

y <> z = (nil <> y) <> z

y <> z = y <> z

In future, where two or more rewrites are independent, as here, we will save space
by applying them in parallel10.
The step case of the proof is:

t <> (Y <> Z) = (t <> Y) <> Z ` (h :: t) <> (y <> z) = ((h :: t) <> y) <> z

This can be rewritten with three applications of (4.3), followed by an application
of (4.5), the replacement rule for ::.

t <> (Y <> Z) = (t <> Y) <> Z ` (h :: t) <> (y <> z) = ((h :: t) <> y) <> z

` h :: (t <> (y <> z)) = (h :: (t <> y)) <> z

` h :: (t <> (y <> z)) = h :: ((t <> y) <> z)

` h = h ^ t <> (y <> z) = (t <> y) <> z

The induction conclusion now contains an instance of the induction hypothesis
and the proof can be simply completed (see x4.2, p14). Note that Y and Z in
the induction hypothesis are free variables, as explained in x2.3, p6, but this extra
exibility was not required in this simple proof.

4.2. Fertilization

The purpose of rewriting in the step cases is to make the induction conclusion look
more like the induction hypothesis. The hypothesis can then be used to help prove
the conclusion. This can be clearly seen in the example step case in x4.1.3. Here,
when rewriting terminated, an instance of the hypothesis was embedded in the
conclusion.

9Recall that induction rules are applied backwards.
10Unfortunately, this is not something that most rewrite based provers can manage.

The automation of proof by mathematical induction 15

The next step is to use the induction hypothesis to prove the induction conclusion.
After rewriting we have the situation: IH ` IC[IH�] i.e. the induction conclusion,
IC, contains an instance of the induction hypothesis, IH�, embedded within it.
We can then use the rules of logic to rewrite this to: IH ` IC[>]., i.e. we use the
following rule of inference backwards:

IH ` IC[>]

IH ` IC[IH�]

Following Boyer and Moore11, we call this step strong fertilization: the hypothesis
fertilizes the conclusion.
In the example in x4.1.3 we go from:

t <> (Y <> Z) = (t <> Y) <> Z ` h = h ^ t <> (y <> z) = (t <> y) <> z

to:

t <> (Y <> Z) = (t <> Y) <> Z ` h = h ^ >

which rapidly simpli�es to >, completing the step case.
Sometimes, rewriting gets stuck before a complete instance of the hypothesis

appears in the conclusion, but a large part of the hypothesis does appear in the
conclusion. For instance, if the conjecture is an equation then one side of the con-
clusion may have an instance of the corresponding side of the hypothesis embedded
in it. This will happen in our example if we do not have the replacement rule for ::
available as a rewrite rule. The �nal stage of the rewriting process is then:

t <> (Y <> Z) = (t <> Y) <> Z ` h :: (t <> (y <> z)) = h :: ((t <> y) <> z)

An instance of each side of the hypothesis is embedded in each side of the conclusion.
We can choose one side of the conclusion and replace the embedded side of the
hypothesis with the other side of the hypothesis; e�ectively using the hypothesis as
a rewrite rule. In our example this produces either:

t <> (Y <> Z) = (t <> Y) <> Z ` h :: (t <> (y <> z)) = h :: (t <> (y <> z))

or:

t <> (Y <> Z) = (t <> Y) <> Z ` h :: ((t <> y) <> z) = h :: ((t <> y) <> z)

depending on which side we choose to replace. In either case the remaining goal is
now trivially proved. This is called weak fertilization. In general, weak fertilization
leaves a more complex goal to prove than is the case with strong fertilization, but
it can be applied in situations where strong fertilization cannot. The residue left
after weak fertilization often requires a nested induction to prove, whereas strong

11They called what we call weak fertilization, cross fertilization. We have dropped the \cross"
and introduced the terms \weak" and \strong" to distinguish two di�erent forms of fertilization.

16 Alan Bundy

fertilization usually completes the step case. So strong fertilization leads to shorter
proofs and is to be preferred when available. The general form of weak fertilization
is:

IH1 = IH2 ` IC1[IH2�] = IC2

IH1 = IH2 ` IC1[IH1�] = IC2

or
IH1 = IH2 ` IC1 = IC2[IH1�]

IH1 = IH2 ` IC1 = IC2[IH2�]

Note that these rules of inference can be further generalised to replace = with
any transitive relation with appropriate monotonicity properties, but we omit the
details of this here.

4.3. Destructor Elimination

In this section we redeem the promise of x2.2, p5 to show how destructor-style
proofs can be converted to constructor-style ones.
The discussion of rewriting (x4.1, p11) and fertilization (x4.2, p14) above ad-

opted an implicitly constructor induction stance. The induction term occurred in
the induction conclusion; the rewriting was of the induction conclusion; and the
fertilization matched the induction hypothesis to a sub-expression of the induction
conclusion.
If a destructor style induction is used then the induction term appears in the

induction hypothesis. It would be tempting to think that a dual process could
then take place, with the hypothesis being rewritten and fertilization matching
the conclusion to a sub-expression of the hypothesis. Unfortunately, the dual of
fertilization is not true, i.e.

IH [>] ` IC

IH [IC�] ` IC

is not a sound rule of inference, and nor are the duals of weak fertilization.
One solution to this problem is to try to turn destructor style step cases into

constructor style ones, by replacing destructor functions in the hypothesis with
constructor functions in the conclusion. This process is usually called destructor
elimination, [Boyer and Moore 1988a][x10.4, p225]. Its application is not restricted
to step cases, and we de�ne it for any formula. Moreover, the concepts of \destructor
function" and \constructor function" are interpreted loosely | they can be any
functions the user so speci�es.
Suppose that a formula contains occurrences of the expressions di(x), where each

di is a destructor function. Destructor elimination takes place in two steps:

1. A (possibly conditional) rewrite rule of the form:

Cond! X) c(d1(X); : : : ; dn(X)) (4.7)

The automation of proof by mathematical induction 17

where c is a constructor function, is applied once to each occurrence of x not
dominated by a di. Note that this may require a Cond=:Cond case split if
Cond is not already true.

2. All occurrences of x now occur within some di. Each di(x) is generalised to a
new variable yi. See x6.3.2, p29 for an explanation of this form of generalisation.

If a rewrite rule of form (4.7) is available then the application of this destructor
elimination process will remove all occurrences of di in favour of c.
To see the e�ect of destructor elimination on a destructor-style inductive proof,

consider the following schematic step case:

x 6= 0 ^ �(p(x)) ` �(x) (4.8)

where x : nat. For stage 1 of destructor elimination we appeal to the rewrite rule:

X 6= 0! X) s(p(X))

to rewrite (4.8) to:

s(p(x)) 6= 0 ^ �(p(x)) ` �(s(p(x)))

Note that the condition of this rewrite rule is true by hypothesis. Stage 2 is to
generalise all occurrences of p(x) to y, giving:

s(y) 6= 0 ^ �(y) ` �(s(y))

All occurrences of the destructor function, p, have now been replaced by the con-
structor function, s. This step case can be further simpli�ed to:

�(y) ` �(s(y))

which is a constructor style step case.
Destructor elimination is not restricted to structural inductions, like the example

above. It can also be used, for instance, to transform:

y 6= 0 ^ �(remainder(x; y)) ^�(quotient(x; y)) ` �(x)

to:

y 6= 0 ^ �(r) ^ �(q) ` �(q � y + r)

exchanging the destructor functions, remainder and quotient for the constructor
functions + and �. Stage 1 of this destructor elimination uses the conditional
rewrite rule:

Y 6= 0! X) quotient(X;Y)� Y + remainder(X;Y)

In future we will usually assume that destructor elimination has been or could
be applied and draw most of our examples from constructor style inductive proofs.

18 Alan Bundy

4.4. Termination of Rewriting

A common proof technique is to apply a set of rewrite rules to a goal until no
further rules apply. The rewritten goal is then said to be in normal form. It is
highly desirable if this rewriting process terminates. This question is equivalent to
the halting problem (the problem of proving that computer programs terminate) so
is undecidable. A partial solution has been provided by a collection of techniques
which, although necessarily incomplete, have a high success rate when applied to
the rewrite rule sets that arise in practical theorem proving. Each of these tech-
niques involve de�ning a measure from terms to a well-founded set, e.g. the natural
numbers, and showing that this measure decreases strictly each time a rewrite is
applied. Since the measure is well-founded it cannot decrease inde�nitely, e.g. it
must eventually reach 0. More details about termination techniques can be found
in the chapter \Rewriting" by Nachum Dershowitz in this book.
A particular case of this problem of especial interest is the termination of the

rewrite rules which de�ne a function. The proof of termination of these rules is
usually a condition of accepting the de�nition as well-formed. The termination
measures developed for this purpose are often recycled as the well-founded measures
of induction rules (see x6.1, p21 for more details).

4.5. Decision Procedures

Many of the problems to be solved by an inductive theorem prover fall within a
decidable class and can be solved by a decision procedure. This is especially true
of many of the subproblems generated during the proof of an inductive theorem.
So decision procedures are an important component of inductive provers. These
include the following:

Tautology Checkers: Many subproblems can be generalised into formulae of pro-
positional logic. This generalisation may require regarding non-propositional
formulae as propositional variables. If these generalised formulae are tautolo-
gies then the subproblem is true. Ordered Binary Decision Diagrams (OBDDs)
provide a basis for e�cient tautology checking and were devised for use in
hardware veri�cation, [Bryant 1992].

Congruence Closure: The propagation of equalities is an important ingredient
of e�cient theorem proving, i.e. if two terms are known to be equal we need
to use this fact to simplify the conjecture. Congruence closure does this by
forming equivalence classes for all subterms in a conjecture and propagating
results between them. In its simplest version the negation of conjecture is put
in disjunctive normal form and equivalence classes are constructed for each
disjunct, [Nelson and Oppen 1980]. Positive equalities are used to update the
equivalence classes and negative equalities are tested against them to see if
there is a contradiction.

Presburger Arithmetic Procedures: Presburger identi�ed a decidable frag-
ment of integer arithmetic, [Presburger 1930, Stansifer 1984]. It consists of

The automation of proof by mathematical induction 19

formulae about equalities and inequalities between terms involving addition,
but not multiplication. The equivalent real number fragment is also decid-
able. The integer fragment is particularly important in software veri�cation as
conjectures in Presburger arithmetic often arise from proof obligations about
iterative loops, for instance. Many decision procedures exist for these fragments
and are in common use in inductive provers, where they are often called linear
arithmetic procedures. [Boyer and Moore 1988b] is an interesting discussion of
the integration of one of these procedures into an inductive prover.

Combination Procedures: Decision procedures for two disjoint decidable theor-
ies can be combined. [Nelson and Oppen 1979, Shostak 1984] describe two such
combination mechanisms.

Decision procedures often have unattractive theoretical worst case complexity,
e.g. super-exponential. This does not always make them unusable. They can have
empirically acceptable average case complexity when applied to problems of prac-
tical interest. In any case, the theoretical complexity of the alternative, full-blown
inductive theorem proving, is usually much worse.
It is important to use decision procedures exibly. [Boyer and Moore 1988b] re-

ports that very few subproblems in a standard corpus were exactly in the Presbur-
ger fragment, but many more were almost in it and could be solved by a decision
procedure augmented with a few additional facts about the terms, e.g. that the
minimum element of an array was not bigger than the maximum element. Boyer
and Moore exibly interfaced their decision procedure to the rest of their theorem
prover so that each could call the other and, hence, provide these additional facts to
the decision procedure. Time spent by the interface components was much greater
than time spent in the theorem prover.
Decision procedures are described in more detail in the chapters \Model checking"

by Edmund Clarke and Holger Schlinglo� and \Resolution decision procedures" by
Alexander Leitsch, Christian Ferm�uller and Tanel Tammet in this book.

5. Theoretical Limitations of Inductive Inference

Some negative results from mathematical logic impose special restrictions on induct-
ive inference. In particular, results of G�odel and Kreisel introduce in�nite branching
points into the search space and show that it is impossible to build a complete in-
ductive theorem prover.

5.1. The Incompleteness of Inductive Inference

G�odel's �rst incompleteness theorem, [G�odel 1931, Heijenoort 1967], states that in
any formal theory of arithmetic there will be formulae which are true but unprov-
able. This incompleteness theorem is true of any non-trivial inductive theory. It
puts a limit on the power of any automated12 inductive theorem prover.

12And any human one too.

20 Alan Bundy

One way to see this result is as a limitation of our ability to construct the induc-
tion rule(s) required to prove each conjecture. We have already seen in x2, p4 that
there are an in�nite number of di�erent induction rules (or an in�nite number of
ways of instantiating N�therian induction). In x6.1, p21 we will investigate mechan-
isms for tailoring induction rules to the current conjecture. G�odel's incompleteness
theorem tells us that, however sophisticated our induction rule construction mech-
anism, there will always be true formulae whose proof requires an induction rule
that it cannot construct.
This limitation is illustrated in [Kirby and Paris 1982]. The theory of natural

numbers can be formalised using Peano induction, (1.1). More complex induction
rules can be derived from Peano induction. However, Kirby and Paris show that the
termination of a simple recursive function (Goodstein's function) cannot be shown
using any of these induction rules, but can be shown using the �0 induction rule.
This induction rule is based on a complex well-founded relation which cannot be
derived from Peano induction. Of course, we could add the �0 induction rule to our
theory of natural numbers, but G�odel's incompleteness theorem tells us there would
then be further true formulae, whose proof required even more complex forms of
induction, and which were unprovable even within our extended theory.
This limitation is also related to the undecidability of the halting problem [Turing

1936-7]. Turing showed that there was no algorithm which could determine whether
an arbitrary relation was well-founded. So we cannot construct all valid induction
rules by instantiating the N�therian induction scheme with all possible relationss
and then rejecting those that are not well-founded. Turing's result shows that this
programme will not work, since there is no algorithm for deciding which of these
potential induction rules is valid.

5.2. The Failure of Cut Elimination

Gentzen's original formalisation of sequent calculus contained the cut rule:

A;� ` �; � ` A

� ` �

The cut rule allows us to �rst prove � with the aid of A and then eliminate A by
proving it from �. A is called the cut formula.
If the cut rule is used backwards by a theorem prover then it introduces in�nite

branching into the search space; the cut formula can be any formula. The problem
cannot be avoided by only using the cut rule forwards. Then we will be forced to
use other sequent calculus rules forwards too. Several of these have formulae in the
conclusion that do not occur in the premises, so will also cause in�nite branching.
Gentzen recognised this problem and partially solved it by proving the cut elim-

ination theorem, [Gentzen 1969]. He showed that the cut rule was redundant for
�rst-order theories13. Unfortunately, Kreisel has shown that Gentzen's cut elim-

13One source of confusion in this discussion is that the cut rule is similar to resolution. Of
course, resolution is used in a forwards direction, so it does not cause in�nite branching.

The automation of proof by mathematical induction 21

ination does not hold for inductive theories, [Kreisel 1965]. The cut rule must be
retained and is a source of in�nite branching.
The problem of in�nite branching cannot be avoided by using an alternate form-

alisation of logic, e.g. natural deduction, resolution, etc; it recurs, in a di�erent
guise, in every formalism. It is possible to reorganise some of the in�nite branching
points so that they occur as an in�nite series of �nite branching points, but this
does not signi�cantly improve the size of the search space. Nor is this just a the-
oretical problem with little practical import. As we will see, the cut rule is needed
even for many quite simple theorems.

6. Special Search Control Problems

Inductive inference can be automated by adding one or more induction rules to
an automatic theorem prover. Unfortunately, this is not enough. An unbounded
number of induction rules are required14. The cut rule is also needed. As we have
seen, these requirements introduce in�nite branching points into the search space.
Thus inductive inference su�ers from search control problems that do not arise in
non-inductive, �rst-order, automatic theorem proving. Specialised heuristics have
been developed for dealing with these search problems.
The cut rule is frequently required for two tasks: generalising the induction for-

mula; and introducing an intermediate lemma. The cut formula is the generalised
formula or the lemma. We, therefore, require heuristics for deciding when a gener-
alisation or lemma are required and for determining their form.
Below we discuss further the search control problems of: induction rule choice;

lemma introduction; and generalisation.

6.1. Constructing an Induction Rule

The success of an inductive proof attempt depends critically on the choice of induc-
tion rule. A good choice will lead to a short proof. For instance, a few rewritings
of the induction conclusion will lead to fertilization and a successful conclusion. A
bad choice may require multiple nested inductions or cause the proof to become
stuck altogether.
Since there are an in�nite number of possible induction rules it is not possible to

prestore them; they must be constructed dynamically according to need. Heuristics
are used to construct an induction rule that has a good chance of success on the
current conjecture. The standard heuristic is called recursion analysis15. It uses the
de�nitions of recursive functions appearing in the conjecture.

14Or the ability to construct new well-founded relations for N�therian induction.
15Walther, [Walther 1994a], calls it the induction heuristic, but we will see that there are al-

ternative heuristics.

22 Alan Bundy

6.1.1. Recursion Analysis
The starting point is to identify occurrences of recursively de�ned functions in
the conjecture whose recursion arguments contain universally quanti�ed variables.
These variables are candidate induction variables. The recursive de�nition of each
function suggests a dual induction rule. The idea underlying recursion analysis is
that using an induction rule based on recursive de�nitions will facilitate the use of
these recursive de�nitions in the base and step case proofs.
For instance, consider the conjecture:

8x:nat:8y:nat: even(x) ^ even(y)! even(x+ y) (6.1)

even is a recursively de�ned function and the occurrence of even(x) has a universally
quanti�ed variable, x, in its recursion argument. From the recursive de�nition of
even, (3.3), we can construct the induction rule:

P (0); P (s(0)); 8x:nat: (P (x)! P (s(s(x))))

8x:nat: P (x) (6.2)

The occurrence of even(y) suggests the same induction rule, but with y as the
induction variable. The occurrence of even(x + y) does not suggest an induction
rule, because its recursion argument does not contain a variable. However, + is also
recursively de�ned and the occurrence of x + y has a variable, x, in its recursion
argument, which suggests the induction rule:

P (0); 8x:nat: (P (x)! P (s(x)))

8x:nat: P (x) (6.3)

Note that + is de�ned on its �rst argument (see (4.1)), so that y is not a recursion
argument of + and, therefore, does not suggest an induction rule.
We now see how the right choice of induction rule facilitates the subsequent use of

recursive de�nitions. For instance, if the conjecture contains an occurrence of x+ y
and we apply induction rule (6.3) then the induction conclusion will contain the
term s(x) + y. The step case of the recursive de�nition of + can then be applied to
this term. On the other hand, if we erroneously choose y as the induction variable
then the step case will contain the term x+ s(y), and the recursive de�nition does
not apply to this term. So if we used one step induction on y this occurrence of s(y)
would be di�cult to move and would prevent strong fertilization. Similar remarks
apply to the base case.
The above process produces a variety of suggestions for induction rules. Some of

these can be rejected as inferior to others and the rest can be combined together to
produce a �nal induction rule. In our example the choice of x as induction variable
is superior to y. This is because each occurrence of x in (6.1) is in a recursion argu-
ment position, so each occurrence of x in the induction conclusion can be potentially
be rewritten by a recursive de�nition, making an eventual fertilization more likely.
These occurrences of x are said to unawed. Universal variables, like x, with only
unawed occurrences are said to be unawed induction variable candidates. In con-
trast, the second occurrence of y in (6.1) is not in a recursive argument position.

The automation of proof by mathematical induction 23

This occurrence will be replaced by s(s(y)), say, and it will not be possible to re-
write this occurrence, preventing strong fertilization. This occurrence of y is said
to be awed. Universal variables, like y, with some awed occurrences, are said to
be awed induction variable candidates.

6.1.2. Subsumption of Induction Rules
So x is the best choice for induction variable, but this leaves two possibilities for
induction rule: (6.2) and (6.3). Fortunately, rule (6.2) subsumes rule (6.3), i.e. rule
(6.2) can stand-in for rule (6.3). This means that rule (6.3) is inferior to rule (6.2)
and can be rejected. Roughly speaking, induction rule A subsumes induction rule B
i� each induction term of a step case of A consists of repeated forms of an induction
term of a step case of B (see [Stevens 1988] for a more detailed discussion). In our
example s(s(x)) is a repeated form of s(x). Using induction rule (6.2) the induction
conclusion is:

8y:nat: even(s(s(x))) ^ even(y)! even(s(s(x)) + y)

The expression even(s(s(x))) can be rewritten to even(x) using the recursive
de�nition of even. The expression even(s(s(x)) + y) can be rewritten �rst to
even(s(s(x)+y)) and then to even(s(s(x+y))) by the recursive de�nition of + and
then to even(x+ y) with the de�nition of even, i.e. induction rule (6.2) facilitates
a double application of the recursive de�nition of +, instead of the single applic-
ation we would have gotten from rule (6.3). Here we see consequences of using a
subsuming rule instead of the originally suggested rule. The induction conclusion
now matches the induction hypothesis and the step case is �nished.
Note that the rule (6.3) does not work so well. The induction conclusion is:

8y:nat: even(s(x)) ^ even(y)! even(s(x) + y)

Now the expression even(s(x)) cannot be rewritten and the step case proof is stuck.
Rule (6.3) applied to y would encounter the same problem, i.e. even(s(y)) cannot
be rewritten. So a subsumed induction rule cannot stand in for a subsuming one.

6.1.3. Containment of Induction Rules
Another way in which one induction rule can be inferior to others is containment.
Induction rule A contains induction rule B i� each step case of B is contained in

some step case of A. A step case

CondA ^ IHA
1
^ : : : ^ IHA

m ! IC

contains a step case
CondB ^ IHB

1
^ : : : ^ IHB

n ! IC

i� CondB ! CondA and each IHB
j is also one of the IHA

i . Note that these con-
ditions make any instantiation of rule A logically easier to prove than a corres-
ponding instantiation of rule B. So rule A is preferred over rule B. [Walther 1994a]

24 Alan Bundy

provides a calculus for describing induction rules, called r-descriptions, and gives
a containment formula for de�ning and proving containment which is based on r-
descriptions. To illustrate containment, consider the following two induction rules
for S-expressions:

P (nil); 8e:sexpr: e 6= nil ^ P (cdr(e))! P (e)

8e:sexpr: P (e) (6.4)

P (nil); 8e:sexpr: e 6= nil ^ P (car(e)) ^ P (cdr(e)) ! P (e)

8e:sexpr: P (e) (6.5)

Note that the non-inductive conditions and induction conclusions of the step cases
of the two rules are the same and the induction hypotheses of rule (6.4) are a subset
of those of rule (6.5). Thus the step case of rule (6.5) contains that of rule (6.4),
so rule (6.5) contains rule (6.4). If both of these rules were suggested by recursion
analysis then rule (6.4) should be rejected as inferior.
Unfortunately, containment and subsumption can sometimes order induction

rules in opposite orders. Containment orders induction rules in terms of logical
implication, but subsumption is a more heuristically based order which orders
according to how easily standard proof methods will apply. Where they conict
containment usually makes better suggestions. Subsumption can also be used to
tie-break where containment fails to distinguish. Unfortunately, containment has
only been de�ned for destructor-style induction rules, so subsumption is usually
used for constructor-style rules.

6.1.4. Combining Induction Rules
Sometimes no rule is suggested which subsumes or contains all the others. Then
it is necessary to generalise and combine the rule suggestions to construct a rule
which does subsume or contain them all. For instance, suppose our conjecture is
about S-expressions and recursion analysis yields the following two suggestions:

P (nil); 8e:sexpr: e 6= nil ^ P (car(e)) ! P (e)

8e:sexpr: P (e)

P (nil;) 8e:sexpr: e 6= nil ^ P (cdr(e))! P (e)

8e:sexpr: P (e)

Neither of these contains the other. However, both are contained by the more general
rule:

P (nil); 8e:sexpr: e 6= nil ^ P (car(e)) ^ P (cdr(e)) ! P (e)

8e:sexpr: P (e)

which can be constructed from the two initially suggested induction rules by com-
bining them. In this case the combination consists of conjoining the induction hy-
potheses of the two original rules. [Walther 1994a] de�nes combination with respect
to containment as the separated union of the r-descriptions of two induction rules.
Combination can also be de�ned with respect to subsumption. Walther also de�nes

The automation of proof by mathematical induction 25

various ways to generalise induction rules. Note that rule combination does not ne-
cessarily preserve the well-foundedness of the induction relation, so this may need
to be proved after a merge has been made.
Recursion analysis was invented by Boyer & Moore, [Boyer and Moore 1979]. It

was further developed by Stevens, [Stevens 1988], and Walther, [Walther 1994a].
Together they have constructed a range of techniques for preferring, generalising and
combining initial induction rule suggestions. These are often successful in producing
customised induction rules which lead to successful and short proofs of the current
conjecture. However, further research is required, e.g. to extend containment to
constructor-style induction rules and to incorporate within it some of the successful
features of subsumption.

6.2. Introducing an Intermediate Lemma

Sometimes a lemma required to complete the proof is not already available and is
not deducible from the existing theory without a nested application of induction.
This is a consequence of the failure of cut elimination for inductive theories (see
x5.2, p20). Such lemmata must be conjectured and then proved as sub-goals. In
non-inductive theorem proving, conjecturing lemmata is non-essential, because any
lemmas needed will be generated by inference with existing rules. However, if in-
duction is required to prove a lemma then inference alone is not su�cient, and the
lemma must be conjectured.

6.2.1. Example: Reverse-Reverse
As an example, consider the conjecture:

8l:list(�): rev(rev(l)) = l

where rev reverses a list and is de�ned by the following rewrite rules:

rev(nil)) nil

rev(H :: T)) rev(T) <> (H :: nil) (6.6)

Recursion analysis will suggest the one-step list induction rule (4.6) on l. The
step case of this induction develops as follows:

rev(rev(t)) = t ` rev(rev(h :: t)) = h :: t

` rev(rev(t) <> (h :: nil)) = h :: t

but then gets stuck; no rewrite rules apply. Nor will strong fertilization apply16.
One solution is to introduce a distributive lemma of rev over <>., namely:

rev(X <> Y)) rev(Y) <> rev(X) (6.7)

16Although weak fertilization will | see below x6.3.2, p29.

26 Alan Bundy

This allows the step case to continue:

rev(rev(t)) = t ` rev(rev(t) <> (h :: nil)) = h :: t

` rev(h :: nil) <> rev(rev(t)) = h :: t

` (rev(nil) <> (h :: nil)) <> rev(rev(t)) = h :: t

` (nil <> (h :: nil)) <> rev(rev(t)) = h :: t

` (h :: nil) <> rev(rev(t)) = h :: t

` h :: (nil <> rev(rev(t))) = h :: t

` h :: rev(rev(t)) = h :: t

` h = h ^ rev(rev(t)) = t

which contains the induction hypothesis. Fertilization leaves the trivial goal h =
h ^ >.
This does not solve the search problem. We need a heuristic to suggest or con-

struct lemma (6.7). We will provide such a heuristic in x8.1, p46.

6.2.2. Example: Generalised Rotate Length
As another example, consider the conjecture:

8l : list(�):8k : list(�): rotate(length(l); l <> k) = k <> l (6.8)

where rotate(n; l) removes the �rst n elements from list l and appends them to
the end and length measures the length of the list. This conjecture says that if we
remove length(l) elements from l <> k and put them at the end then we form the
list k <> l.
The functions rotate and length are de�ned by the following rewrite rules:

length(nil)) 0

length(H :: T)) s(length(T))

rotate(0; L)) L

rotate(s(N); nil)) nil

rotate(s(N); H :: T)) rotate(N;T <> (H :: nil))

Recursion analysis will suggest the one-step list induction rule (4.6) applied either
on l or k. l has two unawed and one awed occurrences and k has one unawed
and one awed occurrences. There is not much to choose between the two variables,
but some heuristics would give l a slight edge, so we will choose it.
The step case of this induction develops as follows:

rotate(length(t); t <> K) = K <> t

The automation of proof by mathematical induction 27

` rotate(length(h :: t); (h :: t) <> k) = k <> (h :: t)

` rotate(s(length(t)); h :: (t <> k)) = k <> (h :: t)

` rotate(length(t); (t <> k) <> (h :: nil)) = k <> (h :: t)

At this point the proof is stuck: no rewrite rules apply and both weak and strong
fertilization are inapplicable.
We need two new lemmas: one to unstick the LHS and one to unstick the RHS.

These are:

(X <> Y) <> Z) X <> (Y <> Z)

L <> (H :: T)) (L <> (H :: nil)) <> T

The �rst lemma is the associativity of list append and the second can be thought
of as a special case of associativity where the middle list is a singleton. Note that
they are required with the orientation given, although the opposite orientation is
equally natural. As in x6.2.1, p25 the question arises as to what heuristic might
suggest or construct these lemmas. Again we will return to this question in x8.1,
p46.
With these lemmas the step case of the proof can continue and is now successful:

rotate(length(t); t <> K) = K <> t

` rotate(length(t); (t <> k) <> (h :: nil)) = k <> (h :: t)

` rotate(length(t); t <> (k <> (h :: nil))) = (k <> (h :: nil)) <> t

Strong fertilization now applies. Note that K is instantiated to k <> (h :: nil).
As discussed in x2.3, p6, additional universal variables in the conjecture become

free variables in the induction hypothesis and arbitrary constants in the induc-
tion conclusion. These free variables can be instantiated to compound terms when
matching hypothesis to conclusion. This gives us more exibility in the step case
of the proof; a exibility which is exploited in this example.

6.3. Generalising Induction Formulae

Suppose we are trying to prove a conjecture, C. Generalisation consists of con-
structing a generalised conjecture, G, and both proving G and G! C.
Sometimes a conjecture cannot be proved without �rst being generalised. This

is another consequence of the failure of cut elimination for inductive theories. The
generalization must be strong enough that the induction hypothesis can be used to
prove the induction conclusion, but not so strong that it is not a theorem. Various
techniques for generalisation have been developed.

28 Alan Bundy

6.3.1. Example: Generalising Apart
The need for generalisation can arise in even quite simple conjectures. Consider the
following special case of the associativity of <>.

8l:list(�): l <> (l <> l) = (l <> l) <> l

Where the only axioms available are the equality axioms and those arising from
recursive de�nitions, e.g. (4.3).
Recursion analysis will suggest the one-step induction rule (4.6) on l, even though

l is awed, because there is no alternative. Unfortunately, these aws cause the
proof to fail. Note that the 3rd, 5th and 6th occurrences of l are not in recursive
argument positions. However, the induction rule will replace these occurrences with
the induction term, h :: t. So the induction conclusion has the form:

(h :: t) <> ((h :: t) <> (h :: t)) = ((h :: t) <> (h :: t)) <> (h :: t)

The step case of the recursive de�nition of <>, rewrite rule (4.3), is able to rewrite
the 1st, 2nd and 4th occurrences of l, but not the other three occurrences. Moreover,
the 2nd occurrence can only be rewritten once. The induction conclusion, therefore,
gets stuck in the state:

h :: (t <> (h :: (t <> (h :: t)))) = h :: ((t <> (h :: t)) <> (h :: t))

to which neither weak nor strong fertilization applies, causing the proof attempt to
fail if no generalisation is allowed.
To unstick the proof we must generalise apart the occurrences of l to give the

conjecture:

8l:list(�):k:list(�): l <> (k <> k) = (l <> k) <> k

Recursion analysis will still suggest a one-step induction on l, but this time it is
unawed. The step case then proceeds as follows:

t <> (k <> k) = (t <> k) <> k ` (h :: t) <> (k <> k) = ((h :: t) <> k) <> k

` h :: (t <> (k <> k)) = (h :: (t <> k)) <> k

` h :: (t <> (k <> k)) = h :: ((t <> k) <> k)

` h = h ^ t <> (k <> k) = (t <> k) <> k

to which strong fertilization applies, allowing the proof to be completed.
The generalisation worked by restricting the occurrences of the induction variable

to unawed ones. This removed from the induction conclusion those occurrences of
the induction term which could not be rewritten. Note that the 2nd occurrence of
l was replaced by k even though it was unawed. To have left it as l would have
caused two problems. Firstly, it would have resulted in a non-theorem:

8l:list(�); k:list(�) l <> (l <> k) = (l <> k) <> k

The automation of proof by mathematical induction 29

Secondly, the 2nd occurrence would have become stuck after the �rst rewrite. Decid-
ing which occurrences of the induction variable to generalise apart is a non-trivial
problem. It may be necessary to try several combinations before the correct one is
found. No one has yet found a heuristic which always chooses the correct combin-
ation �rst time.
We also need a heuristic to decide to try generalising apart in the �rst place.

Various heuristics have been proposed for this, all based on the analysis of initial
failed proofs (see, for instance, [Hesketh 1991]).

6.3.2. Example: Generalising a Sub-Term
Consider again the rev-rev conjecture:

8l:list(�): rev(rev(l)) = l

from x6.2.1, p25 and the point at which the step case gets stuck:

rev(rev(t)) = t ` rev(rev(t) <> (h :: nil)) = h :: t

An alternative method of unsticking this step case is to use weak fertilization (see
x4.2, p14). The induction hypothesis is used as a rewrite rule right to left and
applied to the RHS of the induction conclusion. This yields:

rev(rev(t) <> (h :: nil)) = h :: rev(rev(t))

We can now try to solve this new goal, using induction if necessary. Unfortunately,
the presence of nested rev functions will cause the step case again to get stuck.
However, note that term rev(t) occurs on both sides of the equation. This can be
generalised to a new variable, e.g. k, and the resulting formula:

rev(k <> (h :: nil)) = h :: rev(k)

is still a theorem. Moreover, the problem of nested revs has now gone away. This
generalised conjecture is much easier to prove. For instance, the step case is now:

rev(t0 <> (h :: nil)) = h :: rev(t0)

` rev((h0 :: t0) <> (h :: nil)) = h :: rev(h0 :: t0)

` rev(h0 :: (t0 <> (h :: nil))) = h :: (rev(t0) <> (h0 :: nil))

` rev(t0 <> (h :: nil)) <> (h0 :: nil) = (h :: rev(t0)) <> (h0 :: nil) (6.9)

` rev(t0 <> (h :: nil)) = h :: rev(t0) ^ h0 :: nil = h0 :: nil

to which strong fertilization applies, completing the proof. This generalisation
worked by generalising away a subterm which caused di�culty during rewriting.
Note that in step (6.9) it was necessary to apply the rewrite rule (4.3) from right

to left, i.e. in the wrong orientation. We will propose a solution to this problem in
x7.6, p36.

30 Alan Bundy

The most common heuristic for generalising subterms is to do so only when all
occurrences of a variable, say x, occur in a common term, say f(x). All occurrences
of f(x) (and hence x) are then replaced with a new variable y. Another heuristic is
to restrict generalisation to variables in recursive argument positions. The new vari-
able, y, will then be a candidate for an induction variable. The generalisation can
sometimes make possible an induction and subsequent rippling that were not previ-
ously available. Even with these heuristics, over-generalisation to a false conjecture
can occur | a problem we will address in x6.3.4.

6.3.3. Example: Introducing New Universal Variables
Another kind of generalisation is illustrated by the rotate length conjecture:

8l : list(�): rotate(length(l); l) = l (6.10)

which is a special case of conjecture (6.8). This conjecture says that if we remove
length(l) elements from l and put them at the end then we recover the original list
l.
Recursion analysis will suggest the one-step list induction rule (4.6) on l. The

step case of this induction develops as follows:

rotate(length(t); t) = t ` rotate(length(h :: t); h :: t) = h :: t

` rotate(s(length(t)); h :: t) = h :: t

` rotate(length(t); t <> (h :: nil)) = h :: t

At this point the proof is stuck: no rewrite rule applies and strong fertilization fails.
Weak fertilization succeeds, but the resulting conjecture is harder to prove than the
original one.
One solution is to generalise the original conjecture by introducing an additional

universally quanti�ed variable. The generalised rotate length conjecture is:

8l : list(�):8k : list(�): rotate(length(l); l <> k) = k <> l

which is conjecture (6.8) proved in x6.2.2, p26.
This generalisation succeeds because importing an additional universal variable

into the conjecture enables us to exploit the extra exibility described in x2.3, p6.
In x8.2, p48 we describe a heuristic for suggesting and constructing this kind of
generalisation.
Many other forms of generalisation are possible. Figure 1 lists some of these.

More discussion can be found in [Hummel 1990].

6.3.4. The Problem of Over-Generalisation
A major problem with generalisation is the danger of over-generalisation, i.e. of
generalising a theorem into a non-theorem. For instance, consider the theorem:

8l:list(nat): sort(sort(l)) = sort(l)

The automation of proof by mathematical induction 31

Original Generalisation Discussion

A! B A$ B implication to equivalence

A! B B dropping a condition

A _B A dropping a disjunct

A A ^B adding a conjunct

f(s) = f(t) s=t cancelling common structure

Figure 1: Some Other Forms of Generalisation

where sort is one of many functions for sorting lists of numbers into numerical order.
An automated inductive prover might generalise this theorem into the non-theorem:

8k:list(nat): sort(k) = k (6.11)

by replacing the term sort(l) by the new variable k using the generalisation tech-
nique outlined in x6.3.2, p29.
One partial solution to this problem is to check any newly generalised formula

with a counter-example �nder, [Protzen 1992]. A simple counter-example �nder
might generate a small number of variable-free instances of the generalised formula
and check that each evaluates to >. For instance, if we checked (6.11) above with the
list [2; 1] for k then sort(k) = k would evaluate to ? and the generalisation could
be rejected. Simple checking of this kind works in the majority of cases because
over-generalisations are rarely false in any subtle way.
Another partial solution is to try to modify the over-generalised non-theorem back

into a theorem. For instance, non-theorem (6.11) can be modi�ed to the theorem:

8k:list(nat): ordered(k) ! sort(k) = k

where ordered(k) means k is an ordered list. Conditions like ordered(k) can often
be generated automatically. Moore pioneered this technique in [Moore 1974], and
it has been further developed in [Franova and Kodrato� 1992, Monroy, Bundy and
Ireland 1994, Protzen 1994]. This technique has the advantage that we can continue
with the use of generalisation, instead of having to �nd an alternative approach.
However, it is not always possible to modify the non-theorem into a theorem

which still subsumes the original conjecture. For instance, the conjecture:

8l:list(�): l <> (l <> l) = (l <> l) <> l (6.12)

can be generalised to the non-theorem:

8l:list(�):k:list(�): l <> k = k <> l

This can be modi�ed to the theorem:

8l:list(�):k:list(�): l = k ! l <> k = k <> l

say, but this no longer subsumes the original conjecture, (6.12).

32 Alan Bundy

7. Rippling

Rippling is a di�erence reduction technique developed for induction proofs. It
provides a partial solution to many of the special search control problems described
in x6, p21 above. Aubin was the �rst to notice a common pattern in the rewriting
of step cases, [Aubin 1976]. In [Bundy 1988] it was proposed to use this pattern to
drive the rewriting process and implementations of this proposal were �rst reported
in [Bundy, van Harmelen, Smaill and Ireland 1990, Bundy, Stevens, van Harmelen,
Ireland and Smaill 1993, Hutter 1990].

7.1. Rippling Out

Aubin observed that during the step case the di�erences between the induction con-
clusion and the induction hypothesis ripple-out of the induction conclusion, leaving
a complete copy of the induction hypothesis embedded in the induction conclusion.
The e�ect is emphasised by annotating these di�erences, e.g. by placing them in
grey boxes. Consider again the step case of the associativity of <> reproduced from
x4.1.3, p13, but this time with annotation.

t <> (Y <> Z) = (t <> Y) <> Z ` h :: t
"
<> (y <> z) = (h :: t

"
<> y) <> z

` h :: t <> (y <> z)
"

= h :: t <> y)
"

<> z

` h :: t <> (y <> z)
"

= h :: (t <> y) <> z
"

` h = h ^ t <> (y <> z) = (t <> y) <> z
"

The grey boxes indicate the parts of the induction conclusion which di�er from
the induction hypothesis. They are called wave-fronts. Each wave-front has one or
more wave-holes indicating sub-terms of the wave-fronts which correspond to parts
of the induction hypothesis. The parts of the induction conclusion outside the wave-
fronts or inside the wave-holes, are called the skeleton. The skeleton always matches
the induction hypothesis. The arrows indicate the direction of movement of the
wave-fronts | in this case outwards through the induction conclusion until they
completely surround the skeleton. Note how the grey boxes get bigger at each step
with more of the skeleton embedded within them, until they contain a complete
instance of the induction hypothesis. At this point, strong fertilization can take
place.
Rippling restricts the rewriting process so that the skeleton is preserved and

wave-fronts are only moved in desirable directions. This is achieved by annotating
both the rewrite rules and the induction conclusion and requiring the annotations
to match. Annotated rewrite rules are called wave-rules. The wave-rules required
in the example above are:

H :: T
"
<> L) H :: T <> L

"

The automation of proof by mathematical induction 33

X1 :: X2

"
= Y1 :: Y2

"
) X1 = Y1 ^ X2 = Y2

"

which are annotated versions of rule (4.3) and the replacement rule for ::. The wave-
rules are annotated so that the wave-fronts are further out in the skeleton on the
RHS than on the LHS. Any wave-fronts in the redex in the induction conclusion
must match corresponding wave-fronts in the LHS of the wave-rule which is applied
to it. This last condition reduces the search during rewriting by preventing rewrites
in which the annotation does not match.

7.2. Simpli�cation of Wave-Fronts

It is sometimes necessary to apply regular rewrite rules as well as wave-rules during
rippling in order to simplify expressions. However, this simpli�cation can be restric-
ted to wave-fronts. The skeleton must be preserved, so must not be rewritten. An
example occurs in the rev-rev example from x6.2.1, p25. In wave annotation the
step case of this proof is:

rev(rev(t)) = t ` rev(rev(h :: t
"
)) = h :: t

"

` rev(rev(t) <> h :: nil
"

) = h :: t
"

(7.1)

` rev(h :: nil) <> rev(rev(t))
"

= h :: t
"

(7.2)

` rev(nil) <> (h :: nil) <> rev(rev(t))
"

= h :: t
"

` nil <> (h :: nil) <> rev(rev(t))
"

= h :: t
"

` (h :: nil) <> rev(rev(t))
"

= h :: t
"

` h :: (nil <> rev(rev(t)))
"

= h :: t
"

(7.3)

` h :: rev(rev(t))
"

= h :: t
"

` h = h ^ rev(rev(t)) = t
"

From step (7.2) to step (7.3) no rippling-out takes place, but a wave-front is simpli-
�ed using rewrite rules from the recursive de�nitions of rev and <>, (6.6) and (4.3).
Note that the skeleton is not rewritten, since this would jeopardise the potential
for fertilization.
This example also illustrates that rippling can be used to guide the application

of lemmas as well as recursive de�nitions. At step (7.1) the lemma (6.7) is applied.
This can be annotated as a wave-rule as:

rev(X <> Y
"
)) rev(Y) <> rev(X)

"

(7.4)

34 Alan Bundy

7.3. Rippling Sideways and In

Rippling wave-fronts right outside the skeleton is one way to enable fertilization, but
it is not the only way. We can also exploit the exibility provided by additional uni-
versal variables in the conjecture (see x2.3, p6). These additional variables become
free variables in the induction hypothesis and arbitrary constants in the induction
conclusion. We will call the arbitrary constants, sinks. We can move wave-fronts to
surround the sinks. They will then be absorbed by the free variables during fertil-
ization. We will mark sinks thus: bcc; you can think of these marks as representing
a kitchen sink with a plug hole at the bottom.
To see how this works consider again the example step case from x6.2.2, p26, but

this time annotated with wave fronts and sinks.

rotate(length(t); t <> K) = K <> t

` rotate(length(h :: t
"
); h :: t

"
<> bkc) = bkc <> h :: t

"

` rotate(s(length(t))
"

; h :: t <> bkc
"

) = bkc <> h :: t
"

` rotate(length(t); t <> bkc <> (h :: nil)
#

) = bkc <> (h :: t
"
) (7.5)

` rotate(length(t); t <> bkc <> (h :: nil)
#

) = bkc <> (h :: nil)
#

<> t(7.6)

` rotate(length(t); t <> bk <> (h :: nil)c) = bk <> (h :: nil)c <> t (7.7)

At step (7.5) instead of moving the LHS wave-front further outwards we move
it sideways and then inwards towards the sink. We call these processes rippling-
sideways and rippling-in. The inwards direction of this wave-front is indicated by
the downwards arrow. At step (7.6) the RHS wave-front also moves sideways and
then inwards. When an inwards wave-front immediately dominates a sink, as at
step (7.6), then it can be absorbed into the sink. This has been done twice in the
last step (7.7). Strong fertilization is now possible with the free variable, K, being
matched to the contents of the sink, k <> (h :: nil).
To implement rippling-sideways and rippling-in we need wave-rules with a slightly

di�erent kind of annotation. The sideways17 wave-rules used in the above example
are annotated as18:

rotate(s(N)
"

; H :: T
"
)) rotate(N; T <> (H :: nil)

#

) (7.8)

L <> (H :: T
"
)) L <> (H :: nil)

#

<> T

Functions de�ned by tail recursion are a good source of such sideways rules,
e.g. the de�nition of rotate. The inwards wave-rule used in the above example is

17Also called transverse wave-rules, in contrast to longitudinal wave-rules, which ripple-out.
18See x7.9, p42 for a discussion of the annotation of wave-rule (7.8).

The automation of proof by mathematical induction 35

one of the many19 annotations of associativity:

(X <> Y) <> Z
#

) X <> (Y <> Z
#
)

One of the preconditions of rippling sideways and inwards is that any inwards
wave-front should have a target to ripple towards (see x7.7.4, p39) in one of its
wave-holes. This can be a sink, as above, or an outwards directed wave-front, with
which it can cancel. Without such a target the �nal fertilization will not be possible.
This precondition puts a further restriction on rippling.

7.4. The Advantages of Rippling

Rippling has the following advantages over conventional rewriting:

It is more restrictive: The condition that wave annotations match prevents re-
writings that would otherwise be allowed. This reduces the size of the search
space of rippling compared to that of unrestricted rewriting (see x7.5, p35). This
would be a disadvantage if desirable rewritings were disallowed, but experiment
shows that this does not happen.

It always terminates: A general termination proof can be given for all sets of
wave-rules (see x7.8, p39), whereas a separate termination proof has to be
given for each set of rewrite rules in conventional rewriting.

It allows rewriting in both directions: An equation can often be oriented as a
wave-rule in each direction by annotating it in two di�erent ways (see x7.6, p36).
These di�erent annotations prevent looping, so that termination is preserved.
This allows rewriting in di�erent directions even within the same proof.

It supports various heuristics: The failure of rippling can be used to suggest
patches to a partial proof which help in the choice of generalisations, lemmas
and induction rules (see x8, p45).

7.5. Selective Rewriting

Suppose we had the goal of proving:

((c+ d) + a) + b = (c+ d) + 42 (7.9)

from the hypothesis a+ b = 42 with the aid of the associativity of + rewrite rule:

(X + Y) + Z) X + (Y + Z) (7.10)

Using conventional rewriting goal (7.9) can be rewritten with rule (7.10) in three
ways:

((c+ d) + a) + b = c+ (d+ 42)

(c+ (d+ a)) + b = (c+ d) + 42

(c+ d) + (a+ b) = (c+ d) + 42 (7.11)

19See x7.6, p36 for more ways to annotate associativity.

36 Alan Bundy

The �rst two of these three subgoals make no progress towards the hypothesis and
represented unwanted branches of the search space. Only subgoal (7.11) represents
progress. The hypothesis can now be applied to it, using weak fertilization, to
complete the proof.
Rippling can be applied to this problem by annotating the goal (7.9) and the

rewrite rule (7.10) with wave-fronts (see x7.9, p42 for how the annotation process
can be automated). (7.9) is annotated so that its skeleton is the hypothesis:

((c+ d) + a
"

) + b = (c+ d) + 42
"

The rule (7.10) can be annotated in several ways, but only one of these permits any
rippling with (7.9):

(X + Y
"
) + Z) X + (Y + Z)

"

The condition that wave annotations match only allows one ripple | the desired
one to:

(c+ d) + (a+ b)
"

= (c+ d) + 42
"

Thus, rippling limits the rewriting search space by eliminating unproductive rewrit-
ings.

7.6. Bi-Directional Rewriting

Equations can be annotated as wave-rules in more than one way. In particular, an
equation can often be annotated in either orientation. For instance, the associativity
law of <> can be annotated in the following six ways:

X <> (Y <> Z
"
)) (X <> Y) <> Z

"

X <> (Y <> Z
"
)) (X <> Y)

#

<> Z

X <> (Y <> Z)
#

) (X <> Y
#
) <> Z

(X <> Y
"
) <> Z) X <> (Y <> Z)

"

(X <> Y)
"

<> Z) X <> (Y <> Z
#
)

(X <> Y) <> Z
#

) X <> (Y <> Z
#
)

The �rst three are oriented in one direction and the second three are oriented in the
other. Moreover, all six wave-rules are measure decreasing, left to right. This means

The automation of proof by mathematical induction 37

that we could use any combination of them in the same ripple sequence without
risk of non-termination. This is a surprising departure from the normal situation in
rewriting. Normally using an equation as a rewrite rule in both orientations could
cause looping. What prevents rippling from looping is that the wave annotations
will prevent the same equation being applied to reverse a previous rewrite, i.e. that
if you take the meta-functions into account then the equations are not reversible.
This ability to rewrite in either direction is frequently useful. We found a need

for it in step (6.9) in x6.3.2, p29. The step case of the generalised rev-rev conjecture
required a rewrite rule to be applied backwards. If we annotate this step case we
can see how rippling can enable this. The annotated step case is:

rev(t0 <> (h :: nil)) = h :: rev(t0)

` rev(h0 :: t0
"

<> (h :: nil)) = h :: rev(h0 :: t0
"

)

` rev(h0 :: t0 <> (h :: nil)
"

) = h :: rev(t0) <> (h0 :: nil)
"

(7.12)

` rev(t0 <> (h :: nil)) <> (h0 :: nil)
"

= h :: rev(t0) <> (h0 :: nil)
"

(7.13)

` rev(t0 <> (h :: nil)) = h :: rev(t0) ^ h0 :: nil = h0 :: nil
"

Note that step (7.13) is achieved on the RHS with the wave-rule:

H :: T <> L
"
) H :: T <> L

"

which is an annotation of rewrite rule (4.3), but in an inverted orientation. Step
(7.12) on the LHS, on the other hand, is achieved by a di�erent annotation of
rewrite rule (4.3) in its given orientation, namely:

H :: T
"
<> L) H :: T <> L

"

This bi-directional use of the same equation within the same derivation is handled
smoothly by rippling without looping.
Examples where the same equation needs to be used in di�erent orientations

within the same proof are relatively rare (but do happen { see the example above).
However, it is very common for the same equation to be used in di�erent orientations
within a family of proofs. For instance, associativity and distributivity laws are used
in both orientations quite frequently. Individual problem equations can be built-
into the uni�cation algorithm, e.g. associativity, but there will always be equations
which have not yet been so built-in or which cannot easily be built-in. Rippling
gives a useful exibility in such cases.

7.7. The De�nition of Wave Annotation

Wave-rules can be formally de�ned as annotated rewrite rules which are skeleton
preserving and measure decreasing. Full de�nitions of the concepts of well annotated

38 Alan Bundy

term, skeleton and measure can be found in [Basin and Walsh 1996], together with a
proof of the termination of rippling and an algorithm, called di�erence uni�cation,
for annotating formulae. We give an overview of this account here.

7.7.1. Meta-Level Functions
Wave annotations can be thought of as meta-level functions which are inserted into
the object-level terms. These meta-functions are:

wf : which de�nes a wave-front. This meta-function has a second argument of in
or out to indicate the direction of the wave-front.

wh: which de�nes a wave-hole within a wave-front.
snk: which de�nes a sink.

So rotate(h :: t
"
; blc) is represented by rotate(wf(h :: wh(t); out); snk(l)).

7.7.2. Normal Forms and Well-Formedness
It is convenient for both technical and implementational reasons to put annot-
ated terms into a normal form in which wave-fronts are all one-functor thick,
i.e. to split wider wave-fronts into a nested sequence of wave-fronts and wave-holes,

e.g. s(s(n))
"

is put into the normal form s(s(n)
"

)

"

. Another part of the nor-

mal form is to absorb inward directed wave-fronts into sinks that they immediately

dominate, e.g. f(a; bbc)
#

is rewritten to bf(a; b)c.

Let f be a functor immediately dominated by wf . At least one of the argu-
ments of f must then be dominated by a wh, but several can be. For instance,

in f(a ; b; c)
"

f is dominated by wf and two of its three arguments are dom-

inated by wh. f and b are said to be in the wave-front and a and c are said to
be in wave-holes. It is a condition of well-formedness that any wave-fronts nested
inside f must be nested in one of its wave-holes, i.e. the following is ill-formed

f(g(a)
"

; b)

"

. Sometimes matching inserts a wave-front in one of the non-wave-

hole arguments of f . The matcher must delete these meta-functions to make the

term well annotated, i.e. rewrite the above ill-formed term to20 f(g(a); b)
"

. Apart

from this requirement, matching of the LHS of a wave-rule to a redex is done by
the standard matching algorithm with the meta-functions being treated as normal
functions. Note that this means that any wave annotation in the LHS must match
corresponding wave annotation in the redex and that any wave annotation in the
redex must match either a variable in the LHS or corresponding wave annotation
there.

7.7.3. Skeletons and Skeleton Preservation
The skeleton is a set of terms formed by deleting all the wave-fronts and their
contents, but retaining the contents of the wave-holes. A skeleton is a set because

20This wave-front is still one functor thick; only f dominates the wave-hole b.

The automation of proof by mathematical induction 39

multiple wave-holes in a function give rise to multiple terms when wave-fronts

are deleted. For instance, the skeleton of rev(X <> Y
"
) is frev(X); rev(Y)g. A

weakening of an annotated term is one in which all but one wave-hole is deleted from

each function. For instance, rev(X <> Y
"
) is a weakening of rev(X <> Y

"
).

The skeletons of weakenings are always singletons, e.g. frev(X)g in the above ex-
ample.
A de�ning property of wave rules is that they are skeleton preserving. Skeleton

preservation means that the skeleton of the LHS of the wave-rule is a superset of the
skeleton of the RHS. Usually, they are equal, but in some cases this is not possible.
Consider, for instance, the replacement wave rule for <>.

X1 <> X2

"
= Y1 <> Y2

"
) X1 = Y1 ^ X2 = Y2

"

The skeleton of the LHS is fX1 = Y1; X1 = Y2; X2 = Y1; X2 = Y2g but that of the
RHS is only fX1 = Y1; X2 = Y2g. There is a way of excluding the unwanted elements
of the LHS skeleton, in this case, by associating colours with wave-holes, [Yoshida,
Bundy, Green, Walsh and Basin 1994]. In this example the wave-rule is viewed as
a doubleton whose members have di�erent colours: a red member, X1 = Y1, and a
blue member, X2 = Y2. The wave-holes in the wave-rule are coloured appropriately,
e.g.

Xred
1 <> Xblue

2

"

= Y red
1 <> Y blue

2

"

) X1 = Y red
1 ^X2 = Y blue

2

"

and these colours are taken into account in the de�nition of skeleton to ensure that
colours are not mixed. This makes the skeleton of both sides of the wave-rule be
fX1 = Y1; X2 = Y2g. Note that the = on the LHS is shared between the red and blue
skeleton members and must be labelled with the set fred; blueg. The advantage of
this colour labelling is that skeleton preservation in coloured wave-rules now means
equality of skeletons.

7.7.4. The Preconditions of Rippling
The preconditions of a ripple are as follows:

1. The induction conclusion contains a wave-front.

2. A wave-rule exists whose LHS matches a redex in the induction conclusion
containing this wave-front.

3. If the wave-rule is conditional then the condition can be proven.

4. Any inwards wave-fronts inserted into the induction conclusion contain either
a sink or an outwards wave-front in one of their wave-holes.

In x8, p45 we will consider various ways in which these preconditions might fail and
what patch might be applied to the proof in each case.

7.8. Termination of Rippling

To prove termination of rippling we need a measure onto a well-founded set and we
need to show that each ripple strictly decreases this measure. The intuition behind

40 Alan Bundy

this measure is that it decreases when outward directed wave-fronts move towards
the root of a term and when inwards directed wave-fronts move towards the leaves.
[Basin and Walsh 1996] de�nes a simple measure with this property. They prove
that if the measure of the RHS of each wave-rule is strictly smaller than that of the
LHS then the measure of the result of applying this wave-rule will also be strictly
smaller than the goal to which it is applied. This means we can restrict our attention
to wave-rules when proving termination. We outline the Basin/Walsh measure in
three stages.
First, consider the case where an annotated term is a weakening, i.e. has a

singleton skeleton, and has only outwards directed wave-fronts. Consider this skel-
eton as a parse tree with each node labelled by the wave-fronts immediately dom-
inating that functor in the skeleton. An example is given in �gure 2. Now abstract
this parse tree by replacing all the labels with the weight of the wave-fronts at that
point in the tree. There are various ways to calculate the weight, but the one we will
use is just the number of wave-fronts. Finally, we make a list where each element
corresponds to the depth of the tree and contains the total weight of wave-fronts at
that depth. Such lists can be well ordered by the lexicographic order in which the
element at greatest depth has highest precedence. In �gure 3 is an example showing
how the measure decreases during rippling.

+

s(s(+)
"

)

"

x
�� TT

s(y)
"

�� \\
z

s(s(x+ s(y)
"

)

"

)

"

+ z

0

2

0
�� CC
1

�� CC
0

0

2

1

[1,2,0]

In the bottom left hand corner is the term whose measure is to be calculated. In

the top left hand diagram the wave-front is used to label the parse tree of the

skeleton. In the middle diagram the node labels are abstracted to show just the

weight of the wave-fronts at that point. In the top right hand diagram the parse

tree is replaced by a list with each element showing the total weight of wave-fronts

at that depth. This list is reproduced in the standard horizontal format at bottom

right.

Figure 2: The Outwards Measure of Annotated Terms

Secondly, consider the case where a term has a non-singleton skeleton, but still
contains only outwards wave-fronts. The measure of this term is the multi-set of the

The automation of proof by mathematical induction 41

(s(x)
"

+ y) + z

+

+

s(x)
"�� TT

y

�� BB
z

[1,0,0]

(s(x+ y)
"

) + z

+

s(+)
"

x
�� BB

y

�� TT
z

[0,1,0]

(s((x+ y) + z)
"

s(+)
"

+

x
�� BB

y

�� BB
z

[0,0,1]

In the top row are three annotated terms in successive stages of a ripple. In the

middle row these three terms are each represented by the parse trees of their skel-

etons annotated by the wave-fronts at each node. In the bottom row are the meas-

ures of these three terms. Note that under the lexicographic order each measure

is strictly less than the one before.

Figure 3: The Strict Decrease of the Outward Measure

measures of each of its weakenings, ordered by the multi-set ordering. For instance,

the measure of rev(X <> Y
"
) is f[1; 0]; [1; 0]g.

Thirdly, consider the case where a term contains a mixture of outwards and
inwards wave-fronts. We de�ne an inwards measure exactly like the outwards one,
but with the lists lexicographically ordered in the reverse direction, i.e. with the
element at least depth having highest precedence. For instance, the inwards measure

of rev(X <> Y
#
) is f[0; 1]; [0; 1]g.

The overall measure is the lexicographically ordered pair of the outwards and
inwards measures, with the outwards measure having precedence over the inwards

one. For instance, the overall measure of length(h :: t
"
) + s(s(dble(bxc)))

#

is

hf[1; 0; 0]g; f[0; 2; 0]gi. One consequence of the outwards measure having precedence
is that just reversing the direction of an outwards wave-front to direct it inwards
will result in a measure decrease, but not vice versa. Under this overall measure
rippling can be shown to always terminate.

42 Alan Bundy

7.9. Automatic Annotation

Terms can be automatically annotated by a process called di�erence uni�cation,
[Basin and Walsh 1993]. This is like regular uni�cation but there is an additional
option to hide structure in wave-fronts. The conict rule of uni�cation fails the
uni�cation attempt if the outermost functions of the uni�cands are not identical.
In di�erence uni�cation the conict rule is replaced with two hide rules: one to hide
the mismatching function on the left and one to hide the one on the right. The
choice of hiding rules makes di�erence uni�cation non-deterministic; in general, it
returns several di�erence uni�ers. If hiding is only allowed on one side we have
di�erence matching. If no instantiation of variables is allowed then we have ground
di�erence uni�cation. Wave-rules and induction rules can be annotated by ground
di�erence uni�cation.
Directions of wave-fronts can then be inserted by a generate and test process;

each possible combination of directions is tested for measure decrease. Because the
outwards measure is lexicographically ordered before the inwards one it is always
possible to obtain a measure decrease in a wave-rule by directing LHS wave-fronts
outwards and RHS wave-fronts inwards. In order to prevent over production of
wave-rules it is usual to restrict this device to those situations where it is strictly
necessary to enable a legal annotation. For instance, if di�erence uni�cation has
found and inserted the following wave-fronts in the associative law of <>:

(X <> Y) <> Z) X <> (Y <> Z)

then the only way that directions can be added to these wave-fronts to create a
measure decrease is:

(X <> Y
"
) <> Z) X <> (Y <> Z

#
)

However, the following wave-fronts of the step case of the rotate function:

rotate(s(N) ; H :: T)) rotate(N; T <> (H :: nil))

can be directed , for instance, as:

rotate(s(N)
"

; H :: T
"
)) rotate(N; T <> (H :: nil)

"

)

It is not necessary to direct the RHS wave-front inwards to get measure decrease,
i.e.

rotate(s(N)
"

; H :: T
"
)) rotate(N; T <> (H :: nil)

#

)

But sometimes we do want a wave-rule of this form (see, for instance, wave-rule (7.8)
in x7.3, p34). To make such annotations available we can either remove the restric-
tion on non-minimal wave-rule annotations and allow (7.8) as a legal annotation or
we can employ a meta-rule that any outwards wave-front in the induction conclu-
sion can be turned inwards provided it contains a sink or an outwards wave-front

The automation of proof by mathematical induction 43

in one of its wave-holes. Of course, we cannot turn inwards wave-fronts outwards
since this would usually increase the measure.
There is a similar choice over weakenings. Sometimes weakened forms of wave-

rules are required for a proof. Consider, for instance, the use of wave-rule (7.4) in
x7.2, p33.

rev(X <> Y
"
)) rev(Y) <> rev(X)

"

This wave-rule is a weakening of:

rev(X <> Y
"
)) rev(Y) <> rev(X)

"

We can either generate such weakenings explicitly or adapt wave-rule matching to
automatically weaken the wave-rule as required. This is a space/time tradeo�.

7.10. Ripple Analysis

Rippling suggests a useful alternative to recursion analysis (see x6.1.1, p22) for
providing initial induction rule suggestions to prove a conjecture. In recursion ana-
lysis we use the recursive arguments of functions in conjectures to suggest induction
rules. In ripple analysis we look ahead into the rippling process to see which in-
duction rules will support the initial stage of rippling. This will allow us to use
any argument of a function, provided there is a wave rule in which this argument
contains a wave-front. Since recursive de�nitions provide wave-rules in which the
recursive arguments contain wave-fronts, ripple analysis includes but extends re-
cursion analysis.
To see how this works, consider the conjecture:

8y:�; xs:list(�): y � foldleft(�; e; xs) = foldleft(�; y; xs) (7.14)

where foldleft is a functional de�ned by:

foldleft(F;X; nil)) X

foldleft(F;X; H :: T
"
)) foldleft(F; F (X ;H)

#

; T) (7.15)

and � is an associative function with a right identity e:

X � (Y � Z
"
)) (X � Y) � Z

"

(7.16)

X � e) X

Assume, in addition, that the following wave-rule is also available as a lemma:

foldleft(F;Z; L <> (X :: nil)
"

)) F (foldleft(F;Z; L) ; X)
"

(7.17)

44 Alan Bundy

Since foldleft recurses on its third argument, xs is unawed in (7.14). Thus
recursion analysis will suggest a one-step induction on xs using (4.6). However, this
induction does not lead to fertilization. The step case will proceed as follows:

Y � foldleft(�; e; xs) = foldleft(�; Y; xs)

` byc � foldleft(�; e; h :: xs
"
) = foldleft(�; byc; h :: xs

"
) (7.18)

` byc � foldleft(�; e; h :: xs
"
)| {z }

blocked

= foldleft(�; by � hc; xs) (7.19)

at which point the left-hand side wave-front is blocked because there is no sink in
the second argument of foldleft. Weak fertilization can take place to yield:

y � foldleft(�; e; h :: xs) = (y � h)� foldleft(�; e; xs)

but again one-step induction on xs is suggested and this time no rippling is possible,
resulting in a failed proof.
We now consider how rippling analysis will deal with this example. We look ahead

into the rippling process and for each combination of occurrences of universally
quanti�ed variables in the conjecture we ask if they were replaced by suitable wave-
fronts, whether a wave-rule would then apply. Consider, for instance, the second

occurrence of xs in (7.14). If this occurrence of xs were replaced by h :: xs
"
then

wave-rule (7.15) from the recursive de�nition of foldleft would apply to (7.14), as
at step (7.18) above. So the second occurrence of xs suggests an induction on xs
using the one-step list induction (4.6). To implement this ripple analysis process
e�ciently we can invert the reasoning described above, i.e. we can use the available
wave-rules to suggest which combinations of variables to replace with which wave-
fronts, so that those wave-rules will apply.
So far, this reasoning merely recapitulates recursion analysis in di�erent termin-

ology. The �rst di�erence comes when we consider the �rst occurrence of xs. Under
recursion analysis this also suggested induction rule (4.6), since it also occurred in
the recursion argument of foldleft. However, under ripple analysis, if this occur-

rence of xs were replaced by h :: xs
"
then wave-rule (7.15) would not apply, but

would be blocked due to the absence of an appropriate sink, as in step (7.19) above.
The second di�erence with recursion analysis, is that ripple analysis can use

lemma (7.17) with both occurrences of xs to suggest a di�erent induction rule. If

either occurrence of xs is replaced by xs <> (x :: nil)
"

then wave-rule (7.17) will

apply. This wave-front suggests the induction rule:

P (nil); 8x:�; l:list(�): P (l)! P (l <> (x :: nil)
"

)

8l:list(�): P (l) (7.20)

Since both occurrences of xs suggest induction rule (7.20) and only one occurrence
suggests induction rule (4.6) then rule (7.20) is preferred. Under this rule the step

The automation of proof by mathematical induction 45

case is successful:

byc � foldleft(�; e; xs <> (x :: nil)
"

) = foldleft(�; byc; xs <> (x :: nil)
"

)

byc � (foldleft(�; e; xs) � x
"

) = foldleft(�; byc; xs) � x
"

(byc � foldleft(�; e; xs)) � x
"

= foldleft(�; byc; xs) � x
"

byc � foldleft(�; e; xs) = foldleft(�; byc; xs)

using two applications of lemma (7.17), one of associativity law (7.16) and the
replacement rule for �. Strong fertilization is now possible.
Recursion analysis suggests induction rules dual to the recursive de�nitions of

functions in the conjecture. Ripple analysis uses the available wave-rules to suggest
induction variables and rules. The wave-fronts in these wave-rules suggest the form

of induction. In example (7.14), xs <> (x :: nil)
"

was used to replace both oc-

currences of xs. This is the wave-front which occurs in induction rule (7.20). For
ripple analysis to recover the appropriate induction rule, each induction rule must
be indexed by the wave-fronts in its induction term, e.g. (7.20) must be indexed by

xs <> (x :: nil)
"

. Unfortunately, no-one has yet developed a mechanism which

given an induction term creates a corresponding induction rules. So, in our example,
if rule (7.20) is not already pre-stored then it cannot be used. We return to this
issue in x9.4, p53.
So, just as in recursion analysis, induction rules must be constructed from the

termination proofs of recursive functions in conjectures. In addition the induction
hypotheses and induction conclusions of these induction rules must be di�erence
matched and annotated with wave-fronts. The induction rules must then be in-
dexed by the wave-fronts they contain, so that ripple analysis can access induction
rules containing appropriate wave-fronts. Induction rules created by other means,
e.g. provided by a user, must be indexed in a similar way.
Ripple analysis, like recursion analysis, only supplies the initial induction rule

suggestions. Where these suggestions are incompatible it may be necessary to reject
inferior suggestions and combine the remainder using the techniques described in
x6.1.4, p24 for recursion analysis.

8. The Productive Use of Failure

The discussion of search control problems in x6, p21 identi�ed lots of places where
guidance was needed during inductive proofs. For instance, when is it necessary
to introduce a lemma or generalisation and which lemma or generalisation should
be used? One successful approach to inductive search control is: to detect when
a proof attempt is breaking down; analyse the cause of the failure; and use this
analysis to direct the search process. This approach is usually called the productive

46 Alan Bundy

use of failure. See [Ireland 1992, Ireland and Bundy 1996b], for instance, for more
discussion of this approach.
In order to detect proof failure you have to have a strong expectation of how it

should have gone. Such a strong expectation is provided, for instance, by rippling. So
we will illustrate the detection, analysis and correction of failure with two examples
based on the breakdown of rippling. In both cases the initial proof attempt has
reached the step case of an inductive proof and rippling has been initiated. It has
then failed because the preconditions of a particular ripple (see x7.7.4, p39) were
not met. Di�erences in the precondition failure, however, suggest a di�erent proof
patch in each case.

8.1. Example: Speculating a Lemma

Consider again the generalised rotate length conjecture, (6.8) from x6.2.2, p26. We
saw how an attempt to prove this conjecture without lemmas would get stuck in
the step case after the following ripple:

rotate(length(t); t <> K) = K <> t

` rotate(length(h :: t
"
); h :: t

"
<> bkc) = bkc <> h :: t

"

` rotate(s(length(t))
"

; h :: t <> bkc
"

) = bkc <> h :: t
"

` rotate(length(t); t <> bkc <> (h :: nil)
#

) = bkc <> (h :: t
"
)

At this point no further wave-rules apply.
In terms of the preconditions of rippling we have the following situation:

1. Both sides of the induction conclusion contain wave-fronts.

2. No wave-rule exists whose LHS matches any redex in the induction conclusion
containing these wave-fronts. There isn't even a near match. So this precondition
fails.

3. With no wave-rule there is no condition to check.

4. Similarly, there are no inwards wave-fronts to check.

In such cases the best bet seems to be to introduce a lemma which can be
annotated as the missing wave-rules. We can say a lot about the structure of this
missing wave rule. For instance, on the LHS of our example above the redex we

want to rewrite is: (t <> bkc) <> (h :: nil)
#

. So the LHS of the missing wave-

rule must have the form: (X <> Y) <> Z
#

. Note that we must preserve all the

structure of the skeleton, but can generalise the contents of the wave-front to a
new variable. We can also say a lot about the RHS of the missing wave-rule. It
should have the same skeleton as the LHS, but the wave-front can take any form.
We can represent this uncertainty about the wave-front by using a second-order
meta-function, F , to represent it. Since the point of this wave-rule is to ripple the

The automation of proof by mathematical induction 47

wave-front towards the sink, bkc, we can say that the wave-hole of F should be Y ,
the free variable that will match bkc. So we can speculate the missing wave-rule to
be:

9F:8X;Y; Z: (X <> Y) <> Z
#

) X <> F (Y ; Z)
#

(8.1)

Quanti�ers have been inserted to clarify the status of the variables in the proof,
but types have been omitted to facilitate readability.
(8.1) can now be fed to the inductive theorem prover as a new conjecture. The

proof of conjectures containing second-order meta-functions requires special treat-
ment. In particular, instead of using rewriting we need to use narrowing, i.e. rewrit-
ing in which free variables in the redex can be instantiated by uni�cation with the
rewrite rule. It will also be necessary to use second-order uni�cation during narrow-
ing. Note that universal variables like X , Y and Z should not be instantiated, but
existential variables like F can be. During the proof of (8.1) the second-order vari-
able F is instantiated to <>, so the missing rule turns out to be the associativity
of <> annotated as:

(X <> Y) <> Z
#

) X <> (Y <> Z
#
) (8.2)

as expected.
Similar reasoning will speculate the missing RHS wave-rule as:

L <> (H :: T
"
)) G(L ;H)

#

<> T

during the proof of which G is instantiated to reveal the wave-rule as:

L <> (H :: T
"
)) (L <> (H :: nil)

#

) <> T (8.3)

again, as expected.
This lemma speculation mechanism can also be used to suggest the missing wave-

rule (6.7) from x6.2.1, p25. Analysis of the stuck ripple suggests that the form of
the missing wave-rule is:

rev(X <> Y
"
)) F (X;Y; rev(X))

"

The meta-variable F will be instantiated during subsequent proof to: F (X;Y; Z) =
rev(Y) <> Z, so that the missing wave-rule is revealed as:

rev(X <> Y
"
)) rev(Y) <> rev(X)

"

as required.
Second and higher-order uni�cation algorithms are non-deterministic. The

branching rate can be very high and can cause severe search problems. In this ap-
plication we can exploit the wave annotations to reduce the branching signi�cantly,

48 Alan Bundy

i.e. we insist that wave-fronts unify with wave-fronts and skeletons with skeletons.
These additional constraints make the lemma speculation technique tractable in
many practical cases. [Hutter and Kohlhase 1997] describes a higher-order uni�ca-
tion algorithm for annotated terms which embeds these additional constraints.
In addition, the termination of rippling is lost when meta-variables are present

in the conclusion. The search control must avoid in�nite branches, e.g. by some
element of parallelism in the search using breadth-�rst or iterative deepening, and
by using eager fertilization to terminate branches whenever this is possible.

8.2. Example: Introducing a Sink

Now consider the rotate length conjecture, (6.10), from x6.3.3, p30. An attempt to
prove this conjecture using rippling will get stuck in the step case after the following
ripple:

rotate(length(t); t) = t ` rotate(length(h :: t
"
); h :: t

"
) = h :: t

"

` rotate(s(length(t))
"

; h :: t
"
) = h :: t

"

At this point no further wave-rules apply.
In terms of the preconditions of rippling we have the following situation:

1. Both sides of the induction conclusion contain wave-fronts.

2. A wave-rule exists whose LHS matches a redex containing both the LHS wave-
fronts, namely:

rotate(s(N)
"

; H :: T
"
)) rotate(N; T <> (H :: nil)

#

)

3. The wave-rule is unconditional so there is no condition to prove.

4. The inwards wave-front inserted into the induction conclusion would be

t <> (h :: nil)
#

. This contains neither a sink nor an outwards wave-front

in its wave-hole. So this precondition fails.

Since we have a matching wave-rule already, there seems little point in looking for
another one, until we have tried harder to make the existing one applicable. What
is preventing it from applying is the absence of a sink or an outwards wave-front in
the appropriate place. So in such cases we should try to insert one of these, starting
with a sink. Sinks are created by the presence of additional universal variables in
the conjecture. So this analysis suggests generalising the theorem to introduce an
additional universal variable.
The original conjecture is:

8l : list(�): rotate(length(l); l) = l

We need a sink in the second argument of rotate. Since we don't know how it is
attached to the existing argument we can link it with a meta-variable, i.e.

8l; k : list(�): rotate(length(l); F (l; k)) = l

The automation of proof by mathematical induction 49

To balance up this conjecture we had better add the new variable to the RHS too.

8l; k : list(�): rotate(length(l); F (k; l)) = G(k; l)

We can now prove this generalised conjecture using narrowing with second-order
uni�cation to instantiate F and G. Assuming that the lemmas (8.2) and (8.3) are
available the step case of the proof proceeds as follows:

rotate(length(t); F (K; t)) = G(K; t)

` rotate(length(h :: t
"
); F (bkc; h :: t

"
)) = G(bkc; h :: t

"
)

` rotate(s(length(t))
"

; h :: t <> F2(bkc; h :: t
"
)

"

) = G(bkc; h :: t
"
)

` rotate(length(t); t <> F2(bkc; h :: t
"
) <> (h :: nil)

#

) =

(G2(bkc; h :: t
"
) <> (h :: nil)

#

) <> t

where F (k; l) = l <> F2(k; l) and G(k; l) = G2(k; l) <> l. These instantiations
are made by second-order uni�cation during the application of wave-rules (4.3) and
(8.3), respectively. The step can now be completed by strong fertilization, with F2
and G2 both being instantiated to projection functions onto their �rst arguments
in the process. These instantiations of the meta-functions reveal the generalised
conjecture to be:

8l : list(�):8k : list(�): rotate(length(l); l <> k) = k <> l

as expected.
As with lemma speculation (see x8.1, p46) the presence of these meta-functions

creates branch points in the proof search, but the extra constraints provided by the
wave annotation reduce the search and make it tractable in many practical cases.
We must also take care to avoid in�nite regress in the rippling search process.

9. Existential Theorems

The discussion so far has mostly been restricted to conjectures containing only
universal variables (see x1.2, p4). Dealing with conjectures which include existential
variables requires extending the techniques described above.

9.1. Synthesis Problems

Existential variables are required to represent synthesis problems as theorem prov-
ing problems. For instance, suppose the task of sorting a list has been speci�ed as

50 Alan Bundy

producing an ordered permutation of the original list. The problem of synthesising
a sorting algorithm can be represented as the conjecture:

8l : list(�):9k : list(�): ordered(k) ^ perm(l; k)

where ordered(k) means k is ordered and perm(l; k) means k is a permutation of l. If
this conjecture is proved in a constructive logic then a program for sorting lists can
be recovered from the proof. Various techniques have been devised for extracting
the synthesised program from the proof, but the simplest is as the witness of the
existential variable k, i.e. during the proof k will be instantiated to a term sort(l)
and the proof will ensure that:

8l : list(�): ordered(sort(l)) ^ perm(l; sort(l))

The synthesis proof of sort will require induction and this will cause sort to be
de�ned recursively: the form of induction determining the form of recursion. Di�er-
ent proofs of the theorem will synthesise di�erent algorithms for the same function,
e.g. bubble-sort, merge-sort, quick-sort, etc (see [Darlington 1978] for a detailed
discussion).
Synthesis of recursively de�ned software, hardware, etc is an important applica-

tion of inductive theorem proving. So it is important that inductive theorem proving
techniques can handle existential variables, in particular, conjectures of the form:

8i
�!

:��!:9o:� 0: spec(i
�!

; o)

where spec(i
�!

; o) speci�es the relationship between the inputs, i
�!

, and the output,
o, of the object to be synthesised. Note that spec may contain further quanti�ers.
Unfortunately, automated synthesis is an area where current technology is weak.

9.2. Representing Existential Theorems

There are a variety of techniques for representing existential variables during auto-
mated proof.

9.2.1. Existential Variables as First-Order Free Variables
The classic technique, which is standard in resolution theorem proving, for instance,
is to dual skolemise the conjecture, replacing universal variables with skolem func-
tions and existential variables with free variables. So our sort example will become:

ordered(K) ^ perm(l;K)

This conjecture will then be proved with �rst-order uni�cation instead of matching,
so that K can be instantiated as a side e�ect of the proof. At the end of the proof
K will be instantiated to sort(l) and a recursive de�nition of sort will be extracted
from the inductive proof.

The automation of proof by mathematical induction 51

9.2.2. Existential Variables as Second-Order Free Variables
An equivalent21 formulation of the sorting algorithm synthesis problem is as the
second-order conjecture:

9f : list(�) 7! list(�):8l : list(�): ordered(f(l)) ^ perm(l; f(l))

This can be dual skolemised to:

ordered(F (l)) ^ perm(l; F (l))

and second-order uni�cation used to instantiate F to sort (see x8.1, p46 and x8.2,
p48 for examples of this technique). Again the recursive de�nition of sort must be
extracted from the proof.

9.2.3. Existential Variables as Skolem Functions
Notice that these techniques of instantiating free variables during the proof do not
buy us very much. The variable is merely instantiated to the name of the synthesised
object, e.g. sort, and most of the work of extracting the recursive de�nition of this
object remains. So we might as well do the instantiation at the outset, i.e. prove
the conjecture:

8i
�!

:��!: spec(i
�!

; prog(i
�!

))

where prog is the object to be synthesised. This technique was originally developed
by Biundo, [Biundo 1988]. We then need to extract a recursive de�nition of prog
from the inductive proof.

9.3. Extracting Recursive De�nitions

We discuss two techniques for extracting programs from proofs.

9.3.1. Proofs as Programs
The proofs as programs technique was designed for the extraction of programs
from synthesis proofs. It uses a constructive type theory, like that due to Martin-
L�of, [Martin-L�of 1979] and implemented in NUPRL, [Constable, Allen, Bromley
et al. 1986]. From our viewpoint the idea is to associate with each rule of inference,
a program construction rule. Initially, the program is represented by a free variable.
Each time the prover applies a rule of inference the program is instantiated by the
associated program construction rule. This instantiation usually introduces further
free variables which are instantiated by subsequent proof steps. At the end of the
proof the program can be read o� as the instantiation of the original free variable.
The proofs as programs technique is based on the Curry-Howard isomorphism,

[Howard 1980], which draws on an analogy between logical rules and type con-
struction rules. Speci�cations are represented as types and programs meeting these

21Modulo the axiom of choice.

52 Alan Bundy

speci�cations as members of those types, i.e. prog : spec. The logical rules ma-
nipulate the types and the program construction rules manipulate their members
(roughly speaking). Both parts are based on a sequent calculus presentation of �
calculus. Higher-order functions and � abstraction both play an essential role. They
are needed in some of the tricky manipulations required in the program construc-
tion rules, especially the rules that construct recursive programs from induction
proof steps. The program associated with the induction hypothesis must be embed-
ded as the recursive call in the program associated with the induction conclusion.
This embedding is neatly done in Martin-L�of Type Theory by representing recur-
sion with recursive functionals, i.e. higher-order functions which create recursive
functions from their de�ning functions. The extracted program is a � calculus func-
tion which can be interpreted as a program in a functional programming language.
Proofs as programs can also be adapted to the synthesis of hardware and other
kinds of objects.

9.3.2. The Speculation of Program De�nitions
An alternative approach to synthesis is to try to recognise de�nition-like subgoals
during the synthesis proof and convert them into program de�nitions. These de�ni-
tions can then be used to complete the proof and to de�ne the synthesised program.
This has been explored in di�erent forms by Biundo, [Biundo 1988], and Kraan,
[Kraan, Basin and Bundy 1996]. We illustrate the general idea by adapting the tech-
nique of lemma speculation of x8.1, p46 using the skolem function representation
of x9.2.3, p51 on the sort example.
We start with the synthesis conjecture:

8l : list(�): ordered(sort(l)) ^ perm(l; sort(l))

We cannot prove this because we lack a de�nition of sort. This lack may manifest
itself during the course of the proof attempt by the failure of rippling. Using the
techniques of x8.1, p46 we may speculate the wave-rule:

sort(H :: T
"
)) F (H; sort(T))

"

Instead of trying to prove this we can adopt it as the step case of the recursive de�n-
ition of sort. The second-order, meta-variable F can be instantiated to a constant
and becomes a new program to be synthesised by the remainder of the synthesis
proof. If we instantiate F to insert, say, then the partial de�nition of sort is:

sort(H :: T) = insert(H; sort(T))

This alternative technique has the advantage of requiring theorem proving only
in the universal fragment of �rst-order logic22. It has the disadvantage of currently
lacking the theoretical underpinning of proofs as programs.

22Unless we want to use it to synthesis higher-order functions, of course.

The automation of proof by mathematical induction 53

9.4. Problems with Recursion Analysis

If recursion analysis (see x6.1.1, p22) is used to construct the induction rule in
the synthesis proof of a recursive program then we run into the following prob-
lem. The form of induction constructed is based on the forms of recursion in the
functions in the conjecture. These functions are all drawn from the speci�cation of
the program. The induction rule used will determine the recursive structure of the
synthesised program, and thus its essential algorithmic structure. This means that
the algorithmic structure of the synthesised program is already implicitly present
in its speci�cation.
This puts a limit on the practical creative power of synthesis by proof. The

technique cannot break out of the circle of forms of recursion known to it, except
by combination and merging of existing forms of recursion. Something radically new
(as, for instance, quick-sort historically was) cannot be built without user assistance.
Moreover, it is necessary to include algorithmic content in speci�cations, in the
sense that they must include functions with essentially the same kind of recursion
as needed in the synthesised program.
Ripple analysis (see x7.10, p43) gives a pointer as to how to break out of this

circle. In ripple analysis, induction rules are cued on the basis of wave-fronts in
known wave-rules, not recursive functions in the speci�cation. These wave-fronts
need not (and often do not) index an induction rule dual to any recursion present
in the speci�cation. This frees speci�cations from being algorithmic. Consider, for
instance, the problem of synthesising quicksort from the speci�cation:

8l:list(�):9k:list(�): ordered(k) ^ perm(l; k)

where ordered and perm are de�ned as:

ordered(nil)$ >

ordered(H :: nil)$ >

ordered(H1 :: (H2 :: T))$ H1 � H2 ^ ordered(H2 :: T)

perm(nil; L)$ L = nil

perm(H :: T; L)$ perm(T; delete(H;L))

where delete(H;L) deletes one copy of H from L. Note that recursion analysis
will suggest a simple two-step structural induction rule, leading to a similar two-
step recursion in the synthesised sorting algorithm, which is not what is required.
Ripple analysis, on the other hand, could suggest the correct form of induction for
this synthesis problem using the wave-rule:

ordered(lesseq(H; T) <> (H :: greater(H; T))
"

)) ordered(T) (9.1)

assuming it was available as a lemma23.

23Which is, admittedly, a strong assumption

54 Alan Bundy

Suppose the the wave-front is just used to index an induction rule already known
to the prover, i.e. in practice, one that has arisen from the termination proof of a
known recursive function. The synthesis technique will then not be able to break
out of the circle of known forms of recursion and simple combinations of them.
To construct a radically new form of recursion it is necessary to synthesise new
induction rules from wave-fronts. In our example it would be necessary to use the
wave-fronts in wave-rule (9.1) to synthesise the special-purpose induction rule:

P (nil) 8h:�:8t:list(�): P (lesseq(h; t)) ^ P (greater(h; t))! P (h :: t)

8l:list(�): P (l)

which is a special case of N�therian induction, x2.1, p5, where � is the relationship
of one list being shorter than another. This problem has been addressed by Protzen,
[Protzen 1994], who uses Walther's techniques for proving termination, [Walther
1994b], to construct a � from the wave-front and hence construct an induction rule
customised for the conjecture. In general, synthesising induction rules from wave-
fronts is a hard problem (since it embeds the halting problem) and only partial
solutions are possible.

10. Interactive Theorem Proving

The di�culty of the search control problems that arise in inductive theorem proving
means that all current automatic provers fail on some apparently simple conjec-
tures. Even totally automatic provers are often sensitive to the precise de�nitions
of functions in, parameterisations of or lemmas available to the prover. Until the
technology is signi�cantly improved it is, therefore, necessary to involve a human
user in assisting with proof search.

10.1. Division of Labour

There is a continuum from purely interactive to purely automatic provers, and most
provers lie somewhere in the middle of this continuum; routine proof tasks are auto-
mated and hard proof tasks require human interaction. Examples of routine tasks
which are often automated are: keeping track of the state of the proof; matching
and uni�cation of expressions; the simpli�cation of expressions; the application of
decision procedures; and the exhaustive application of a set of rewrite rules. Typ-
ically, these require the application of a straightforward algorithm, so are easy to
automate, but are long-winded manipulations in which humans can easily become
lost or make errors. Examples of hard tasks which are sometimes left to human
interaction are: the choice of induction rule; the decision to split into cases; the
application of a lemma; and the generalisation of the conjecture. Typically, these
involve a crucial search decision or construction of a key expression which require
some insight into the structure of the proof.

The automation of proof by mathematical induction 55

10.2. Tactic-Based Provers

A popular framework for semi-automated theorem proving is the use of tactics. A
tactic is a computer program for guiding the proof search. This programmay apply a
rule of inference or combine two or more tactic applications using tacticals. There are
tacticals for successive application, repeated application, conditional application,
etc. Tactics are constructed for a variety of routine tasks, e.g. simpli�cation of
expressions, applying decision procedures, applying sets of rewrite rules, applying
induction, generalising formulae, etc. The user can then direct the proof search
either by calling individual rules of inference or by calling a tactic, which will apply
several rules of inference. Much of the tedium and error is thus removed from
the interactive process. The user may assist the tactic application by providing
key parameters, e.g. which induction rule to use, which formula to generalise the
current conjecture to. The user can view the proof either at the high level of tactic
applications or at the low level of individual rules.
Tactics were invented by Milner and his co-workers and �rst implemented in the

LCF system, [Gordon, Milner andWadsworth 1979]. They developed the ML (Meta-
Language) functional programming language to describe tactics in LCF. Each tactic
is an ML program which can construct new theorems from old ones. ML uses types
to ensure the soundness of the tactics. \Theorem" is an ML type; an expression
cannot be of type theorem unless it is the result of a proof. A whole family of
tactic-based provers have been built in the LCF tradition, including Coq, HOL,
Isabelle, NuPrl and Oyster.

10.3. User Interfaces

To enable users to guide semi-automated inductive provers it is necessary to provide
a user interface. Such interfaces need to be designed with the problems of inductive
search control in mind so that the user gets maximum assistance when making
di�cult search control decisions.
The design of a theorem prover interface depends on the intended user. Novices

need some way to de�ne the conjecture, to view the proof and to provide proof
guidance. More experienced users may also require ways to de�ne new theories,
to browse through libraries of conjectures, de�nitions, lemmas, etc, and to switch
between one part of a proof attempt and another. System developers want access
to the underlying system and want to interleave testing the prover and modifying
it. Novices want a simple interface with limited functionality, so that they do not
become confused and/or issue instructions at variance with their intentions. Experts
want multiple views onto the prover and proof process and want a rich functionality.
User interfaces to theorem provers have exploited many interface design tech-

niques advocated by the human computer interaction (HCI) community. These in-
clude: simple command line interfaces; via text editors (including structure editors);
and graphical user interfaces (GUIs) with multiple windows, menus and icons. Each
approach has its advantages and disadvantages for di�erent groups of users. For in-

56 Alan Bundy

stance, GUIs and structure editors are particularly attractive for novices, since they
provide limited functionality in a readily understood format which minimises the
memory requirements on the user. Experts, on the other hand, often require a richer
functionality and require access to a command line interface. For convenience, this
is often called from within a text editor, which facilitates recording, cutting and
pasting of interactions. Many interfaces provide a combination of these techniques,
so that users have access both to multiple graphical views and memory aids, on
the one hand, and to rich functionality and the innards of the prover, on the other.
This may enable one interface design to satisfy several di�erent kinds of user.
The design of user interfaces to theorem provers provides a tough challenge to

HCI. To guide the prover e�ectively requires a good understanding of the current
state of the proof and the reasons for previous failures. Mathematics is inherently
di�cult and proofs can be very complex and subtle. Some potential users (e.g. sys-
tems designers using formal methods) may not be familiar with formal proof. A
good interface must: assist users to understand the current proof attempt; provide
mechanisms for them to interact with the proof process; avoid bewildering them
with too much information, while providing what is required; and help them ex-
plore their options without imposing too high a cognitive load. This problem is
by no means solved. Research on the various approaches to it can be found in the
proceedings of the Workshops on User Interfaces for Theorem Provers.

11. Inductive Theorem Provers

Many theorem provers have been built with some kind of inductive capability.
In this brief survey we restrict our attention to those explicit induction provers
used as vehicles for signi�cant advances in the automation of inductive reasoning.
Interactive systems were briey discussed in x10, p54. Implicit induction provers
are dealt with in the chapter \Inductionless induction" by Hubert Comon in this
book.

11.1. The Boyer/Moore Theorem Prover

Nqthm, better known as the Boyer/Moore theorem prover, was the �rst theorem
prover to focus speci�cally on the problems of search in inductive proof. It has a
long history starting at the University of Edinburgh in the early 70s, [Boyer and
Moore 1973], and undergoing development at SRI International, Xerox PARC and
the University of Texas at Austin, before becoming the main development system
of the company, Computational Logic Inc (CLInc), founded by Boyer and Moore.
It has been the subject of two books, [Boyer and Moore 1979, Boyer and Moore
1988a] and has recently been completely re-implemented as ACL2, [Kaufmann and
Moore 1997, Brock, Kaufmann and Moore 1996]. There is also a version, PC-Nqthm,
[Kaufmann 1988], with improved interactive facilities.
It has been applied to a massive number of conjectures | its standard corpus now

The automation of proof by mathematical induction 57

stands at 24 megabytes | including some very hard problems like the veri�cation of
complete microprocessors and the proof of G�odel's incompleteness theorem. During
most of its history it has been regarded as the state of the art inductive prover.
More details can be found on the following web pages:

ftp://ftp.cs.utexas.edu/pub/boyer/nqthm/index.html

ftp://ftp.cs.utexas.edu/pub/boyer/nqthm/nqthm-bibliography.html

http://www.cs.utexas.edu/users/moore/acl2/

Both Nqthm and ACL2 use a simple, sub-�rst-order, type-less logic, based on
Goodstein's primitive recursive arithmetic adapted from numbers to lists. Vari-
ables are regarded as implicitly universally quanti�ed, so there is no existential
quanti�cation. There are no explicit types in the language but implicit types can
be imposed either by adding conditions to conjectures or by using coercion func-
tions which limit expressions to an appropriate range. An example of a coercion
function is num, which makes any term into a natural number, i.e.

num(x) =

(
x if x : nat

0 otherwise

Many of the proof techniques described above were invented by Boyer and Moore
and �rst implemented in Nqthm. These include: recursion analysis; destructor elim-
ination; generalisation of subterms; the exible use of decision procedures; and the
productive use of failure to decide when to apply induction. Most of these are de-
scribed in [Boyer and Moore 1979, Boyer and Moore 1988a, Boyer andMoore 1988b].

11.2. RRL

The RRL (Rewrite Rule Laboratory) system was initially developed in the early 80s
by Kapur, Sivakumar and Zhang at General Electric and Rensselaer Polytechnic,
[Kapur, Sivakumar and Zhang 1986]. Following the move of Kapur to SUNY at
Albany, the main development moved there, [Kapur and Zhang 1995]. Initially RRL
used only implicit induction techniques, but subsequently it also included explicit
induction, to which it made signi�cant advances, justifying its inclusion in this
survey. It has been used for the proof of some signi�cant mathematical theorems
including the Chinese remainder theorem and Ramsey's theorem.
RRL, as its name implies, is based exclusively on rewriting with, possibly condi-

tional, equations. This is not as limiting as it �rst appears since any predicate can
be encoded as an equation by making the boolean truth values into terms. Indeed,
RRL has competed against resolution theorem provers by translating resolution
and paramodulation into forms of conditional rewriting.
One of RRLs' main contributions has been to adapt the techniques of implicit

induction) to explicit induction, using a technique called cover-sets, [Zhang, Kapur
and Krishnamoothy 1988]. This constructs induction rules whose well-founded re-
lation is based on syntactic orderings developed for orienting rewrite rules, e.g. re-
cursive path orderings. RRL also uses Knuth-Bendix completion for improving

58 Alan Bundy

the computational power of the set of rewrite rules provided. More recently, it
has been used as a vehicle to develop ideas about lemma discovery, [Kapur and
Subramaniam 1996].

11.3. INKA

The INKA prover was initially developed in the 80s by a team of four researchers:
Biundo, Hummel, Hutter and Walther, from the University of Karlsruhe, [Biundo,
Hummel, Hutter and Walther 1986]. When this team broke up separate develop-
ment continued at Darmstadt by Walther and Saarbr�ucken by Hutter, [Hutter and
Sengler 1996]. INKA is based on a resolution theorem prover for clausal, �rst-order
logic. At various times in its history it has formed the inductive component of lar-
ger provers, e.g. the MarkGraf Karl prover, [Eisinger, Siekmann, Smolka, Unvericht
and Walther 1980], the
mega prover, [Benzm�uller, Cheikhrouhou, Fehrer, Fiedler,
Huang, Kerber, Kohlhase, Meirer, Melis, Schaarschmidt, Siekmann and Sorge 1997],
and the VSE system, [Hutter, Langenstein, Siekmann and Stephan 1996]. It has
been used for the veri�cation of software of industrial interest and signi�cant size.
More details can be found on the following web page:

http://www.dfki.de/vse/systems/inka/

Each of the INKA authors has made signi�cant contributions to the proof tech-
niques described above. Walther's contributions have been the proof of termin-
ation of recursive functions, [Walther 1994b], and the construction of induction
rules, [Walther 1992, Walther 1993]. Hutter's contributions have been in tech-
niques for guiding search, especially the development and application of rippling,
[Hutter 1990, Hutter 1997, Hutter and Kohlhase 1997]. Hummel's contribution
was the development of heuristics for generalisation, [Hummel 1990]. Biundo's
contribution was the synthesis of programs by the proof of existential theorems,
[Biundo 1988].

11.4. Oyster/CLAM

The Oyster/CLAM was developed at the University of Edinburgh in the 90s by
a large team led by the author, [Bundy, van Harmelen, Horn and Smaill 1990].
Oyster is a Prolog re-implementation by Horn of NUPRL, i.e. it is a tactic-based
proof editor based on Martin-L�of constructive type theory. CLAM is a proof planner
which guides Oyster. The behaviour of each Oyster tactic is speci�ed in a meta-
language. CLAM reasons in this meta-language to construct a customised tactic
for each conjecture and then supplies this tactic to Oyster. These tactics include
rippling. The combined system has been used for the veri�cation of a complete
microprocessor and the synthesis of the rippling tactic. More details can be found
on the web page:

http://dream.dai.ed.ac.uk/home.html

The automation of proof by mathematical induction 59

The contributions of the Edinburgh team include: proof planning, [Bundy 1988,
Bundy, van Harmelen, Hesketh and Smaill 1991, Bundy 1991]; rippling, [Bundy
1988, Bundy et al. 1993]; recursion analysis and ripple analysis, [Stevens 1988,
Bundy, van Harmelen, Hesketh, Smaill and Stevens 1989];, and the productive use
of failure including techniques for choosing induction rules, speculating lemmas
and generalising conjectures, [Ireland 1992, Ireland and Bundy 1996b, Ireland and
Bundy 1996a]. Proof planning has also been adapted to lift the level of interaction
and implemented in the semi-automated prover, Barnacle, [Lowe and Duncan 1997,
Lowe, Bundy and McLean 1995].

12. Conclusion

In this chapter we have surveyed the automation of inductive inference. We have
seen that automating induction is necessary for some of the most important applica-
tions of automated reasoning, in particular, meeting the proof obligations that arise
from formal methods of system development. But we have also seen that inductive
proof raises di�cult search control problems for automation. The construction of
appropriate induction rules, the use of intermediate lemmas and the generalisation
of conjectures all introduce in�nite branch points into the search space.
It is necessary to develop special search control techniques to solve these prob-

lems. Since they are undecidable problems, these search control techniques are
necessarily partial and heuristic, i.e. they will sometimes fail and are always open
to improvement. We can hope only that they help prove a signi�cant proportion of
the inductive theorems that arise in practice. Sometimes the failure of a particular
technique can be analysed to suggest what additional techniques should be applied
to patch the initial proof attempt.
There has been signi�cant progress over the last three decades of research. Some

quite subtle and long proofs can be found automatically. Unfortunately, automated
inductive theorem proving is not yet robust enough to be used unaided and reliably
on problems of industrial interest. For practical inductive theorem proving it is
currently necessary to use an interactive system where the user provides guidance
to the proof at critical stages. However, automation is a vital adjunct to interactive
proof to reduce the burden on the user so that proofs can be completed within a
reasonable timescale.
The following are some of the key research issues for future research in inductive

theorem proving.

1. Practical proof problems do not consist of induction alone. It is vital to integ-
rate inductive techniques with non-inductive proof techniques, in particular,
successful techniques like model checking, decision procedures, rewriting, built-
in uni�cation, etc. Much progress has already been made in this area by systems
in everyday use, but more is needed.

2. In semi-automated systems it is sometimes di�cult for users to orient them-
selves within a failed automatic proof attempt to suggest an appropriate patch.
More automatic analysis of the failed attempt is required to put the user in

60 Alan Bundy

context and suggest what kinds of interaction might be most e�ective.

3. The heuristics for lemma speculation, generalisation and induction rule choice
are always in need of improvement. The �rst two are especially weak at present.

4. Most work on automation has focussed on the universal fragment of �rst-order
logic, but many practical problems are not naturally formulated within this
fragment. More work is needed to extend existing heuristics to deal with exist-
ential quanti�cation and higher-order logic.

For a longer introduction to automated inductive theorem proving the reader is
recommended to read, [Walther 1994a].

Acknowledgments

I am grateful to Alessandro Armando, Richard Boulton, Jeremy Gow, Ian Green,
Andrew Ireland, Mike Jackson, Helen Lowe, Dave McAllester, Andrei Voronkov,
Toby Walsh and Christoph Walther for feedback on an earlier draft. The author's
research in this area is supported by EPSRC grants GR/L/11724 and GR/L/14381.

Bibliography

Aubin R. [1976], Mechanizing Structural Induction, PhD thesis, University of Edinburgh.

Basin D. and Walsh T. [1993], Di�erence uni�cation, in R. Bajcsy, ed., `Proc. 13th Intern. Joint
Conference on Arti�cial Intelligence (IJCAI '93)', Vol. 1, Morgan Kaufmann, San Mateo,
CA, pp. 116{122. Also available as Technical Report MPI-I-92-247, Max-Planck-Institute f�ur
Informatik.

Basin D. and Walsh T. [1996], `A calculus for and termination of rippling', Journal of Auto-
mated Reasoning 16(1{2), 147{180.

Benzm�uller C., Cheikhrouhou L., Fehrer D., Fiedler A., Huang X., Kerber M., Kohl-

hase K., Meirer A., Melis E., Schaarschmidt W., Siekmann J. and Sorge V. [1997],

mega: Towards a mathematical assistant, in W. McCune, ed., `14th Conference on Auto-
mated Deduction', Springer-Verlag, pp. 252{255.

Biundo S. [1988], Automated synthesis of recursive algorithms as a theorem proving tool, in
Y. Kodrato�, ed., `Eighth European Conference on Arti�cial Intelligence', Pitman, pp. 553{8.

Biundo S., Hummel B., Hutter D. and Walther C. [1986], The Karlsruhe induction theorem
proving system, in J. Siekmann, ed., `8th Conference on Automated Deduction', Springer-
Verlag, pp. 672{674. Springer Lecture Notes in Computer Science No. 230.

Boyer R. S. and Moore J. S. [1973], Proving theorems about LISP functions, in N. Nilsson,
ed., `Proceedings of the third IJCAI', International Joint Conference on Arti�cial Intelligence,
pp. 486{493. Also available from Edinburgh as DCL memo No. 60.

Boyer R. S. and Moore J. S. [1979], A Computational Logic, Academic Press. ACMmonograph
series.

Boyer R. S. and Moore J. S. [1988a], A Computational Logic Handbook, Academic Press.
Perspectives in Computing, Vol 23.

Boyer R. S. and Moore J. S. [1988b], Integrating decision procedures into heuristic theorem
provers: A case study of linear arithmetic, in J. E. Hayes, J. Richards and D. Michie, eds,
`Machine Intelligence 11', pp. 83{124.

Brock B., Kaufmann M. and Moore J. S. [1996], Acl2 theorems about commercial micro-
processors, in M. Srivas and A. Camilleri, eds, `Formal Methods in Computer-Aided Design
(FMCAD'96)', Springer-Verlag, pp. 275{293.

The automation of proof by mathematical induction 61

Bryant R. E. [1992], `Symbolic boolean manipulation with ordered binary-decision diagrams',
ACM Computing Surveys 24(3), 293{318.

Bundy A. [1988], The use of explicit plans to guide inductive proofs, in R. Lusk and R. Overbeek,
eds, `9th Conference on Automated Deduction', Springer-Verlag, pp. 111{120. Longer version
available from Edinburgh as DAI Research Paper No. 349.

Bundy A. [1991], A science of reasoning, in J.-L. Lassez and G. Plotkin, eds, `Computational
Logic: Essays in Honor of Alan Robinson', MIT Press, pp. 178{198. Also available from
Edinburgh as DAI Research Paper 445.

Bundy A., Stevens A., van Harmelen F., Ireland A. and Smaill A. [1993], `Rippling: A
heuristic for guiding inductive proofs', Arti�cial Intelligence 62, 185{253. Also available from
Edinburgh as DAI Research Paper No. 567.

Bundy A., van Harmelen F., Hesketh J. and Smaill A. [1991], `Experiments with proof plans
for induction', Journal of Automated Reasoning 7, 303{324. Earlier version available from
Edinburgh as DAI Research Paper No 413.

Bundy A., van Harmelen F., Hesketh J., Smaill A. and Stevens A. [1989], A rational
reconstruction and extension of recursion analysis, in N. S. Sridharan, ed., `Proceedings of
the Eleventh International Joint Conference on Arti�cial Intelligence', Morgan Kaufmann,
pp. 359{365. Also available from Edinburgh as DAI Research Paper 419.

Bundy A., van Harmelen F., Horn C. and Smaill A. [1990], The Oyster-Clam system, in
M. E. Stickel, ed., `10th International Conference on Automated Deduction', Springer-Verlag,
pp. 647{648. Lecture Notes in Arti�cial Intelligence No. 449. Also available from Edinburgh
as DAI Research Paper 507.

Bundy A., van Harmelen F., Smaill A. and Ireland A. [1990], Extensions to the rippling-out
tactic for guiding inductive proofs, in M. E. Stickel, ed., `10th International Conference on
Automated Deduction', Springer-Verlag, pp. 132{146. Lecture Notes in Arti�cial Intelligence
No. 449. Also available from Edinburgh as DAI Research Paper 459.

Constable R. L., Allen S. F., Bromley H. M. et al. [1986], Implementing Mathematics with
the Nuprl Proof Development System, Prentice Hall.

Darlington J. [1978], `A synthesis of several sorting algorithms', Acta Informatica 11, 1{30.

Eisinger N., Siekmann J., Smolka G., Unvericht E. and Walther C. [1980], The MarkGraf
Karl Refutation Procedure, in S. Hardy, ed., `Proceedings of AISB-80', Society for the Study
of Arti�cial Intelligence and Simulation of Behaviour.

Franova M. and Kodratoff Y. [1992], Predicate synthesis from formal speci�cations, in `Pro-

ceedings of ECAI-92', European Conference on Arti�cial Intelligence, pp. 87{91.

Gentzen G. [1969], The Collected Papers of Gerhard Gentzen, North Holland. Edited by Szabo,
M. E.

G�odel K. [1931], ` �Uber formal unentscheidbare s�atze der principia mathematica und verwandter
systeme i', Monatsh. Math. Phys. 38, 173{98. English translation in [Heijenoort 1967].

Gordon M. J., Milner A. J. and Wadsworth C. P. [1979], Edinburgh LCF - A mechanised
logic of computation, Vol. 78 of Lecture Notes in Computer Science, Springer Verlag.

Heijenoort J. v. [1967], From Frege to G�odel: a source book in Mathematical Logic, 1879-1931,
Harvard University Press, Cambridge, Mass.

Hesketh J. T. [1991], Using Middle-Out Reasoning to Guide Inductive Theorem Proving, PhD
thesis, University of Edinburgh.

Howard W. A. [1980], The formulae-as-types notion of construction, in J. P. Seldin and J. R.
Hindley, eds, `To H. B. Curry; Essays on Combinatory Logic, Lambda Calculus and Formal-
ism', Academic Press, pp. 479{490.

Hummel B. [1990], Generation of induction axioms and generalisation, PhD thesis, Universit�at
Karlsruhe.

Hutter D. [1990], Guiding inductive proofs, in M. E. Stickel, ed., `10th International Confer-
ence on Automated Deduction', Springer-Verlag, pp. 147{161. Lecture Notes in Arti�cial
Intelligence No. 449.

62 Alan Bundy

Hutter D. [1997], `Coloring terms to control equational reasoning', Journal of Automated Reas-
oning 18(3), 399{442.

Hutter D. and Kohlhase M. [1997], A colored version of the �-Calculus, in W. McCune, ed.,
`14th Conference on Automated Deduction', Springer-Verlag, pp. 291{305. Also available as
SEKI-Report SR-95-05.

Hutter D., Langenstein, B. Sengler C., Siekmann J. and Stephan W. [1996], Deduction
in the veri�cation support environment, in `Formal Methods Europe '96', Springer-Verlag.
Springer Lecture Notes No. 1051.

Hutter D. and Sengler C. [1996], INKA: the next generation, in M. A. McRobbie and
J. K. Slaney, eds, `13th Conference on Automated Deduction', Springer-Verlag, pp. 288{292.
Springer Lecture Notes in Arti�cial Intelligence No. 1104.

Ireland A. [1992], The Use of Planning Critics in Mechanizing Inductive Proofs, in A. Voronkov,
ed., `International Conference on Logic Programming and Automated Reasoning { LPAR 92,
St. Petersburg', Lecture Notes in Arti�cial Intelligence No. 624, Springer-Verlag, pp. 178{189.
Also available from Edinburgh as DAI Research Paper 592.

Ireland A. and Bundy A. [1996a], Extensions to a Generalization Critic for Inductive Proof, in
M. A. McRobbie and J. K. Slaney, eds, `13th Conference on Automated Deduction', Springer-
Verlag, pp. 47{61. Springer Lecture Notes in Arti�cial Intelligence No. 1104. Also available
from Edinburgh as DAI Research Paper 786.

Ireland A. and Bundy A. [1996b], `Productive use of failure in inductive proof', Journal of
Automated Reasoning 16(1{2), 79{111. Also available as DAI Research Paper No 716, Dept.
of Arti�cial Intelligence, Edinburgh.

Kapur D., Sivakumar G. and Zhang H. [1986], RRL: A rewrite rule laboratory, in J. Siekmann,
ed., `8th Conference on Automated Deduction', Springer-Verlag, pp. 692{693.

Kapur D. and Subramaniam M. [1996], Lemma discovery in automating induction, in M. A.
McRobbie and J. K. Slaney, eds, `13th International Conference on Automated Deduction
(CADE-13)', CADE, Springer, pp. 538{552.

Kapur D. and Zhang H. [1995], `An overview of rewrite rule laboratory (RRL)', J. of Computer
Mathematics with Applications 29(2), 91{114.

Kaufmann M. [1988], A user's manual for an interactive enhancement to the Boyer-Moore
theorem prover, Technical Report 19, Computational Logic Inc.

Kaufmann M. and Moore J. S. [1997], `An industrial strength theorem prover for a logic based
on common lisp', IEEE Transactions on Software Engineering 23(4), 203{213.

Kirby L. A. and Paris J. [1982], `Accessible independence results for Peano Arithmetic', Bull.
London Math. Soc. 14, 285{293.

Kraan I., Basin D. and Bundy A. [1996], `Middle-out reasoning for synthesis and induction',
Journal of Automated Reasoning 16(1{2), 113{145. Also available from Edinburgh as DAI
Research Paper 729.

Kreisel G. [1965], Mathematical logic, in T. Saaty, ed., `Lectures on Modern Mathematics',
Vol. 3, J. Wiley & Sons, pp. 95{195.

Lowe H., Bundy A. and McLean D. [1995], The use of proof planning for co-operative theorem
proving, Research Paper 745, Dept. of Arti�cial Intelligence, University of Edinburgh. Ap-
peared in the special issue of the Journal of Symbolic Computation on graphical user interfaces
and protocols, February 1998.

Lowe H. and Duncan D. [1997], XBarnacle: Making theorem provers more accessible, inW. Mc-
Cune, ed., `14th Conference on Automated Deduction', Springer-Verlag, pp. 404{408.

Martin-L�of P. [1979], Constructive mathematics and computer programming, in `6th Interna-
tional Congress for Logic, Methodology and Philosophy of Science', Hanover, pp. 153{175.
Published by North Holland, Amsterdam. 1982.

Monroy R., Bundy A. and Ireland A. [1994], Proof Plans for the Correction of False Con-
jectures, in F. Pfenning, ed., `5th International Conference on Logic Programming and Auto-

The automation of proof by mathematical induction 63

mated Reasoning, LPAR'94', Lecture Notes in Arti�cial Intelligence, v. 822, Springer-Verlag,
Kiev, Ukraine, pp. 54{68. Also available from Edinburgh as DAI Research Paper 681.

Moore J. S. [1974], Computational Logic: Structure sharing and proof of program properties,
part II, PhD thesis, University of Edinburgh. Available from Edinburgh as DCL memo no.
68 and from Xerox PARC, Palo Alto as CSL 75-2.

Nelson G. and Oppen D. C. [1979], `Simpli�cation by cooperating decision procedures', ACM
Transactions on Programming Languages and Systems 1(2), 245{257.

Nelson G. and Oppen D. C. [1980], `Fast decision procedures based on congruence closure',
Journal of the ACM 27(2), 356{364. Also: Stanford CS Report STAN-CS-77-646, 1977.

Presburger M. [1930], �Uber die Vollst�andigkeit eines gewissen Systems der Arithmetik gan-
zer Zahlen, in welchem die Addition als einzige Operation hervortritt, in `Sprawozdanie z I
Kongresu metematyk�ow slowia�nskich, Warszawa 1929', Warsaw, pp. 92{101, 395. Annotated
English version also available [Stansifer 1984].

Protzen M. [1992], Disproving conjectures, in D. Kapur, ed., `11th Conference on Automated
Deduction', Saratoga Springs, NY, USA, pp. 340{354. Published as Springer Lecture Notes
in Arti�cial Intelligence, No 607.

Protzen M. [1994], Lazy generation of induction hypothesis, in A. Bundy, ed., `12th Conference
on Automated Deduction', Lecture Notes in Arti�cial Intelligence, Vol. 814, Springer-Verlag,
Nancy, France, pp. 42{56.

Sengler C. [1996], Termination of algorithms over non-freely generated datatypes, inM.McRob-
bie and J. Slaney, eds, `13th Conference on Automated Deduction', Lecture Notes in Arti�cial
Intelligence, Vol. 1104, Springer-Verlag, New Brunswick, NJ, USA, pp. 121{135.

Shostak R. E. [1984], `Deciding combinations of theories', Journal of the ACM 31(1), 1{12.
Also: Proceedings of the 6th International Conference on Automated Deduction, volume 138
of Lecture Notes in Computer Science, pages 209{222. Springer-Verlag, June 1982.

Stansifer R. [1984], Presburger's article on integer arithmetic: Remarks and translation, Tech-
nical Report TR 84-639, Department of Computer Science, Cornell University.

Stevens A. [1988], A rational reconstruction of Boyer & Moore's technique for constructing
induction formulas, in Y. Kodrato�, ed., `The Proceedings of ECAI-88', European Conference
on Arti�cial Intelligence, pp. 565{570. Also available from Edinburgh as DAI Research Paper
No. 360.

Turing A. M. [1936-7], `On computable numbers, with an application to the entscheidyngsprob-
lem', Proceedings of the London Mathematical Society (2) 42, 230{265.

Walther C. [1992], Computing induction axioms, in A. Voronkov, ed., `International Conference
on Logic Programming and Automated Reasoning { LPAR 92, St. Petersburg', Lecture Notes
in Arti�cial Intelligence No. 624, Springer-Verlag.

Walther C. [1993], Combining induction axioms by machine, in `Proceedings of IJCAI-93',
International Joint Conference on Arti�cial Intelligence, pp. 95{101.

Walther C. [1994a], Mathematical induction, in C. J. H. D. M. Gabbay and J. A. Robinson,
eds, `Handbook of Logic in Arti�cial Intelligence and Logic Programming', Vol. 12, Oxford
University Press, Oxford, pp. 122{227.

Walther C. [1994b], `On proving termination of algorithms by machine', Arti�cial Intelligence
71(1), 101{157.

Yoshida T., Bundy A., Green I., Walsh T. and Basin D. [1994], Coloured rippling: An
extension of a theorem proving heuristic, in A. G. Cohn, ed., `In proceedings of ECAI-94',
John Wiley, pp. 85{89.

Zhang H., Kapur D. and Krishnamoothy M. S. [1988], A mechanizable induction principle
for equational speci�cations, in R. Lusk and R. Overbeek, eds, `9th Conference on Automated
Deduction', Springer-Verlag, pp. 162{181.

64 Alan Bundy

Main Index

mega prover, 57
� calculus, 51

ACL2, 56

Barnacle, 58
base case, 3
binary trees, 7
Boyer/Moore theorem prover, 56

Clam, 58
coercion functions, 56
conict rule of uni�cation, 42
constructive type theory, 51
constructor function, 16
constructor functions, 7
constructor-style, 5
constructor-style proofs, 16
containment, 23
containment formula, 24
contains, 23
cover-sets, 57
cross fertilization, 15
Curry-Howard isomorphism, 51
cut formula, 20

decidable, 18
decision procedure, 18
destructor elimination, 16
destructor function, 16
destructor-style, 5
destructor-style proofs, 16
di�erence matching, 42
di�erence uni�cation, 38, 41

explicit induction, 4

fertilization, 11
awed induction variable candidates,

23
free datatypes, 7

generalise apart, 28

ground di�erence uni�cation, 42

implicit induction, 4
induction conclusion, 3
induction hypothesis, 3
induction term, 3
induction variable, 3
inductionless induction, 4
inductive completion, 4
inductive learning, 3
INKA prover, 57

Knuth-Bendix completion, 4, 57

linear arithmetic, 19
lists, 7
longitudinal wave-rules, 34

MarkGraf Karl prover, 57
mathematical induction, 3

narrowing, 46
natural numbers, 7
non-free datatypes, 8
Nqthm, 56
NUPRL, 51
N�therian induction, 5

Oyster, 58

PC-Nqthm, 56
Peano induction, 3
philosophical induction, 3
polarity, 6, 13
Presburger arithmetic, 19
proofs as programs, 51

r-descriptions, 24
recursion analysis, 21
recursive arguments, 12
recursive datatypes, 7
recursive de�nitions, 7
redex, 12

The automation of proof by mathematical induction 65

replacement axioms, 13
rewrite rule of inference, 11
rewrite rules, 11
ripple analysis, 43
ripple-out, 32
rippling-in, 34
rippling-sideways, 34
RRL, 56

S-expressions, 7
second-order uni�cation, 47
separated union, 24
simpli�cation, 33
sinks, 34
skeleton, 32
step case, 3
strong fertilization, 15
structural recursion, 8
subsumes, 23

tacticals, 54
tactics, 54
terminating, 8
termination, 18
the productive use of failure, 45
transverse wave-rules, 34

unawed induction variable candid-
ates, 22

VSE system, 57

wave-fronts, 32
wave-holes, 32
wave-rules, 32
weak fertilization, 15
weakening, 39
well-de�ned, 9
well-founded induction, 5

66 Alan Bundy

Name Index

Aubin, 32

Basin, 40
Biundo, 51, 57
Boyer, 15, 19, 25, 56
Bundy, 32, 58

Franova, 31

G�odel, 20
Gentzen, 20
Goodstein, 20, 56
Green, 58

Horn, 58
Hummel, 57
Hutter, 32, 57

Ireland, 45, 58

Kapur, 56
Kirby, 20
Kodrato�, 31
Kraan, 51
Kreisel, 20

Lowe, 58

Martin-L�of, 51
Milner, 54
Monroy, 31
Moore, 15, 19, 25, 56

Paris, 20
Peano, 20
Presburger, 18
Protzen, 31, 53

Sivakumar, 56
Smaill, 58
Stevens, 23, 25, 58

Turing, 20

van Harmelen, 58

Walsh, 40
Walther, 21, 25, 53, 57

Zhang, 56

