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Abstract

A key problem in automating proof by mathematical inductionis choosing an induc-

tion rule suitable for a given conjecture. Since Boyer & Moore’s NQTHM system the

standard approach has been based onrecursion analysis, which uses a combination of

induction rules based on the relevant recursive function definitions. However, there are

practical examples on which such techniques are known to fail.

Recent research has tried to improve automation by delaying the choice of induc-

tive rule until later in the proof, but these techniques suffer from two serious problems.

Firstly, a lack of search control: specifically, in controlling the application of ‘specu-

lative’ proof steps that partially commit to a choice of induction rule. Secondly, a lack

of generality: they place significant restrictions on the form of induction rule that can

be chosen.

In this thesis we describe a new delayed commitment strategyfor inductive proof

that addresses these problems. The strategy dynamically creates an appropriate in-

duction rule by proving schematic proof goals, where unknown rule structure is rep-

resented by meta-variables which become instantiated during the proof. This is ac-

companied by a proof that the generated rule is valid. The strategy achieves improved

control over speculative proof steps via a novelspeculation critic. It also generates

a wider range of useful induction rules than other delayed commitment techniques,

partly because it removes unnecessary restrictions on the individual proof cases, and

partly because of a new technique for generating the rule’s overall case structure.

The basic version of the strategy has been implemented usingthe λClam proof

planner. The system was extended with a novel proof critics architecture for this pur-

pose. An evaluation shows the strategy is a useful and practical technique, and demon-

strates its advantages.
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Chapter 1

Introduction

The last thing one knows in constructing a work is what to put first.

— BLAISE PASCAL, PENSÉES

Mathematical induction is a technique used extensively in theorem proving systems

for proving properties about objects that involve repetition. Because of the ubiquity of

iteration and recursion in computer systems, it is especially useful when applied to

software and hardware verification.

Given the arduous nature of formal proof development, automated theorem proving

has been the subject of research since the inception of Artificial Intelligence in the

1950s. Progress has been especially difficult in automatinginductive proof, because

of the particular search problems introduced by induction [Boyer and Moore, 1992].

Specifically, finding the appropriate induction rules, lemmas and generalisations for a

given problem [Bundy, 2001].

This thesis describes a novel approach to automating the first of these tasks: induc-

tion rule creation. It is also concerned with showing how proof planning [Bundy, 1988]

can be used to effectively realise these ideas.

1
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1.1 Motivation

Attempts to automate induction rule creation were, like much work in inductive theo-

rem proving, dominated by the seminal work of Robert S. Boyer and J. Strother Moore

[Boyer and Moore, 1979] for many years after its publication.The Boyer-Moore The-

orem Prover introduced the what has been calledthe induction heuristic: to prove a

property of a recursive function, try using an induction rule that has the same recursive

structure as that function.

Boyer & Moore’s approach is surprisingly powerful, and theirtheorem prover is

still in use over 20 years later, along with systems based on the same essential ideas

[Stevens, 1990]. However the late-1980s and 1990s saw a resurgence of work in in-

duction theorem proving. Many recent developments have been based on the idea of

rippling [Bundy et al., 1993], a heuristic for guiding proofsof the step case subgoals

generated by applying an induction rule. Rippling has brought more sophisticated

heuristic control to inductive theorem proving, and been used to get a purchase on

some hard search problems, including the choice of induction rule.

Tied up with rippling has been the development of proof planning architectures

for automated theorem proving [Bundy, 1988]. Proof plannersare ideally suited to re-

alise sophisticated heuristic strategies, and inductive proof via rippling has been a long

running test-case, most notably with work on proof critics [Ireland and Bundy, 1996].

The individual and collective success of the rippling and proof planning paradigms

has been an important motivation behind this project.

Recent developments in automating induction rule creation have tried to overcome

two disadvantages with the Boyer-Moore approach. Firstly, choosing an induction rule

at the beginning of the proof is often unreliable, as one cannot easily anticipate how

a given choice will work out. [Kraan, 1994] begins a proof with a schematic goal, to
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see how the proof develops before selecting a known induction rule. Secondly, it is not

always enough to use induction rules with the recursive structure taken from predefined

recursive functions. [Protzen, 1995] takes a lazy generation approach to delaying the

induction choice, dynamically creating a completely new rule with the information

gleaned from the proof.

The main weaknesses of these ‘wait and see’ approaches to induction rule creation

are:

Lack of heuristic control Although both employ forms of rippling to bring some

measure of search control, they also both involve ‘speculative’ steps which can

be applied freely and ad-infinitum, causing serious search problems.

Lack of generality The constraints placed on the form of induction rules that can be

selected/created are overly restrictive, which limits theinductive problems that

can be solved. Specifically:

Restrictions on rule style In [Kraan, 1994] the rule must be constructor style,

and in [Protzen, 1995] it must be destructor style — neither technique al-

lows both, or a mixture of styles.

Restrictions on case structureThe cases of the rule are derived from the re-

cursive functions used in the proof. Solutions with novel case structures

cannot be found.

The main motivation for this thesis is to address these weaknesses.
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1.2 Aims of the Thesis

Our aim was to design, implement and evaluate a strategy for inductive proof with the

following properties:

• The choice of a step case is delayed until the middle of its proof, and this choice

is used as a basis for constructing a new valid induction rule. This gives the

strategy those advantages over Boyer & Moore’s work that weredemonstrated

in previous research.

• The search is more tightly controlled than previous work on delayed-commitment

induction rule creation. This is especially important in dealing with ‘speculative’

steps.

• The strategy has the ability to create a wider range of usefulinduction rules, i.e.

rules that will allow more problems to be solved. This means lifting constraints

on rule style and case structure.

• It is a practical and useful approach to automating inductive proof.

As well as providing a theorem proving strategy ‘in the abstract’, we aim to show

that the proof planning approach provides an excellent architecture in which to im-

plement the strategy. In particular, the techniques of middle-out reasoning and proof

critics allow sophisticated search control techniques to be realised in a clean and un-

derstandable way.

1.3 An Example

To give the reader a better intuition for the kind of proof strategy we intend to auto-

mate, and for some the problems with previous approaches, wenow give an illustrative
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example. Consider the following theorem, taken from [Paulson, 1991]:

∀x:τ.∀l :list(τ).foldleft tr(◦,x, l) = x◦ foldleft tr(◦, id, l)

The theorem holds given the following properties of◦ and definition offoldleft tr, a

tail-recursive function that applies a two-argument function over the elements of a list

(see Appendix B for a definition offoldleft tr and all other functions that appear in this

thesis):

X ◦ (Y ◦Z) = (X ◦Y)◦Z

X ◦ id = X

foldleft tr(F,A,nil) = A

foldleft tr(F,A,H :: T) = foldleft tr(F,F(A,H),T)

As we will see in Chapter 2, the standard techniques for induction selection (derived

from the work of Boyer & Moore) would suggest using structurallist induction onl ,

based on the recursive structure offoldleft tr. However, it turns out that such a proof is

unsuccessful, because the term substituted into the right-hand sidel cannot be removed

— there is no rewrite that moveH :: T out of this position.

In [Paulson, 1991] a lemma is introduced in order to prove thetheorem:

foldleft tr(F,A,L <> (X :: nil)) = F(foldleft tr(F,A,L),X)

where<> is the append function for list (again, see Appendix B for a definition of

<>). The lemma motivates the invention of a new induction rule,which proves the

theorem:

⊢ Φ(nil)

Φ(x) ⊢ Φ(x <> (y :: nil))

∀l : list(τ).Φ(l)
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Interestingly, the induction rule cannot be generated fromthe given function def-

initions, which means standard techniques for automation cannot prove the theorem.

Instead, the rule is motivated entirely by the lemma.

More advanced induction selection techniques also have difficulty with this exam-

ple. Middle-out induction [Kraan, 1994] can select the induction rule and complete

the proofif the rule is already known— this is unlikely as it was created specifically

for this proof. Lazy induction [Protzen, 1995] cannot solvethe problem because the

required induction rule falls outside the class of rules it is able to generate.

The induction strategy presented in this thesis is capable of generating this novel

induction rule from the lemma, and proving that the rule is valid. Briefly, it does this

by:

1. Generating a step case using an improved version of the middle-out reasoning

techniques described in [Kraan, 1994], where the lemma suggest the step case

of the induction.

2. Proving the step case iswellfounded.

3. Determining the form of the base case, which requires a novel case split to be

generated.

4. Proving the base case.

1.4 Contributions

This thesis makes a number of original contributions to the understanding of automat-

ing induction rule creation:

• It provides a novel dynamic strategy fulfilling the aims set out in §1.2.
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• We give experimental evidence for the effectiveness of the strategy in proving

theorems that require novel induction rules.

• The significance of restrictions on induction rule style imposed in previous work

is clarified.

We also contribute to automated theorem proving in general:

• We argue that when delaying choices during proof, a schema-based approach

has search advantages over a lazy-generation approach.

• State-of-the-art techniques of proof planning are tested,and we make some orig-

inal contributions to the design and use of proof critics.

• We describe a novel procedure for generating the missing cases of a case anal-

ysis. By expressing the problem as one of correcting a faulty conjecture, two

previously separate areas of automated deduction are brought together.

• We presentπσ-rewriting, an original technique for controlling search during

non-confluent rewriting — applicable to e.g. rippling. A proof of the complete-

ness ofπ-rewriting, a useful restriction of the technique, is given.

• The induction strategy provides a detailed case study of howcreative steps in

proof can be delayed and these decisions driven by subsequent proof.

1.5 Organisation of the Thesis

Looking from a distance, Chapters 1 to 3 lay out the groundworkto the main thesis,

Chapters 4 to 8 set forth a body of novel heuristic techniques for effectively creating
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induction rules, and Chapters 9 to 15 discuss their implementation, evaluation and

subsequent reflection on this work.

In greater detail, the thesis is structured as follows:

Foundations

• Chapter 1,Introduction

The motivations, aims, contributions and structure of the thesis.

• Chapter 2,Literature Survey

A survey of the relevant research literature: some background on inductive the-

orem proving, the main concepts of rippling and proof planning, and previous

work on induction rule creation and validation.

• Chapter 3,Induction Rule Structure

We reflect on what previous research tells us about how inductive proof is af-

fected by the structure of induction rules and variations onthe rippling heuristic.

The Induction Strategy

• Chapter 4,Step Case Creation

Describes the strategy for obtaining a step case proof by delaying key choices

until the middle of the proof.

• Chapter 5,Synthesis of Case Structure

Here a strategy for the proof that the rule contains all the required cases is de-

scribed. Failure of the proof can be exploited to generate the missing cases.

• Chapter 6,Induction Rule Creation

We describe how a candidate step case is used as a basis for constructing and
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validating a new induction rule: an unsuccessful attempt toprove that the rule is

valid is analysed in order to complete the rule.

Search Control

• Chapter 7,Controlling Speculation

Speculative ripple steps make decisions about the form of the induction rule,

but are non-terminating. We describe a proof critic that controls speculation by

using it only when it will fix a failed ripple proof.

• Chapter 8,Controlling Rewrite Search

Rewriting is at the heart of our strategy. This chapter reports how the rewrit-

ing search can be pruned by avoiding repetition of orthogonal rippling steps in

different orders.

Implementation

• Chapter 9,A Proof Planner with Critics

We describe the extension of theλClamproof planner with a novel critics mech-

anism, in order to implement our induction strategy. The planner usescriticals

to combine critics into complex strategies.

• Chapter 10,The Dynamis System

Describes theDynamissystem — the implementation of the induction strategy

as a set of methods and critics in theλClamproof planner.

Evaluation & Reflection

• Chapter 11,Experimental Evaluation

The implementation of the induction strategy is tested on a variety of inductive
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problems.

• Chapter 12,Case Studies

We present some detailed case studies of proof attempts using theDynamissys-

tem, and reflect on their success or failure.

• Chapter 13,Related & Further Work

This chapter discusses the induction strategy with respectto Kraan’s middle-out

induction selection and Protzen’s lazy generation of induction rules, along with

directions for future research.

• Chapter 14,Conclusions

We assess the contributions made by the thesis, and concludewhether our aims

have been met.

Appendices

• Appendix A,Glossary

An explanation of some techincal terms and notation.

• Appendix B,Datatype & Function Definitions

Definitions for all the functions and datatypes used in this thesis.

• Appendix C,Dynamis Documentation

Details of running theDynamissystem, and the lower level methods.

• Appendix D,Dynamis Traces

Full traces from the evaluation, available in electronic form1.

1Fromhttp://homepages.inf.ed.ac.uk/s9362054/thesis
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Literature Survey

2.1 Introduction

This chapter reviews a range of background material that is related to this thesis. The

initial sections give an overview of mathematical induction (§2.2) and its use in mech-

anised theorem proving (§2.3). §2.4 describes proof planning, a central topic of this

thesis.

The automation of inductive proof is surveyed in §2.5 onwards. Rippling, a tech-

nique for guiding step case proofs in described in §2.5. The standard approach to

induction rule creation, recursion analysis, is examined in §2.6. The state-of-the-art in

automating the choice of induction rule works by delaying the choice of rule into the

middle of the proof (§2.7) and creating induction rules fromthis information (§2.8).

§2.9 looks at automating proofs of the construction of well-ordered relations satis-

fying a given set of constraints. This has mainly been dealt with in the literature in the

context of proving program termination.

11
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2.2 Proof by Induction

Mathematical induction can be roughly characterised as an argument which proves a

proposition by appealing to some other instance of that proposition, and where it can

be argued that this appeal process will eventually stop.

Such arguments have appeared throughout the history of mathematics: from the

Pythagoreans of Ancient Greece [van der Waerden, 1961], andthe 12th century Ara-

bic mathematician al-Karaji [Rashed, 1994], to later European mathematicians, no-

tably Pierre de Fermat, with his ‘method of infinite descent’[Burton, 1988], and Blaise

Pascal describing hisTriangle Arithmetique[Pascal, 1665]. However, the firstexplicit

formulation of an induction principle (along with the name)was given by Augustus

DeMorgan in 1838 [Burton, 1988].

Today, induction is a common proof technique in many areas ofmathematics. It

very often appears asPeano induction, often called ‘the’ principle of mathematical

induction, or the more generalcomplete induction. These forms can be expressed as

the following inference rules:

Peano Induction

Φ(0)

∀k∈ N. Φ(k) → Φ(k+1)

∀n∈ N. Φ(n)

Complete Induction

∀x∈ N. (∀y∈ N. y < x→ Φ(y)) → Φ(x)
∀x∈ N. Φ(x)

2.2.1 Noetherian Induction

Peano and complete induction are inductions over N, the set of natural numbers. Al-

though less common, induction over other sets appears in themathematical literature,
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e.g. induction over the ordinals. Indeed, inductive arguments may be made over any

set.

This generality is captured byNoetherian induction, also known aswell-founded

induction, a generalisation of complete induction to a setA and relation≺. The relation

≺ must bewell-foundedover the setA, defined as there being no infinite descending

chainsx1 ≻ x2 ≻ x3 ≻ . . . such thatxi ∈ A for all i. It can be expressed as the following

inference rule:

Noetherian Induction

∀x∈ A. (∀y∈ A. y≺ x→ Φ(y)) → Φ(x)
∀x∈ A. Φ(x)

≺ w.f. overA

All induction principles can be derived from this general scheme. For example, to

derive structural induction over the natural numbers:

1. LetA = nat and≺=<, this discharges the side condition.

2. Perform a case split on the premise:x = 0 orx = s(u).

3. In thex = s(u) case, lety = u.

4. Simplify w.r.t. the definition of<.

2.3 Inductive Theorem Proving

In this section we briefly survey the use of inductive proof intheorem provers —

computer systems that assist with or perform logical proof.
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2.3.1 Reasoning about Computer Systems

Inductive reasoning is well-suited to proving properties of objects that contain repe-

tition, and so has found many applications in proving properties about both software

and hardware systems. In fact, the use of induction was proposed in one of the earliest

papers on this field [McCarthy, 1963]. This work has developedinto theverification by

proof paradigm: the computer system is modelled as a set of mathematical definitions,

along with a specification of the expected behaviour as a set of theorems. Proving

these theorems verifies the correctness of the system relative to the specification. Note

that there may still be a ‘gap’ between the specification-as-theorem and the system

requirements.

Verification proofs can be carried out without machine support, which suffices for

small systems e.g. [Burstall, 1969, Paulson, 1991]. However, this technique becomes

impractical for anything but toy systems, as one cannot be sure that the proof is correct

any more than the original system — although a failed hand proof can still reveal er-

rors. Formalisation of the specification and proof in a particular logic can increase con-

fidence in the correctness of individual steps, but mistakesare still possible, and there

is an additional problem of a huge increase in the proof size [Nederpelt et al., 1994].

For these reasons, formal verification proofs of computer systems are often carried

out with the aid of a computer.Proof checkingprograms allow a human user to reliably

develop formal proofs, whilst also providing computer support for the huge ‘book

keeping’ tasks that such proofs require. Induction is oftena core proof technique

in theorem proving systems, for example HOL [Gordon and Melham, 1993], ACL2

[Kaufmann and Moore, 1996], PVS [Owre et al., 1996], ISABELLE [Paulson, 1989],

COQ [Huet et al., 1997] or NUPRL [Allen et al., 2000].
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2.3.2 Formalised Mathematics

Although research into theorem proving, especially inductive theorem proving, has fo-

cused heavily on computer system verification, these programs have been used to de-

velop formal logical proofs in many domains. Most notably, theorem proving systems

such as Automath [Nederpelt et al., 1994] and Mizar [Trybulec and Blair, 1985] have

been used to formalise large areas of mathematics. Given theubiquity of induction in

mathematics, induction can play a large part in these proof developments. For example,

Shankar’s development of G̈odel’s Incompleteness Theorems in the NQTHM system

[Shankar, 1994]. Shankar chose these results to demonstrate that ‘serious’ mathemati-

cal results are amenable to mechanisation.

For a more detailed survey of formal mathematics and theoremproving systems,

see [Harrison, 1996].

2.3.3 Interaction and Automation

Many formal proof tools provide some computer support for the reasoning process

itself, e.g. by incorporating decision procedures for common domains. This adds a new

dimension to theorem proving systems, with programs ranging from completely user-

driven to the totally automatic1, with many varieties of theorem prover/user interaction

between.

Automation has considerabe advantages in reducing the timeand effort spent on

formal proof development, which can be exceptionally long and tedious [Shankar, 1994].

Automated reasoning has long been a goal of Artificial Intelligence, in particular au-

tomating mathematical reasoning [Newell et al., 1956].

1Although systems that ‘fully automate’ proof search often require significant input from their users
in the form of system configuration, e.g. Otter [McCune, 1990].
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2.3.4 Explicit vs Implicit Induction

Attempts to automate inductive proof have fallen into two distinct camps:

Explicit Induction Proof using inductive inference rules, i.e. special cases of the

Noetherian induction rule (see §2.2.1).

Implicit Induction Proving a statement by showing that if assumed true then it does

not create an inconsistency, which is equivalent to performing an inductive proof

[Comon, 2001]. Also known asproof by consistencyor inductionless induction.

This thesis deals with the automation of explicit induction, and below we survey only

work from this area. However, it is first worth noting a few aspects of the implicit

induction approach.

Implicit induction techniques differ in how they check the consistency of the spec-

ification after the addition of the conjecture. For example,the technique presented in

[Jouannaud and Kounalis, 1989] orients an equational specification into a convergent

rewrite system and uses Knuth-Bendix completion [Knuth and Bendix, 1970] to check

that no previously unequal constructor terms have been madeequal.

Research in implicit induction has been a process of gradually lifting the constraints

the technique places on the specification. Recently the area has been generalised and

extended within a single framework [Comon and Nieuwenhuis, 2000], which requires

the specification to be anI-Axiomatisation. These restrictions are a disadvantage when

compared to explicit induction. Another disadvantage is the relative unintuitiveness of

the technique, making it unsuited to interactive systems and difficult to design good

heuristics for automation.

Amongst its advantages are the fact that modern versions of the technique arerefu-

tationally complete[Bachmair, 1991] — they are guaranteed to reject non-theorems
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— and the ability to easily handle mutually recursive definitions. Both are areas where

explicit induction work has traditionally been weak. Implicit induction has been imple-

mented in systems such as UNICOM [Gramlich, 1990], SPIKE [Bouhoula et al., 1992],

and RRL [Kapur and Zhang, 1995] (which is also capable of explicit induction).

The rest of this chapter looks at previous A.I. research on automating explicit in-

duction, which is more relevant to our thesis.

2.3.5 Generalisation & Lemma Speculation

In his survey of automated induction [Bundy, 2001], Bundy identified the three key

problems in automating inductive proof: constructing induction rules, introducing in-

termediate lemmas, and generalising conjectures. This section briefly discusses work

on the second two problems, before looking at the first, whichis the main subject of

this thesis.

In general, intermediate lemmas and generalisations are required in inductive proofs

because thecut ruleis required for inductive theories [Kreisel, 1965]. The cutrule uses

a ‘cut formula’A to prove another formula∆:

Γ,A⊢ ∆ Γ ⊢ A
Γ ⊢ ∆

As A could beany formula, this rule poses a considerable challenge for automating

backwards proof, and special search heuristics are required to find suitable cut formu-

lae. The cut formulaA may be a generalisation or a lemma — the distinction is vague,

and is based on whether showing that∆ follows from Γ,A is trivial, in that∆ is some-

how a simpler form ofA [Hesketh, 1991]. However, the distinction is reflected in the

separate collections of heuristics that have been developed for each case.

Techniques for finding a cut formula which generalises the current goal date back
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to [Aubin, 1976], and can be grouped into three main types, all of which have been

shown to assist in automatic proof:

Generalising Apart This replaces a single universal variable with two or more new

ones. For example,∀x.φ(x,x) is generalised to∀x.∀y.φ(x,y). One way to do this

usesprimary recursion paths— variables nested only within recursive argument

positions — to find candidates for separation [Aubin, 1976].

Generalising Subterms One or more compound subterms are replaced by a fresh uni-

versal variable. This can be done by selecting suitable identical subterms on

either side of an equality or implication [Boyer and Moore, 1979].

Generalising Accumulators Here a constant is replaced with a variable in the accu-

mulator argument of a function. This often requires additional term structure to

be added elsewhere in the formula, to retain its validity. Early work attempted to

guess the extra term structure through trial and error [Aubin, 1976].

In [Castaing, 1985] the mismatch between induction hypothesis and conclusion is used

to perform the first two forms of generalisation. For a surveyof work on generalisation

up to 1990 see [Hummel, 1990].

These three forms of generalisation have been unified withina single framework

that delays the choice of generalisation using meta-variables [Hesketh, 1991], using

proof planning (see §2.4 below). Building upon this work, Ireland used failed proof

attempts to better focus the use of meta-variables when constructing generalisations of

accumulator [Ireland and Bundy, 1996], and a similar approach has also been used for

the other forms of generalisation [Maclean, 1999]. For moredetail see our discussions

of proof critics in §2.4.4 and §2.5.5 below.

The discovery of intermediate lemmas has been less well-studied. Ireland’s work
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on proof critics addressed lemma speculation as well as generalisation, and used a

failed proof attempt to build a schematic lemma that would assist with the proof

[Ireland, 1992, Ireland and Bundy, 1996]. Walsh used patterns of divergence in in-

ductive proofs in the SPIKE system to speculate lemmas that would allow the proof to

proceed [Walsh, 1996]. Constraint-based approaches to lemma speculation and accu-

mulator generalisation have been developed in RRL [Kapur and Subramaniam, 1996,

Kapur and Sakhanenko, 2003].

2.4 Proof Planning

Proof planning is an approach to automated theorem proving originally designed to

reduce proof search by raising it to a meta-level [Bundy, 1988, Bundy et al., 1991].

Classical theorem proving explores step-by-step a search space of inference rules ap-

plied ‘backwards’ to a goal formula. In proof planning the search is conducted with

methods, A.I.-style planning operators which describe common patterns of reasoning

in the object logic via meta-logical pre- and post-conditions. Methods can represent

proof steps larger than a single inference. They are appliedto meta-level goals, which

are meta-logical representations of (possibly multiple) goals in the object logic.

Proof planning systems use methods to build an abstract proof tree, orproof plan,

which can then be used to find an object level proof, e.g. by running tactics correspond-

ing to methods (see §2.4.1). There need not be a guarantee that any corresponding

object level proofs can be found or even exist, although mostproof planning literature

assumes that there is.

Meta-level goals and the meta-logical formulae in method conditions can express

both legal and heuristic statements about proof goals. Legal statements are about the
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form of the object goals, e.g. when a methodcould be applied. Heuristic statements

help guide the proof search, e.g. saying when a methodshouldbe applied. Methods

and meta-level goals are usually designed by system authorsor users, and typically

oriented towards a specific domain where a set of heuristics is known, e.g. summing

series [Free, 1992]. In [Bundy, 1991] a methodology for good method design is de-

scribed, proposing evaluation criteria such as generalityand parsimony. There has

also been some recent work on automatically learning methodsets from examples

[Jamnik et al., 2002].

The intended advantage of proof planning is that the planning search space is sig-

nificantly smaller than the original object level search space. Conversely, the plan

space is likely to be incomplete. Both these things depend entirely on the particular

method set.

Another aim of proof planning is to provide declarative, as opposed to procedu-

ral, specifications of methods which can be reasonedabout mechanically, not just

executed. This facilitates the automatic learning [Jamniket al., 2002] and adaptation

[Huang et al., 1995] of proof methods.

2.4.1 Clam: Advance Planning

The first proof planning system wasClam [Bundy et al., 1991, van Harmelen, 1996].

It built upon the tactic based approach to theorem proving, e.g. the HOL system

[Gordon and Melham, 1993], where common patterns of inference rules are captured

in tactics, a small program which automates the search for a proof fragment by ap-

plying rules according to the given pattern. InClam, a method is considered to be a

specification for a tactic, providing conditions for its application and the effects it has

on the goal. A given tactic may have multiple methods, corresponding to its use in
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different situations.

The Clam system was designed to work in conjunction with a tactic-based theo-

rem prover, specifically theOystersystem, an implementation of Martin-Löf’s Type

Theory. It constructs a proof plan which is used to guideOysterto a proof, by replac-

ing methods with their corresponding tactics [Bundy et al., 1990b]. Hence planning is

done in advance of proving.

The default method set inClam is designed for inductive proof, and is described in

detail in §2.5.Clamhas also successfully been combined with HOL instead ofOyster,

with minimal adjustment to the default inductive method set[Boulton et al., 1998].

Given that HOL’s logic is classical higher-order logic rather than Martin-L̈of Type

Theory, this illustrates the generality of proof methods.

Clammethod conditions are written in Prolog, a logic programming language. This

allows both the specification in a declarative style, i.e. asmeta-logical statements, and

their evaluation as Prolog programs. However, in practice it is possible to write pro-

cedural style conditions in Prolog, andClam method designers often do this to e.g.

improve their efficiency or implement complex strategies.

2.4.2 λClam: Methodicals and Higher Order Meta-Logic

λClam [Richardson et al., 1998, Dennis and Brotherston, 2002] is thesuccessor to the

Clam system. LikeClam, λClam is an planning system, producing plans to be con-

verted into tactics. UnlikeClam, which hasOyster, there is no specific underlying

tactic-based theorem prover. There are plans to makeλClam more ‘logic indepen-

dent’, enabling the same proof plans to be used over a varietyof logics2.

Method conditions are now written inλ-Prolog [Nadathur and Miller, 1998] a higher-

2Lucas Dixon, personal communication.
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order version of Prolog. Having a higher-order meta-logic has allowed a much more

concise, natural and declarative expression of methods.

Another significant aspect ofλClam is the use ofmethodicalsto ‘join together’

methods to specify larger ones, in much the same way that tactics are formed using

tacticals. This is extremely useful when describing large and complex strategies —

a common problem inClam. It also allows a more declarative specification of such

strategies. A semantics for these method expressions, based on continuations, is given

in [Richardson and Smaill, 2001].

2.4.3 ΩMEGA: Hierarchical Proof Planning

TheΩMEGA system [Benzm̈uller et al., 1997], [Kerber, 1998] is another proof plan-

ning implementation, but differs from theClam family in a number of important as-

pects. Most importantly, it does not differentiate betweenmethods, tactics and infer-

ence rules: everything is a method. When a method is applied, further planning is

carried out to construct a proof that an object level proof exists. This process bottoms

out with the application of methods corresponding to inference rules. Hence the proof

plan is a hierarchy, both in the normal ‘proof tree’ sense, and in that some methods can

be expanded to another proof plan. The architecture allows planning and proving to

be interleaved, rather than planning being done in advance.This letsΩMEGA recover

after forming faulty plans which have no corresponding proof.

Another important difference fromClam is the system’s division of preconditions

into declarative and procedural aspects, as well method slots for posting constraints,

and the use of constraint reasoning [Melis et al., 2000].
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2.4.4 Proof Critics

Failed proof attempts can often provide useful informationabout the form a successful

proof might take. Proof critics are an extension to the proofplanning architecture that

embody this idea, and were first proposed in [Ireland, 1992].Critics analyse failed

planning attempts and perform patches to the proof plan which might lead to success.

Just as methods describe the common structure of proofs, critics describe exceptions

to this structure and how they can be handled.

Ireland developed a set of fourwave critics[Ireland and Bundy, 1996] which re-

spond to the failure of thewavemethod, from the induction method set inClam. These

have been implemented in theClam v3 system. We will look at the wave critics in

more detail in §2.5.5.

Critics have also been used to suggest generalisations [Maclean, 1999] and fix di-

vergent proof attempts [Walsh, 1996] in inductive proofs, and to guide co-induction

proofs [Dennis et al., 2000]. Their use in improving user-interaction in inductive the-

orem proving is described in [Ireland et al., 1999] and [Jackson, 1999].

In the remaining sections of this chapter, we look at varioustechniques used in the

automation of inductive proof.

2.5 Rippling

Rippling is a heuristic technique designed to guide rewriting of step case goals during

inductive proof [Hutter, 1990, Bundy et al., 1993]. It exploits the common structure in

these goals: that both the inductive hypotheses and conclusion are derived from the

original goal, and so have a common syntactic structure.

Rippling makes two assumptions. Firstly, that the hypothesis and conclusion differ
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because of some additional term structure, and that the goalcan be solved by removing

these differences. Although this is not necessarily true3, it is a feature of most inductive

theorem proving (ITP) systems, which makes rippling widelyapplicable. The second

assumption is that the common syntactic structure is maintained throughout the proof

of the subgoal. Aubin was the first to remark that this holds true in many step case

proofs [Aubin, 1976].

The key idea is to restrict the manipulation of the conclusion and/or hypotheses

so that the proof fits these assumptions. Its aim is to remove differences between

hypothesis and conclusion, allowing the hypothesis to be used to prove the conclusion,

known asfertilisation, and hence prove the step case. A rewrite step is only allowedif

it meets the following criteria:

Skeleton PreservationThe common syntactic structure between hypothesis and con-

clusion, known as theskeleton, is preserved.

Difference Removal The step helps ‘remove the differences’, in that unwanted term

structure is either

1. Moved towards the top of the term, leaving a subterm which is ‘less differ-

ent’ from the skeleton, or

2. Moved towards a position in the conclusion which corresponds to a univer-

sal variable in the hypothesis, where it won’t prevent fertilisation, or

3. Removed completely.

Because it restricts the rewriting like this, rippling is a heuristic strategy. Most work

on rippling has considered a straightforward rewriting environment, although it has

3For example, consider the step casex < y,Φ(x) ⊢ Φ(y).
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been successfully integrated with other ATP techniques, e.g. matrix theorem proving

[Pientka and Kreitz, 1999].

A number of formalisms have been developed for rippling, namely wave annota-

tion, C-Equations and embeddings. These are described in thenext three sections,

along with the details of the rippling heuristic, and some variations on it.

2.5.1 Wave Annotation

The wave annotation approach to rippling [Bundy et al., 1993,Basin and Walsh, 1996]

introduces new functions (orwave annotations) into a term to indicate the differences

between it and another target term. The special unary functionwf is introduced above

term structure that does not appear in the target, and another functionwh is introduced

above the term structure that does. For example, the difference between the hypothesis

and conclusion of the step case (2.1) is indicated by the annotation shown in (2.2). (The

uppercase variables indicate meta-variables that have been substituted for universally

quantified variables in the hypothesis, a standard technique in ITP.)

x+Y = Y +x ⊢ s(x)+y = y+s(x) (2.1)

x+Y = Y +x ⊢ wf(s(wh(x)))+y = y+wf(s(wh(x))) (2.2)

The term structure that falls inside awf and outside awh is known as awave front,

whereas the contents of the functionwh is known as awave hole. In (2.2) there are two

wave frontss(. . .), and two wave holes with contentsx.

Another special functionsnk is used to indicate asink — a position which cor-

responds to a variable in the target which can be instantiated with any term, i.e. a

universal object or meta-variable. (2.3) shows an example of sink annotation, where



Chapter 2. Literature Survey 26

capital letters denote meta-variables.

x+Y = Y +x ⊢ wf(s(wh(x)))+ snk(y) = snk(y)+wf(s(wh(x))) (2.3)

To make annotated terms more readable, the ‘box-and-hole’ notation is usually used4:

wave fronts are enclosed by boxes, wave holes are underlinedand sinks are marked

with ⌊. . .⌋, e.g. (2.4) depicts (2.3) in box-and-hole notation.

x+Y = Y +x ⊢ s(x) + ⌊y⌋ = ⌊y⌋+ s(x) (2.4)

Terms can be annotated automatically by difference unification [Basin and Walsh, 1993].

Certain constraints on the placing of annotations ensure terms arewell-annotated, for

instancewf(wf(x)) is disallowed. Nested wave fronts and multiple wave holes ina

wave front are permitted.

The skeleton of a term can be computed by replacing terms wavefronts with the

contents of their wave hole, and sinks with the corresponding meta-variable5. A term

can be annotated with respect to several targets simultaneously by having multiple

wave holes in a wave front — this gives a set of skeletons, eachresulting from a

different choice of wave holes. This is useful when guiding step cases with more than

one induction hypothesis.

The criteria of skeleton preservation (see §2.5) is enforced by allowing only rewrite

rules which can be annotated so that the skeletons of the leftand right sides are identical

(or in the case of multiple wave holes, that the right side’s skeletons are a nonempty

subset of the left’s). An annotated rewrite rule is called awave rule— see Figure 2.5.1.

Rippling is carried out by rewriting with wave rules, ensuring that the annotations

match, modulo equivalent wave annotations. I.e. during search we must normalise the

4In fact this notation predates thewf/wh formalism.
5Alan Bundy, unpublished research note.



Chapter 2. Literature Survey 27

s(X)
↑

+Y ⇒ s(X +Y)
↑

(2.5)

X + s(Y)
↑

⇒ s(X +Y)
↑

(2.6)

s(X)
↑

= s(Y)
↑

⇒ X = Y (2.7)

Figure 2.1: Three rewrite rules annotated as measure-decreasing wave rules. Only one

of the many possible annotations is shown for each rule. The upwards arrows denote

outwards wave fronts, which are moved to the top of the term during rippling. (2.5) and

(2.6) preserve skeleton X +Y, whereas (2.7) preserves X = Y.

annotation with respect toλx.wh(wf(x)) = λx.x. An example of a rippling proof using

wave annotation is shown in Figure 2.5.1.

Difference removal is achieved by marking wave fronts as travelling outwardsto-

wards the top of the term orinwards towards a sink. All wave fronts initially travel

outwards, but can be redirected inwards, but not vice-versa. A wave measurecaptures

the informal notion of progress described above, taking account of the number and

depth of outwards and inwards wave fronts [Basin and Walsh, 1996]. Wave rules are

only permitted if they decrease this measure, and hence the rippling strategy is termi-

nating. Various wave measures have been proposed in an attempt to better model this

process.

Note that a rewrite rule can produce several wave rules, although only a few will

be applicable at any one time. The process can be fully automated. This give rise to a

useful solution to the problem with traditional rewriting techniques that need to orient

equations in one particular direction to ensure termination: often an equation needs to

be used in both directions. For example, associativity axioms. With rippling each use

can correspond to the application of a different wave rule, both derived from the same
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x+Y = Y +x ⊢ s(x)
↑

+ ⌊y⌋ = ⌊y⌋+ s(x)
↑

x+Y = Y +x ⊢ s(x+ ⌊y⌋)
↑

= ⌊y⌋+ s(x)
↑

x+Y = Y +x ⊢ s(x+ ⌊y⌋)
↑

= s(⌊y⌋+x)
↑

x+Y = Y +x ⊢ x+ ⌊y⌋ = y+ ⌊x⌋

true

Figure 2.2: A ripple proof of the step case from the proof of the commutativity of +.

The proof uses wave rules (2.5), (2.6) and (2.7) (see Figure 2.5.1) in that order. The

outwards wave fronts are moved outwards and are eventually removed, allowing fertili-

sation in the final step. The skeleton x+Y = Y +x is preserved throughout.

equation.

The rippling heuristic is implemented via wave annotation in theClamproof plan-

ner (see §2.4.1), where the meta-level representation of formulae allows annotating

functions to be added without changing the underlying logic[Bundy et al., 1991]. It

has been successfully used as a basis for a inductive method set [Bundy et al., 1991].

[Bundy and Green, 1996] is an experimental comparison of the relative performance of

rippling and standard rewriting inClam. For a more extensive explanation of rippling

see [Bundy et al., 1993]. A more formal account is given in [Basin and Walsh, 1996].

2.5.2 The C -Calculus

The C -calculus is another rippling formalism which is presentedin [Hutter, 1990]

and [Hutter, 1997]. Its formulation of rippling is similar to that of wave annotation.

The fundamental difference is that annotations are represented bycolouringindividual

symbols in a term, rather than by introducing special functions.
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For instance the step case (2.4) can be represented in theC -calculus as (2.8), with

symbols in the skeleton colouredsk and those in thecontext, i.e. within wave fronts,

colouredcx.

x+Y = Y +x ⊢ scx(xsk)+sk ysk = ysk +sk scx(xsk) (2.8)

Wave rules are represented usingcolour variablesthat can take any colour value, or a

value restricted by acolour sort hierarchy. For example, the wave rule (2.5) is written

as the coloured rewrite rule (2.9), where the Greek letters are colour variables.

scx(Xα)+skYβ ⇒ scx(Xα +skYβ) (2.9)

[Hutter, 1997] defines a unification procedure for coloured terms, allowing coloured

rewriting to be defined, which is used to implement rippling.Termination is achieved

by orienting the wave rules into a terminating rewrite system on a case-by-case basis,

rather than using a universal wave measure, although [Protzen, 1995] gives an account

of how the wave measure approach of [Basin and Walsh, 1996] canbe formalised in

theC -calculus.

The C -calculus has a slightly wider coverage of skeleton preserving proofs, as

there exist skeleton preserving rewrite proofs that it can capture that wave annotation

cannot. Whether these are useful in practice is not known. A further advantage is

the uniqueness of its representation, which avoids having to normalise the annotation

during search. The coloured annotation approach has been generalised to other forms

of search control [Hutter, 2000].

The calculus has been implemented in the INKA system, an inductive theorem

prover [Hutter and Sengler, 1996].
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2.5.3 Term Embeddings

A major drawback of the annotation approaches to rippling described above is transfer-

ring it to a higher-order setting. Underβ-reduction the skeleton of a term can become

broken, and wave or coloured annotations give rise to ill-annotated terms, or terms in

which the skeleton is not preserved. To overcome this theC -calculus has been extended

to cope with higher-order syntax [Hutter and Kohlhase, 1997]. An alternative approach

to higher-order rippling usingembeddingsis described in [Smaill and Green, 1996],

and has been implemented in theλClamproof planner [Dennis and Brotherston, 2002].

A term embedding is a mapping from a term tree to another term tree, the target

term. Those parts of the target term not in the range of this mapping correspond to

wave fronts, and so embeddings can be used to formalise rippling. Because of the

higher order setting, quantification,λ-abstraction and functions may all be optionally

mapped by the embedding.

The embeddings are represented inλClamby a tree labelled with term positions:

the embeddinge embeds termt1 into term t2, written e : t1 ⊂
→ t2, iff for a position p

in e with label q the symbol atp in t1 and q in t2 are identical. Wave fronts are

implicit in this representation: they are the term addresses that do not appear on the

embedding tree. However, key features of wave annotation (see §2.5.1) can be still

replicated in this representation: a wave front can be givena direction by marking the

embedding tree node that maps to immediately ‘beneath’ it inthe target term. As a

result, embeddings can only represent blocks of wave frontsthat all have the same

direction. Sinks can also be represented by marking the appropriate leaf nodes of the

embedding tree. A wave measure has been developed for embeddings that is similar to

the one used for wave annotation [Dennis and Brotherston, 2002].

When applied to a step case proof, each induction hypothesis is embedded into the
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induction conclusion. A rewrite step is allowed if the hypotheses can be re-embedded

into the conclusion, with the possibility of dropping an unembeddable hypothesis from

the embedded set as long as this does not make the set empty.

The advantage of the embedding formalism is that the rippling annotation is sepa-

rate from the term structure, so thatβ-reduction cannot produce ill-formed annotation

(although the embedding will have to be recomputed), and theunderlying logic does

not need to be modified, e.g. unification does not need to account for wave annotation.

Furthermore, in the case of multiple rippling targets the embeddings approach does

not suffer from the problem of ‘mixed skeletons’. This problem arises in other rippling

approach because the interdependancies between differentwave holes are ignored,

leading to bogus skeletons that can misguide the search. Yoshida proposedcoloured

rippling [Yoshida et al., 1994] to prevent skeleton mixing in the waveannotation ap-

proach.

In a naive embeddings implementation the separation of the annotation and the

term means that the entire embedding does have to be recomputed with each step.

However, more efficient implementations are possible6.

2.5.4 Creational Rippling

Standard rippling can be used to guideconstructor stylestep-cases, where induction

terms, and hence wave fronts, only appear in the induction conclusion. Indestructor

style step casesinduction terms are substituted into the hypotheses, therefore wave

fronts also appear in the hypotheses. For example, (2.10) shows a destructor style step

case from the proof of the commutativity of+, with an annotated induction hypothesis.

p(x) +(Y +Z) = ( p(x) +Y)+Z ⊢ x+(y+z) = (x+y)+z (2.10)

6Jonathan Whittle, personal communication.
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Creational rippling is an extension to rippling that can be used to guide step case

proofs with annotated hypotheses [Bundy et al., 1993, Hutter, 1997]. This is done by

rippling the conclusion so that a wave front is created therewhich matches the wave

front in the hypothesis. Such a step can lead to non-termination under wave measures,

as the number of wave fronts is increased, so additional steps must be taken to ensure

termination.

In [Hutter, 1997] creational rippling is called the ‘blowing up of terms’, using

context-creatingC -equations to introduce the new wave fronts. In [Bundy et al.,1993]

creational wave rules are defined, which containanti-wave frontsthat can match with

wave fronts in the hypotheses — after a creational ripple thematching wave fronts are

erased, leaving an ‘expanded’ skeleton. Although skeletonpreservation is violated, the

step is acceptable because both hypothesis and conclusion still have a common skele-

ton. In both formalisms the creational ripple can produce additional wave fronts in the

conclusion that need to be rippled away — hence it is also known asrippling across,

as the hypothesis wave front appears to have been moved across to the conclusion.

The literature on rippling does not describe creational rippling in the same depth as

the standard technique, and it has not been formalised to thesame extent. Essentially

the same approach is outlined in both the wave annotation andC -calculus formalisms:

before standard rippling is applied a phase of creational rippling takes place, where

a creational step is taken providing some wave front in the hypothesis is matched by

the new wave fronts. In the case of multiple induction hypotheses, a creational ripple

can introduce wave fronts which match wave fronts in only some of the hypotheses.

In this case theunviablehypotheses are discarded from the rippling process, i.e. their

corresponding wave holes are erased.

Creational rippling has been implemented experimentally inthe λClam system
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[Gow and Bundy, 2000]. Protzen criticises the technique for being ‘complex and un-

intuitive’ [Protzen, 1995] — probably due to its poor theoretical development and de-

scription compared to standard rippling.

2.5.5 The Wave Critics

Proof critics are used to describe common exceptions to proof planning methods, re-

sponding to a pattern of failed preconditions that suggestsa particular amendment to

the proof plan (see §2.4.4). Proof critics was first examinedin the context of rippling,

with the introduction of thewave critics[Ireland, 1992, Ireland and Bundy, 1996].

These four critics respond to the failure of thewavemethod, which implements a

single ripple rewrite in theClamproof planner. Each critic corresponds to a particular

pattern of failure in the wave method’s preconditions. Those preconditions are:

Wave Front The goal contains a wave front.

Wave Rule A wave rule can ripple this wave front.

Condition Any condition on the wave rule can be discharged.

Sinkable Any inwards wave fronts are above for sinks or outwards wave fronts. Recall

that wave fronts can be rippled inwards to a sink position where they match a

universal variable in a hypothesis (see §2.5.1). Alternatively, they may meet an

outward wave front and ‘cancel each other out’.

Table 2.1 shows how the failure of the wave preconditions triggers the various wave

critics. Partial success in applying a wave rule means that adding some term structure

(say,s(s(x)) instead ofs(x)) would allow the rule to be applied.

The critics respond to rippling failure by generalising theoriginal conjecture, in-

troducing a case analysis into the step case proof, revisingan induction term in the
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Generalisation Case Induction Lemma

Precondition Analysis Revision Discovery

Wave Front Yes Yes Yes Yes

Wave Rule Yes Yes Partial No

Condition Yes No

Sinkable No

Table 2.1: Association between wave method failure and the wave critics. Yes, Partial

and No indicate the precondition succeeds, partially succeeds (see main text) or fails

respectively. Taken from [Ireland and Bundy, 1996].

induction rule, or by attempting to find a lemma that will allow rippling to continue.

With the exception of the case analysis critic, the wave critics perform these tasks us-

ing middle-out reasoning, i.e. introducing a solution withone or more meta-variables

that are appropriately instantiated later in the proof search.

[Ireland and Bundy, 1996] reports success in using the wave critics to find auto-

matic proofs to many theorems previously unsolvable using rippling, and other in-

ductive techniques. Further development of the generalisation critic is reported in

[Ireland and Bundy, 1999].

2.6 Recursion Analysis

We now look at previous work on automating the selection of induction rules. The

standard approach to rule selection isrecursion analysis, based upon techniques devel-

oped by Boyer and Moore [Boyer and Moore, 1979]. This uses thedual inductions of

terminating recursive functions that appear in the goal. The dual induction ruleI f of a
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recursive functionf corresponds to a relation identical to the computation order of f .

The termination off guarantees the well-foundedness of this relation, and hence the

validity of the rule.

To prove a particular conjecture a heuristic is used to suggest a set of induction

rules: if the functionf appears in the conjecture with recursive argumentsx1, . . . ,xn

then use the dual induction ruleI f with induction variablesx1, . . . ,xn (providing xi

are all universal variables). This is known as theduality heuristic7. The set ofraw

suggestionsgiven by the heuristic undergoes two more stages of processing. First

the system attempts to i) disregard some rules as inherentlyinferior to others and ii)

combine rules together, to form rules superior to their constituents. The notion of

superiority of induction rules can vary between systems, aswe shall see below.

Finally an induction is selected by considering the induction terms substituted into

the conjecture by each rule and the effects this will have on the subsequent proof. An

occurrence of an induction term in the conjecture isflawedif it prevents the symbolic

evaluation of the surrounding term using the recursive definitions, otherwise it isun-

flawed. A rule is selected based on the number of flawed and unflawed induction terms

it will produce (see [Stevens, 1988] for details).

2.6.1 Subsumption

The first system to incorporate recursion analysis was NQTHM, also known as the

Boyer-Moore Theorem Prover [Boyer and Moore, 1979, Boyer and Moore, 1988]. The

system considers an induction rule superior to another if itsubsumesthe other rule.

Subsumption can be defined as:

• RuleA is subsumed by ruleB iff there is arepeated formof A such that each step

7It is also known asthe induction heuristic e.g. [Walther, 1992].
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case of this rule isdirectly subsumedby a step case of ruleB.

• The N-repeated form of a rule is constructed by applying the substitutions of

each step case to each step case of the(N−1)-repeated form (see [Stevens, 1990]

for details).

• Step caseSA is directly subsumed by step caseSB iff the conditions ofSB imply

the conditions ofSA and each hypothesis/conclusion substitution ofSA is a subset

of a hypothesis/conclusion substitution inSB.

Informally, subsumption can be seen as considering rule B superior if it is an extension

of N applications of rule A, for someN. NQTHM combines induction rules bymerging.

Merging two valid rules produces a third valid rule which subsumes the original two.

2.6.2 Subsumption Reconstructed

Although NQTHM was very successful at selecting appropriate induction rules and the

system was well documented in [Boyer and Moore, 1979], this approach lacked any

real theoretical foundation explainingwhy it worked. Because of this Stevens carried

out a rational reconstruction of Boyer and Moore’s recursionanalysis [Stevens, 1988,

Stevens, 1990]. He provided theoretical explanations of why these techniques often

chose appropriate inductions, which lead him to identify and correct a number of flaws

in the original process.

The reconstruction was based upon an informal meta-theory of inductive proofs

— explanations about how and why inductive proofs succeed orfail. The key idea

of this theory is that appropriate induction rules introduce induction terms that allow

hypothesis and conclusion to be rewritten to match each other. These induction terms

need to bedealt with– we need rewrite rules that involve these terms in the context they
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have been substituted into. If we use inductionI f dual to functionf in the conjecture,

then we can use the recursive definition off to deal with some of the terms introduced

by I f . The danger is that a rule might introduceside-effectsi.e. terms that cannot be

dealt with using the recursive definitions available. Rule B is therefore superior if it

subsumes rule A, as it will substitute ‘dealable’ terms intothe same places as A, and

will possibly allow A’s side-effects to be dealt with as well.

Among the advantages of Stevens’s recursion analysis is theuse of the merging

algorithm to perform the subsumption test – if rule A subsumes rule B then merging A

and B simply returns A. His improved merging algorithm also allows, in some cases,

repeated forms of rules to merged, finding acommon subsuming induction rulefor two

rules.

2.6.3 Containment

Subsumption is not the only method of measuring the relativesuperiority of induction

rules. Walther has proposedcontainmentas an alternative method [Walther, 1993], and

from this he developed an alternative set of techniques for improving, disregarding

and combining destructor style induction rules8 suggested during recursion analysis

[Walther, 1993, Walther, 1994a]. These have been implemented in a version of the the

INKA inductive theorem prover [Hutter and Sengler, 1996].

Containment is defined as: ruleA is contained by ruleB iff <A⊂<B, where<I is

the well-founded relation corresponding to valid induction rule I . Hence the rule with

the larger relation is considered superior, which is equivalent to preferring the rule

with the logically stronger induction hypotheses. This canbe seen as a meta-theory of

inductive proofs that differs from, but does not necessarily oppose, Stevens’s theory.

8A destructor style induction rule only substitutes induction terms into induction hypotheses of step
cases.
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[Walther, 1993] describes acontainment testwhich is sufficient to show contain-

ment between two induction rules: ruleA is contained byB if for each hypothesisHA

in a step caseSA of A the following formula is true (taking all free variables to be

universally quantified):

cond(SA) →
_

SB∈S(B)

(

cond(SB)∧
_

HB∈H (SB)

[

^

x∈dom(HB)

HB(x) = HA(x)
]

)

whereS(B) are the step cases of ruleB, H (S) andcond(S) are the hypotheses and

conditions of step caseS, dom(H) is the domain of hypothesisH ’s substitution and

H(x) the effect of that substitution on variablex. The test is carried out by passing a

set of thesecontainment formulaeto an inductive theorem prover.

If neither<A⊂<B or <B⊂<A can be shown using this test, then the rules are com-

bined by taking theseparated unionof A andB [Walther, 1993]. This is an induction

rule corresponding to the relation<A ∪ <B constructed so that the conditions of the

step-cases are mutually exclusive. Although this union always exists, it is not guar-

anteed well-founded. The rule can be shown valid if it passesa quasi-commutation

test. As with the containment test this involves discharging certain formulae using the

inductive theorem prover, but they tend to be harder to prove. In the last resort the

system can attempt a direct well-foundedness proof of the separated union.

[Walther, 1993] also definesrangeanddomain generalisations: operations which

modify an individual induction ruleA to produce a ruleA′ that containsA. Both

these operations correspond to procedures for extracting an induction rule from a

terminating recursive function definition discussed in [Boyer and Moore, 1979] and

[Stevens, 1990]. As with separated union, the generalised induction rule is not guaran-

teed well-founded.

Walther claims that his recursion analysis is superior to Boyer and Moore’s ap-

proach (see [Walther, 1994a] for his comparison). His techniques are capable, in
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some cases, of constructing induction rules that require fewer supporting lemmata than

Stevens’s approach. However unlike Stevens, he does not address repeated forms and

non-destructor style induction rules. The relative strengths of the two approaches has

not yet been properly investigated, and it is unclear if either is superior, or perhaps if

some combination of the two would be optimal.

2.6.4 Ripple Analysis

One of the major advantages of rippling is that it provides a strong normative model of

how inductive proofs should proceed, and this model can be used to suggest solutions

to other problems in automated induction. For example, whenselecting an induction

rule we can choose the rule that is most likely to allow subsequent rippling to succeed.

Ripple analysis[Bundy et al., 1989] is an induction selection technique thattakes this

approach.

Induction terms appearing in the step-case will be annotated as wave fronts. Given

a set of induction rules and a set of wave rules, ripple analysis suggests those rules that

introduce wave fronts that can be rippled in the first step of the proof. This provides

a set of raw suggestions which can be combined and disregarded using the techniques

of recursion analysis. Indeed, ripple analysis can be seen as an extension of recursion

analysis, as both consider the effect the induction will have on the first step of the step-

case proofs. The former considers a rippling proof, the latter symbolic evaluation with

the recursive definitions.

This comparison indicates the advantages this technique has over recursion anal-

ysis. Firstly, it may use any lemmata known to the system if they can be annotated

as wave rules. They may suggest appropriate inductions different from any dual to

functions in the conjecture. Secondly, the restrictions onrippling can disallow an in-
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appropriate induction even though recursion analysis suggests it [Bundy, 2001]. If an

induction term may only be dealt with by rippling in using a recursive definition, but

there is no sink position in which to put the wave front (see §2.5) then the proof is

likely to fail. Recursion analysis would suggest this induction, ripple analysis would

not, given that there is no applicable wave rule.

2.7 Delaying the Choice of Induction Rule

Recursion analysis and ripple analysis are the standard approaches to induction rule

selection, but have two significant disadvantages [Bundy, 2001]. Firstly, they can only

select an induction rule from a predetermined space, and thesuitable choices may not

be in that set [Protzen, 1995]. For recursion analysis this ‘dual space’ of induction rules

is determined by the recursive functions in the conjecture and the operators for induc-

tion rule combination. Ripple analysis can select inductionrules not in the conjecture’s

dual space, but these must be supplieda priori, e.g. by the user.

Their second disadvantage is they must guess the effects of the induction choice

using only the structure of the conjecture and a one-step lookahead for each induction

term. This can obviously go wrong, as events later in the proof may determine why

this a bad choice, and more importantly, what a good choice would be.

In this section we look at an approach to induction rule selection which overcome

the second problem by delaying the choice of induction rule until the middle of the

proof. In §2.8 two techniques which tackle the first problem are examined.
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2.7.1 Periwinkle: Middle-Out Induction Selection

In herPeriwinklesystem Ina Kraan usedmiddle-out reasoningto select an induction

rule from a prestored set [Kraan, 1994, Kraan et al., 1996]. The system performs bet-

ter than recursion analysis because it looks ahead into the proof by delaying the choice

of induction rule, via middle-out reasoning [Bundy et al., 1990a]. This represents un-

known terms in a proof with meta-variables, variables that may be instantiated to first

or higher-order objects in the object level language. As theproof proceeds, the meta-

variables are instantiated to allow proof steps to happen. If the proof is completed

then the meta-variables should be instantiated to the required terms. The main dif-

ficulty with this technique is controlling instantiation, as without proper control the

proof could easily diverge. A model of the structure of successful proofs is required to

provide this control [Hesketh, 1991].

In the case of middle-out induction, second-order meta-variables are used to repre-

sent the induction terms of the as yet unknown induction rulechoice. This gives us a

schematic step caseto be rippled, e.g.9

x+(y+z) = (x+y)+z

⊢ A(x) +( B(y) + C (z) ) = ( A(x) + B(y) )+ C (z) (2.11)

A proof of this step-case is searched for, instantiating themeta-variables as it proceeds.

If successful, this yields a set of induction terms and uses these to select an induction

rule from a prestored set. The proofs of the base cases are then completed.

The dashed wave fronts in (2.11) indicatepotentialwave fronts, which can be made

definiteto allow a wave rule to match during the proof. Steps in the rippling proof are

eitherdefiniteor speculative, depending on whether or not any definite wave fronts

9Here the meta-variables are written asA ,B ,C , . . .



Chapter 2. Literature Survey 42

are rippled. An example of a speculative ripple is the application of rule (2.5) to the

schematic step-case (2.11) to give the conclusion:

s( D(x) +( B(y) + C (z) ))
↑

= ( s( D(x) )
↑

+ B(y) )+ C (z) (2.12)

In this exampleA has been instantiated toλu.s(D(u)) and a definite wave front has

been created around these terms. On the LHS this wave front isrippled outwards and

there is now the possibility of a definite ripple on the RHS.

Rippling provides much of the control necessary for this kindof middle-out reason-

ing, as it provides a strong model of step-case proofs and so severely restricts the appli-

cable rewrite rules. However, it is non-terminating in the presence of meta-variables,

and so Kraan imposed further restrictions on the step-case proof. Firstly, a definite

ripple or the application of the induction hypothesis is always preferred to a specula-

tive ripple. Secondly, only a single speculative ripple is allowed during a proof. This

second limitation is somewhat over-restrictive, and Kraansuggests alternative methods

need to be developed, such as a middle-out induction proof critic10

Another potential problem with middle-out induction is theneed for higher-order

unification when instantiating meta-variables, as this is only semi-decidable and does

not guaranteed a unique most general unifier. ThereforePeriwinkleis restricted to uni-

fying higher-order patterns, a subset of higher-order terms with decidable unification

and a unique most general unifier. This subset appears to be sufficient for representing

induction terms. In contrast, other approaches to middle-out reasoning have accepted

the undecidability of full unification [Hesketh, 1991, Ireland and Bundy, 1996].

Note thatPeriwinklecannot find a step cases which are destructor style (i.e. with

compound induction terms in the hypotheses) or which have multiple inductive hy-

potheses.

10This problem is addressed in Chapter 7.
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2.8 Creating Novel Induction Rules

Recall that apart from lack of foresight into the proof, the other major disadvantage

of recursion and ripple analysis was their dependence on a space of induction rules

predetermined by available recursive functions, and possibly the user. In this section

we look at techniques which lift this restriction, in that they can create induction rules

‘from scratch’.

2.8.1 Labelled Fragments

The need for novel induction orderings is especially important in proofs of existence

theorems. Here an assertion can be made about a recursive function without its recur-

sive structure being known. For example, the following theorem asserts the existence

of a quotientq and remainderr for pairs of Peano natural numbers:

∀x,y:nat.∃u,v:nat.y 6= 0→ (x = (q×y)+ r ∧ r < y)

Proving the theorem involves finding witnesses for the unknownsq andr and showing

they satisfy the theorem. This can be done by synthesising the witness during the proof

of the theorem. Therefore the form of induction used will determine the recursive

structure of each witness. In many cases the appropriate form of induction is not

dual to any recursive function given in the problem specification [Bundy, 2001]. Also,

although the conjecture may be provable using known induction rules, another witness

with a simpler proof may be found with other forms of induction11. This is the case

for the quotient-remainder example above [Hutter, 1994]. Roughly speaking, we may

not even have the appropriate dual induction to hand, as we don’t yet know what form

11This is especially important when synthesising a program from its specification – an existence
theorem – as a more desirable program may correspond to this witness.
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the witness will be. Hence approaches such as recursion analysis, which rely on a

predetermined space of induction rules, perform badly on existence proofs.

[Hutter, 1994] describes a dynamic approach for constructing an induction order-

ing appropriate to a given existence conjecture. First a setof induction variables are

selected by using abstractedC -equations (see §2.5) calledlabelled fragments. A set of

variables is found such that context, or wave fronts in rippling terminology, introduced

at these positions could be rippled out. The analysis ignores the form these wave fronts

might take and only checks if there areC -equations that could movesomewave front

in the right direction.

A destructor style induction rule is then synthesised by ‘blowing up’ some part

of the conjecture using a context creatingC -equation (equivalent to a creational wave

rule) and then propagating these wave fronts to the induction variables to give a set of

induction terms. The resulting induction rule can lie outside the dual induction space,

so the technique may create a ‘novel’ induction rule. Walther’s methods (see §2.9.1)

are used to establish this induction as well-founded. Hutter gives various heuristic

strategies for creating and moving wave fronts in existencetheorems.

2.8.2 Lazy Induction

Lazy induction is another approach designed to generate induction rules not con-

structed from known function definitions [Protzen, 1994, Protzen, 1995]. It is re-

stricted to destructor-style induction rules, where induction terms are only substituted

into the hypotheses.

The technique constructs a destructor style induction ruleduring the proof search

for the rule’s base and step cases. It assumes the conclusionof each case is equivalent

to the conjecture, then creates and removes wave fronts using ripple-like rewriting, and
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generates suitable induction hypotheses on demand. Protzen uses Hutter’s C-Calculus,

adapted to have wave annotation’s directed wave fronts. This enables the usual general

termination argument (see §2.5).

This lazy generation of induction hypotheses leaves decisions about the form of

induction to fertilisation steps. Before fertilisation there is no explicit representation

of the unknown induction. This can be constrasted with Kraan’s ‘schematic step case’

approach (see §2.7.1), where these decisions are made by rippling steps and meta-

variables store this information explicitly before fertilisation occurs. These different

approaches to delayed commitment are contrasted further in§13.5.

To prove a conjecture∀x1, . . . ,xn.ψ, lazy induction begins with the conclusionψ

and an empty hypothesis list, and transforms it using the following operations:

Wave Front Introduction: Rewriting the conclusion with a measure increasing wave

rule in order to create wave fronts. This is always the first step of the proof.

Rippling: Wave fronts are rippled outwards, or into sinks.

Case Split: Rewriting motivates a case-split. Each case becomes a separate case of

the induction rule.

Hypothesis Generation: If an instance of the conjecture can be used to rewrite the

conclusion, then it is added as a hypothesis and used for fertilisation.

Equate Induction Variables: If Hypothesis Generationcan’t be applied because

two occurrences of an induction variable have to be instantiated to different

terms, then attempt to prove that these terms are equal.

Note thatWave Front Introduction is always applicable to the conclusion, so further

controls are required to prevent divergence. Protzen’s thesis [Protzen, 1995] does not

deal with this issue.
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The well-foundedness of the resulting rule is guaranteed byusing Walther’s esti-

mation calculus (see §2.9.1) at the end of the proof, or by ensuring:

a) that only defining equations of terminating functions areused byWave Front

Introduction ,

b) that onlyp-bounded functions are moved towards induction variables,wherep

is the argument containing the variable and

c) that a subset of variables always appear in their induction terms, and at least one

of these is instantiated to a non-variable term in each hypothesis (this condition

is not made explicit by Protzen, but it seems to me to be necessary).

As the case-structure of the induction rule has been constructed by case-splits during

the proof, it is guaranteed to be case complete, and hence sound.

[Protzen, 1995] reports that lazy induction was implemented as an extension to the

INKA inductive theorem prover [Hutter and Sengler, 1996], although this implemen-

tation is no longer available.

An Example of Lazy Induction

To illustrate lazy induction, we now present a proof of the theoremevenpfrom the

Clam library [van Harmelen, 1996] using destructor style definitions of evenand+

(see Appendix B). We assume the lemmaeven(s(s(x))) = even(x) is available.

⊢ even(x)∧even(y) → even(x+y)
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Case Split and Wave Front Introduction using the definition ofevengives three

cases:

⊢ even(0)∧even(y) → even(0+y) (2.13)

⊢ even(s(0))∧even(y) → even(s(0)+y) (2.14)

x 6= 0, x 6= s(0) ⊢ even( p(p(x))
↑
)∧even(y) → even(x+y) (2.15)

The cases (2.13) and (2.14) are trivial, and case (2.15) continues with twoWave Front

Introduction s with the definition of+:

x 6= 0, x 6= s(0) ⊢ even( p(p(x))
↑
)∧even(y) → even( s(s( p(p(x))

↑
+y))

↑

)

Rippling with the lemma gives us:

x 6= 0, x 6= s(0) ⊢ even( p(p(x))
↑
)∧even(y) → even( p(p(x))

↑
+y)

Now Hypothesis Generationcan produce a suitable induction hypothesis, use it to

fertilise:

x 6= 0, x 6= s(0), even(p(p(x)))∧even(y) → even(p(p(x))+y) ⊢ true

The proof satisfies the well-foundedness conditions (a)–(c) given above, so the induc-

tion is sound and the proof is complete.

2.9 Termination Analysis

The problem of proving a given induction rule well-founded is similar to proving the

termination of a recursive function — both require a well-founded relation to be pro-

vided under which the recursive cases decrease. It is in thiscontext that the significant
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research into automating well-foundedness proofs has beendone. Termination of a re-

cursive function12 is usually established by proving that for some subsetP of the func-

tion argument positions, there is atermination functionwhich is always less by some

known well-founded order for the values in the recursive calls than the initial values.

More formally, for ann-ary functionf there is some fixedP= {i1, . . . , ik}⊆{1, . . . ,n},

a termination functionm and a well-founded relation<, such that for each recursive

call in a defining equation:

ϕ → f (a1, . . . , an) = . . . f (b1, . . . , bn) . . .

the followingtermination hypothesisis true:

ϕ → m(bi1, . . . , bik) < m(ai1, . . . , aik) (2.16)

In this section we look at three approaches which allow this process to be automated.

2.9.1 The Estimation Calculus

In the Boyer-Moore theorem prover (see §2.6), proving termination of recursive func-

tions was given a degree of automation. However, the system depended entirely on the

presence of suitableinduction lemmasto prove termination. It was up to the user to

formulate these lemmas, and this constituted the most difficult part of the process.

Walther’s estimation calculus[Walther, 1988, Walther, 1994b] attempts to auto-

matically prove termination in a way similar to the Boyer-Moore theorem prover, but

has the ability to synthesise suitable induction lemmas without user assistance. It can

prove termination of destructor style functions defined over freely generated data types.

It uses a single kind of measure function, thesize order#τ : τ 7→ N, which counts the

12not including mutual or nested recursive functions.
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number ofreflexive constructorsin a constructor ground term of typeτ, i.e. the con-

structors of typeτn → τ for anyn. For example, the number of occurrences ofs in a

nat, or consin a list(nat).

The method depends upon the notion ofargument bounded functions. A function

f is p-bounded iff for all termst1, . . . , tn of the correct type13:

f (t1, . . . , tn) 6# tp

Such properties of functions can be found automatically. Given ap-bounded function

f , adifference function∆p f is synthesised – a predicate that recognises when the bound

6# can be made strict. Hence:

∆p f (tp) → f (t1, . . . , tn) <# tp

This will play the r̂ole of an induction lemma. The actual estimation calculus can be

used to deduce that for some termt containing variablex, t 6# x. It decomposest

to a series of subterms by replacing the topp-bounded function by thepth argument,

eventually reachingx. Thedifference equivalent∆(t,x) is simultaneously constructed

by the calculus as the disjunction of the corresponding difference functions applied to

each subterm. From this and the induction lemmata, it follows that:

∆(t,x) → t <# x

Showing the termination of single argument destructor style recursive functionf in-

volves:

1. Finding each recursive callϕ → f (x) = . . . f (t) . . .

2. Deducingt 6# x in the estimation calculus.

13wherex 6# y denotes #τ(x) 6N #τ(y)
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3. Proving thetermination hypothesisϕ → ∆(t,x).

The technique extends to functions with several arguments.It has been implemented

in the INKA inductive theorem prover [Hutter and Sengler, 1996] and shown to be

successful in practice. Walther’s methods have also been extended for use with arbi-

trary polynomial-norm measure functions [Giesl, 1995a] and recursive functions de-

fined over non-freely generated data types [Sengler, 1996].

2.9.2 Reducer/Conserver Analysis

[McAllester and Arkoudas, 1996] describes a simplificationof the estimation calculus,

which is guaranteed terminating for the class of ‘Walther recursive’ functions. Walther

recursion is defined by set of simple syntactic requirementsfor function and type defi-

nitions.

Functions can be classified asconserversor reducersof their pth arguments, cor-

responding to a non-strict or strict bound on the function bythe argument. These are

expressed in conserver and reducer lemmas using the6# relation – a reducerf can be

asserted by a reducer lemma of the form:

f (x1, . . . ,xn) ≤# d(xp)

whered is a destructor function14. The simplified calculus uses reducer and conserver

lemmas in two capacities: as a termination checker or as a wayof obtaining new lem-

mas from known terminating functions. Unlike the estimation calculus it does not

produce termination hypotheses that require an inductive theorem prover to discharge,

but purely by manipulating reducer and conserver lemmas. Hence it is less power-

ful than Walther’s original methods, but has the advantage of always terminating for

Walther recursive functions.
14i.e.d(c(x1, . . . ,xn)) = xi for some constructorc andi ∈ [n].
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2.9.3 Using Term Orders

There exists large bodies of research on the termination of logic programs and term

rewriting systems (see [Dershowitz, 1987] and [Schreye andDecorte, 1994] respec-

tively). This suggests an alternative route to automating termination proofs of recur-

sive functions, and equivalently well-foundedness proofsof induction rules, than those

outlined above: adapt automated techniques from these areas to deal with recursive

functions.

Giesl has considered this approach and concluded that [Giesl, 1995c]:

• Techniques for logic program analysis are currently unsuitable, as these are only

semi-automatic, i.e. like Boyer and Moore’s system they require the user to per-

form the significant tasks.

• Although there are several automated procedures for term rewriting systems,

these are not directly applicable to recursive functions.

The problem with the latter techniques is that they prove termination hypotheses (2.16)

usingterm orders– well-founded orders on the terms of the data typesa1, . . . ,an. In

general, this approach is not sound for recursive functions, because different terms may

evaluate to the same constructor term, but will not be equivalent under the term order.

For example,nil anddelete(0,0 :: nil) are equivalent, but will not be treated as such

by a term order. Term orders do not always respect the semantics of functions.

[Giesl, 1995c] describes three possible solutions to this problem:

1. Use term orders which respect the semantics of the recursive functions.

2. Consider recursive functions as term rewriting systems.

3. Eliminate defined functions from the termination hypotheses.
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The former two are rejected on the grounds that they impose strong requirements on

the termination proofs, which would significantly reduce the power of the approach.

Giesl develops the third solution, introducing new undefined functions which bound

the defined functions that are to be eliminated. He describesa procedure for transform-

ing a set of termination hypotheses into a set of constraints, where defined functions

symbols are replaced by the new undefined function symbols. Any well-founded term

order satisfying the constraints will also satisfy the original termination hypotheses.

Automatic techniques for the synthesis of wellfounded termorders can now be

used to prove the termination of the recursive function, e.g. those in [Steinbach, 1995],

[Giesl, 1995b] or [Dershowitz and Hoot, 1993].

2.10 Summary

This chapter has surveyed the literature on proof planning and automating inductive

proof. We draw attention to the following features:

• Proof planning provides a theorem proving architecture that allows a declarative

specification of proof strategies. Far greater search control can be exercised than

with object-level search.

• Rippling is a heuristic technique for controlling search in inductive step cases.

The expectations it provides for the form of the step case proof have allowed

researchers to make progress with other problems in automated induction: gen-

eralisation, lemma speculation and rule selection.

• The standard technique for induction rule selection is recursion analysis. It is

limited to selecting from an incomplete space of induction rules determined by
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the recursive functions known to the system. Its one-step lookahead into the

proof can also be inadequate.

• Improvements on recursion analysis have delayed the choiceof induction rule

until later in the proof. Some approaches also attempts to generate a novel ap-

propriate rule during the proof [Protzen, 1995]. The main problems with these

techniques are poor search control and the restrictions they place on the form of

induction rules.



Chapter 3

Induction Rule Structure

When dealing with such a schematic axiom, how can a prover sensibly
guess which instances of (the schema) to consider? Without a really good
way to answer such questions, one meets with the futility of the British
Museum Algorithm1.

— ROBERT S. BOYER & J STROTHERMOORE, ON THE DIFFICULTY

OF AUTOMATING INDUCTIVE REASONING

3.1 Introduction

The literature on automated induction, described in Chapter2, contains a variety of

logical and heuristic theories of inductive proof. The relationships between these the-

ories is not always clear: for example, R-descriptions [Walther, 1992] and rippling

[Bundy et al., 1993] are described in quite different terms (see §2.5 and §2.6).

This raises important questions for anyone considering theautomation of mathe-

matical induction, namely:

1. What definition of an induction rule should be used? For example, some authors

1which “enumerates... all Hilbert style proofs, until it finds a proof of the given theorem, as though
visiting the British Museum, where one gets to see at least one example of everything.”

54
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restrict their theories todestructor stylerules, e.g. [Protzen, 1995], while others

also useconstructor style, e.g. [Bundy et al., 1993].

2. Once an induction rule has been applied, how should the proof of the resulting

subgoals be guided? Rippling is a successful approach. However, there are a

number of possible variants (see §2.5).

These questions are particularly relevant to this thesis, in considering (i) what kind

of induction rules should a system attempt to create and (ii)what constitutes a good

choice with respect to the proof search heuristics being used. This chapter provides

answers to both these questions2, providing a theory for the automation of inductive

proof. Our theory will be taken as a basis for the remainder ofthe thesis.

The concept ofsimple induction rulesis proposed as a definition of induction rules

that is suitable for automated proof, because it is compatible with rippling heuristics.

We show that current rippling techniques are easily extended for use with this class

of rule, by giving a fresh account ofcreational rippling[Bundy et al., 1993] via term

embeddings. Simple induction rules generalise the concepts of induction rule used in

much previous work on automated induction, and we argue thatthis improves automa-

tion.

Figure 3.1 shows an example of the kind of induction rule we discuss in this chap-

ter, and illustrates some useful pieces of terminology.

3.2 Syntactic Restrictions

As explained in §2.2.1, all induction rules are derivable from the Noetherian Induction

rule. However, the full rule is rarely used in automated theorem provers, because it is

2Any answers to these questions depend, in part, on the logical setting in which the inductive rea-
soning takes place. However, only a sequent-based typed higher-order logic is considered in this thesis.
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Induction Terms

Induction Hypothesis

Case Condition

} Step Case

}

Induction Conclusion

Base Cases

Figure 3.1: An example induction rule, with the common names for various parts.

an axiom with several higher order variables [Boyer and Moore, 1992]. This means it

may not be expressible in a system’s logic, and when it is, thepresence of higher order

variables present search and unification problems, unless carely controlled.

A system can get round this problem of expressiveness by computing the necessary

instantiation ‘behind the scenes’ and using the resulting derived rule, e.g. NQTHM’s

induction rules are expressed in unquantified first-order logic. But still, such systems

do not consider the full range of possible instantiations. Instead they typically employ

some syntactically restricted class of induction rules.

Examples of such classes areconstructor styleinduction rules, which are used

by the Clam [van Harmelen, 1996] andλClam [Richardson et al., 2000] proof plan-

ners and the RRL system [Kapur and Zhang, 1995], anddestructor styleinduction

rules, which are used by NQTHM [Boyer and Moore, 1979] and the INKA system

[Walther, 1992, Protzen, 1995]. Destructor style induction rules may be formalised

using R-Descriptions [Walther, 1992].

The disadvantage with using a restricted class of inductionrules is that there may be

problems that can only be solved, or can be more easily solved, using an induction rule
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outside of this class. (We look at the problems of restricting a system to constructor and

destructor style in §3.5.) For instance,Clam cannot typically solve simple problems

about destructor style functions, as the appropriate rule is often destructor style. There

is a tension here between generality needed to solve a range of problems, and the search

control issues of using an unrestricted definition of induction rule.

3.3 Simple Induction Rules

We now describesimple induction rules, a class of induction rules designed to gen-

eralise constructor and destructor style rules, whilst still being suitable for automated

proof.

Definition 1 (Simple Induction Rule) A simple induction rule is an inference rule

with a conclusion of the form⊢ ∀X .Φ, and premises of the form

C1, . . . ,Ck, θ1(∀Y1.Φ), . . . ,θh(∀Yh.Φ) ⊢ σ(Φ)

for h,k≥ 0 and substitutionsθ1, . . . ,θh,σ such that

1. For all i ∈ [h]

Yi ∪Dom(θi) = Dom(σ) = X

2. For all i ∈ [k], eachcase conditionCi is a literal not of the formθ′(∀Y ′.Φ) for

any substitutionθ′ and set of variablesY ′.

Informally, the definition gives a schematic description ofa premise consisting of

case conditions (Ci), induction hypotheses (θi(∀Yi.Φ)) and induction conclusionσ(Φ).

Clause (1) insists that in each premise the universally quantified variables in the rule’s

consequent (X ) are substituted for in the conclusion (Dom(σ)) and either substituted
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for, or universally quantified, in each hypothesis (Yi ∪Dom(θi)). Clause (2) ensures

that case conditions are not induction hypotheses.

As an example, consider the induction rule from §1.3:

⊢ Φ(nil)

Φ(x) ⊢ Φ(x <> (y :: nil))

∀l : list(τ).Φ(l)

This is a simple induction rule. Following Definition 1 it hasX = {l}. The base case

has the parametersk = 0, h = 0 andσ = {nil/l}. The step case has the parameters

k = 0, h = 1, Y1 = /0, θ1 = {x/l} andσ = {(x <> (y :: nil))/l}.

On the other hand, the Noetherian induction rule (see §2.2.1) is nota simple induc-

tion rule:
∀x∈ A. (∀y∈ A. y≺ x→ Φ(y)) → Φ(x)

∀x∈ A. Φ(x)

It is not a simple rule because its premise has the wrong syntactic structure to match

Definition 1.

Simple induction rules are more general than the constructor and destructor style

of induction rules found in the literature. We can obtain constructor (resp. destructor)

induction rules by restricting the substitutionθi (resp. σ) to only introduce atomic

terms — variables or constant symbols.

Simple induction rules are suitable for automation becausewe can use rippling-

like heuristics to guide the proof of the resulting subgoals: the induction conclusion

σ(Φ) and the induction hypothesesθi(∀Yi.Φ) are both instances of the same formula,

modulo universal quantification. However, before we can usesimple rules and rippling

together, there are some technical problems to consider.

Firstly, wave-fronts may appear in both the conclusion and hypotheses of step

cases. As discussed in §2.5.4, creational rippling has beenproposed as a technique
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for rippling hypothesis wave-fronts, but it is relatively ill-defined. It was presented

in the wave-annotation formalism [Bundy et al., 1993], but has not yet been extended

to the more general embeddings approach [Smaill and Green, 1996]. This problem is

dealt with in the next section.

Secondly, it is possible that hypothesis and conclusion substitutions for a given

variable do not share any common subterms, making the calculation of a common

skeleton impossible, and so preventing standard rippling.We do not deal with this

problem in this thesis, but simply note that there are proposed extensions to rippling to

deal with lack of common subterms, e.g.hole-less wave-fronts3. Consquently, below

we will assume that such a common subtermdoesexist.

3.4 Creational Rippling

To define creational rippling in an embeddings framework, consider a step case with

conclusionC. Each induction hypothesisH is associated with a set of triples〈Sk, e1, e2〉,

such thate1 : Sk⊂
→H ande2 : Sk⊂

→C. Sk is a common skeleton that embeds in both

this induction hypothesis and the conclusion.

Below we describe how the initial embeddings are computed andhow creational

rippling takes place. Our account differs significantly from the original wave-annotation

presentation [Bundy et al., 1993], although the underlying ideas are the same.

3.4.1 Initial Embeddings

Initially we can assumeH = θ(∀Y .Φ) andC = σ(Φ) for substitutionsθ andσ and set

of variablesY (see Definition 1). To compute the initial triples forH we consider each

3Alan Bundy, unpublished research note.
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x∈ Dom(σ)−Y and compute the setSx of common subterms ofθ(x) andσ(x) — as

discussed above, we are assuming such aSx is non-empty. Define a substitutionρ by

1. Forx∈ Dom(σ)−Y substitute a term fromSx.

2. Forx∈ Y substituteσ(x).

It is easily shown that a common skeleton forH andC is given byρ(Φ): For case (1)

Sx is embeds intoθ(x) in the hypothesis andσ(x) in the conclusion, as it is a subterm of

both. For case (2)σ(x) embeds into a variable bound by∀Y in the hypothesis — recall

that any term embeds into a universal variable of the same type — andσ(x) trivially

embeds into itself in the conclusion. By Definition 1 these arethe only two cases that

need to be considered.

Note there may be multiple possibleρs, and so multiple common skeletons. Each

skeleton has a corresponding triple, with the embeddings computed in the usual way.

3.4.2 Ripple Steps

We assume that some wave measurewmover embeddings is available, such as the one

in [Smaill and Green, 1996]. The usual definition of ripplingvia embeddings is used

(see §2.5), extended to cover multiple skeletons/hypotheses. Informally, a successful

ripple step requires us to reduce the measure in at least one of the embeddings of the

skeleton into the conclusion, and to remain constant in those that are not reduced. If

the measure increases for an embedding then we can allow it tobe discarded, providing

that at least one viable embedding remains.

A ripple step is formally defined as follows:

1. Rewrite the conclusion.
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2. Attempt to embed each skeleton into the new conclusion. Atleast one must

embed.

3. Check the step has reduced thesequent wave measure.

Definition 2 (Sequent Wave Measure)Thesequent wave measurewmseq is defined

for a sequent S as a multiset, containing wmhyp(H) for each induction hypothesis H in

S.

Thehypothesis wave measurewmhyp is defined for an induction hypothesis H as

a multiset, containing wm(e2) for each triple〈Sk,e1,e2〉 associated with H.

As the measure is reduced with each step, rippling is terminating.

The sequent wave measure characterises valid rippling steps, but it is not a good

way of comparing two valid rippling steps, because needlessly throwing away hy-

potheses/skeletons reduces the measure. Instead, one stepis prefered over another if it

preserves more hypotheses, else if it preserves more skeletons.

3.4.3 Creational Ripple Steps

A creational step is one which introduces extra context intothe conclusion to match

context already in the hypotheses, and hence is inherently wave-measure increasing.

The matching context can be made part of the skeleton, as it isshared by hypothesis

and conclusion — a process calledneutralisation, because the corresponding wave-

fronts ‘cancel each other out’, leaving the underlying termstructure behind. Hence

neutralisation expands the skeleton.

A creational ripple step is defined as:

1. Rewrite the conclusion.
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2. Attempt to embed each skeleton into the new conclusion. Atleast one must

embed.

3. Check the wave measure has increased.

4. Apply neutralisation exhaustively. It must apply at least once.

After neutralisation the wave measure may have been increased, decreased or remained

constant. We now define neutralisation:

Definition 3 (Neutralisation) A triple of formulae Sk, H and C such that Sk⊂
→H and

Sk⊂
→C, undergoneutralisation iff another formulae Sk′ (theexpanded skeleton) can

be found such that

1. e: Sk⊂
→Sk′ for some e6= eid

2. Sk′ ⊂
→H

3. Sk′ ⊂
→C

Note that the above definition does not give an algorithm for neutralisation.

The termination of creational rippling is guaranteed, despite the fact that it in-

creases the wave measure, by the following measure.

Definition 4 (Difference Measure) Thesequent difference measuredmseqis defined

for a sequent S as a multiset, containing#(H)−#(Sk) for each triple〈Sk,e1,e2〉 as-

sociated with an inductive hypothesis H in S, where# measures the size of a term.

A creational ripple step removes zero or more triples from the sequent, so the dif-

ference measure is not increased by the step. Each step is followed by at least one
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neutralisation, so at least one triple has its skeleton expanded. As #(H) remains con-

stant for each triple, the value of #(H)−#(Sk) is reduced for at least one triple. Hence

the difference measure is reduced by neutralisation.

Furthermore, the combination of standard and creational ripple steps is terminating,

as standard rippling preserves skeleton, and so cannot increase the difference measure.

Hence a lexographic measure of the difference measure, followed by the sequent wave

measure, ensures termination.

3.5 A Comparison of Rule Styles

Having defined simple induction rules and the rippling heuristics compatible with

them, this section compares their use with that of constructor and destructor style rules.

Recall that simple induction rule is a more general definitionthan both these styles. We

argue that there are two significant advantages to using simple induction rules:

1. The approach is not restricted to problems concerning either constructor or de-

structor style functions.

2. Even if one restricts function definitions to one or the other style, using only

the corresponding style of induction rule is inadequate, because of the role that

lemmas can play in proofs.

3.5.1 Problem with Function Style

Restricting a system to constructor or destructor style induction makes proofs involv-

ing other styles of function definition difficult. This is consistent with Stevens ac-

count of inductive proof [Stevens, 1990], which, put simply, is that a dual rule of a
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relevant functionf should be used, and the term structure this introduces must be re-

moved/matched using the definition off . If f is constructor (resp. destructor) style,

the suitable dual rule is constructor (resp. destructor) style. A ‘destructor style only’

system will have difficulty dealing withf , because a suitable destructor style rule will

introduce term structure into the step case hypotheses which cannot be removed by the

constructor style definition off . A similar argument holds against ‘constructor style

only’ systems.

Of course, this is an over simplification: lemmas could be used to remove/match

the problematic term structure, so it may be possible for a destructor style system to

work with constructor style functions, and vice versa. However, there is no guarantee

that suitable lemmas will be provided, or that they can be easily generated, or even that

such lemmas will exist.

3.5.2 Problem with the Use of Lemmas

The problem with function style is not necessarily significant, as many authors choose

to work with one particular function style. However, there is a more compelling argu-

ment to use simple induction rules, given that Stevens’s theory does not account for all

inductive proofs. There are theorems that require non-dualinductions for their solution

(see [Protzen, 1995] or §1). One possible scenario is that a non-dual rule can be used

because it introduces term structure that can be removed by agiven lemma — extend-

ing Stevens’s theory, we could say the induction rule was a dual rule to the lemma. By

analogy with the functional case, lemmas could be classed asconstructor or destructor

style, depending on the style of their dual rules.

The problem arises because there is no guarantee that the style of the given lemma

will be the same as the chosen function style. For example, a destructor style system
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may have access to a constructor style lemma about its destructor style functions which

suggests a suitable dual rule for a particular problem. Sucha system could not find the

straightforward solution of using this lemma to suggest theconstructor style dual rule.

Of course, it may find a solution if it has a suitable destructor style lemma, but as

is often the case in inductive theorem proving (or theorem proving in general) this

may not be available. Thus the destructor style system failsto take advantage of the

lemma resources made available to it. A similar argument holds against constructor

style systems. Hence restricting the rule style can reduce the power of a system even

if one sticks to the corresponding function style.

3.6 Summary

In this chapter we have:

• Discussed the problem of choosing a suitable definition of induction rule that

we have argued is specific enough to avoid the search control problems of the

full higher order schema, yet also general enough to have a wide coverage of

inductive problems.

• Proposed simple induction rules as a class of induction rules suitable for the

automation of inductive proof, due to their compatibility with rippling heuristics.

• Presented creational rippling [Bundy et al., 1993] via a novel formulation that

uses term embeddings [Smaill and Green, 1996] instead of theoriginal wave-

annotation. This enables the term embeddings formulation of rippling to be used

with simple induction rules.

• Argued that restricting a system to constructor or destructor style induction rules
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has significant disadvantages compared to using simple induction rules. Prob-

lems arise even if the system only works with the corresponding function style.



Chapter 4

Step Case Creation

4.1 Introduction

Having outlined our induction proof strategy in Chapter 1, wenow describe in detail

the techniques used to try to create a successful step case for the inductive proof of a

given goal. The central idea is that certain choices about the form of the case are left

undecided until the middle of its proof — a technique known asmiddle-out reasoning

[Hesketh, 1991]. The effect of such decisions is not known beforehand, but in the

middle of the proof attempt more information may be available, making a better choice

possible.

We take a ‘least commitment’ approach of delaying these choices as long as possi-

ble — only when the proof attempt cannot progress any furtheris the strategy forced

to commit. The rippling heuristic is used to control rewriting.

67
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Overview

First, in §4.2 we present thestep case schema, which is used to represent an unknown

step case. Considering only constructor style step cases, in§4.3 we describe how the

schema may be refined during proof search to give a successfulstep case formula.

We then consider non-constructor style step cases in §4.4. Using the new formula-

tion of the creational rippling heuristic given in Chapter 3,an extended proof strategy

for generating non-constructor style step cases is described.

Some of the ideas presented here build on previous research on inductive proof de-

scribed in [Kraan, 1994] and [Protzen, 1995]. We comment on this, where appropriate,

but defer a fuller comparison to Chapter 13.

4.2 The Step Case Schema

At the beginning of the inductive proof, the unknown step case is represented by a

step case schema, which uses meta-level variables to represent parts of the object-level

formulae which are yet to be determined. Instantiation of these meta-variables (e.g.

by unification) will take place during the proof search, yielding an concrete case of an

inductive proof.

In [Kraan, 1994], step case schemas were used in a similar way. Those schemas

could represent step cases of simple constructor style induction rules with single hy-

potheses and no non-inductive hypotheses. Simple induction rules were selected in

Chapter 3 as a suitable class for automatic proof, and here we generalise the schema

approach accordingly.

Because the strategy will generate induction hypotheses dynamically, simple in-

duction rules can be simplified further: induction hypotheses of the formθ(∀Y .Φ) can
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be replaced with several of the formθ′(Φ) — one for each set of valuesY needs to

take during the proof. These can be added during the proof as required, rather than the

more general universally quantified version being used eachtime. We refer to these

simple induction rules without universal quantification assink-freesimple induction

rules, following rippling terminology [Bundy et al., 1993].

Recall from Definition 1 that a simple induction rule with the conclusion∀X .Φ.

We can write this as:

∀x1:τ1. . . .∀xn:τn.φ(x−→)

has premises that are sequents with the following parts:

• A single conclusionσ(Φ), which we can write this asφ(t
−→
) for termst

−→
. We can

represent it schematically asφ(T1(x
−→), . . . ,Tn(x

−→)).

• One or more induction hypotheses of the form∀Y .Φ, which we can write as

∀Y .φ(t
−→
) for termst

−→
. As argued above, these can each be simplified toφ(t

−→
), so

represented schematically as the first induction hypothesis φ(S1(x
−→), . . . ,Sn(x

−→))

and a (possibly empty) list of additional induction hypothesesIH (x−→) — each

will have the same schematic form.

• Zero or more non-induction hypotheses, known ascase conditions, represented

schematically asCC(x−→), which may be trivial i.e.CC= λu−→.true.

Hence the step case can be represented by the following schema:

CC(x−→),

φ(S1(x
−→), . . . ,Sn(x

−→)),

IH (x−→)

⊢ φ(T1(x
−→), . . . ,Tn(x

−→))

(4.1)
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The schema can be instantiated to give any step case from a sink-free simple in-

duction rule.

Note that our step case schema (4.1) appears to assume that the induction constants

in the induction hypothesis and conclusion will be of the same type as the universally

quantified variables in the original conjecture, as we usex−→ = x1, . . . ,xn to denote them

both. This cannot be the case, as induction often requires more induction constants than

there are universal variables. For example, structural induction on typelist(τ) would

use an induction constants of typesτ andlist(τ). Given a conjecture∀l:list(τ).φ(l), the

‘best approximation’ schema (4.1) can make to the required step case is:

φ(x) ⊢ φ(T1(x) :: x)

However, we can easily overcome this limitation by ensuringthat when the object-level

induction rule is constructed from the proof plan, we replace any remaining meta-

variables, such asT1(x), with induction constants of the appropriate type.

Example 1

The goal∀x,y:nat. x+y = y+x has the step case schema:

CC(x,y),

S1(x,y)+S2(x,y) = S2(x,y)+S1(x,y),

IH (x,y)

⊢ T1(x,y)+T2(x,y) = T2(x,y)+T1(x,y)

(4.2)

4.3 Constructor Schema Refinement

Given the initial step case schema for a goal, an attempt is made to generate a proof

of the schema. The schema is refined by instantiating (possibly partially) the meta-

variables during certain proof steps.
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In the following sections, we describe the various proof steps which are employed

by the strategy for creating constructor style step cases. Non-constructor cases are

considered in §4.4.

The constructor style schema is:

CC(x−→), φ(x−→), IH (x−→), ⊢ φ(T1(x
−→), . . . ,Tn(x

−→)) (4.3)

Note that we may have multiple hypotheses in a constructor style step case and that an

induction variable may be instantiated to a different constant in two different hypothe-

ses.

4.3.1 Rippling

The step case proof is controlled by the ripple heuristic. Following [Kraan, 1994], rip-

pling may partially instantiate meta-variables as a side-effect of rewriting: the left-hand

side of the rule is unified with the redex via higher-order unification [Huet, 1975]. Flex-

ible redexes are forbidden, i.e. rewrite rules are never applied just to meta-variables.

This condition prevents a situation whereevery rewrite rule is applicable toevery

schematic term.

Rippling-sideways and -in is not useful if we are using a constructor style schema.

If a wave front were rippled in it could not be dealt with, because the induction hypoth-

esis would contain no universal variables or induction terms. To deal with such proofs

that use rippling-in a more general non-constructor schemais required — we describe

such a schema in §4.4.

Wave Annotation via Embeddings

The embeddings representation of rippling’s wave annotations is used, to allow com-

pability with higher-order syntax [Smaill and Green, 1996]. We use the definition of



Chapter 4. Step Case Creation 72

embedding given in §2.5, with the minor adaptation that a term embeds into a meta-

variable if and only if their object-level types are compatible. This prevents redundant

embeddings, e.g. a listl embedding into the non-list first argument of the schematic

termcons(A(l),H(l)).

Following Kraan, we denote the wave annotation around meta-variables with a dot-

ted box, calleda potential wave-front. Hence the initial annotated version of schema

(4.3) is:

CC(x−→), φ(x−→), IH (x−→), ⊢ φ( T1(x
−→) , . . . , Tn(x

−→) ) (4.4)

Note, however, that unlike Kraan’s, our potential wave-fronts have no wave-holes —

this is becauseany term may be embedded into a meta-variable, modulo type, not just

the elements ofx−→.

The embeddings formulation also allows a simple treatment of annotation with

respect to multiple hypotheses, compared to [Yoshida et al., 1994], for example. See

Chapter 3 for details.

Rippling Side Conditions

In addition, the rewrite step may have a side condition. Unless this evaluates totrue

under symbolic evaluation, or it already appears in the caseconditions, it is added to

the case conditions. This is done by forcing partial instantiation of the meta-variable

representing the unknown case conditions, allowing the creation of step cases with

case conditions.

For example, consider the following schematic goal:

CC(x1,x2), . . . ⊢ len(delete( T1(x1,x2) , T2(x1,x2) )) ≤ len( T2(x1,x2) )
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We can apply the following wave rule by assuming the side condition:

X 6= H → delete(X, H :: T
↑
) ⇒ H :: delete(X,T)

↑

The resulting schematic goal is:

T1(x1,x2) 6= T ′
2(x1,x2)∧CC′(x1,x2), . . .

⊢ len( T ′
2(x1,x2) :: delete( T1(x1,x2) , T ′′

2 (x1,x2) )
↑

)

≤ len( T ′
2(x1,x2) :: T ′′

2 (x1,x2)
↑

)

T ′
2 andT ′′

2 are the meta-variables remaining after the partial instantiation ofT2, where

T2(x1,x2) = T ′(x1,x2) :: T ′′(x1,x2)

The new meta-variableCC′ may be instantiated by further side conditions.

In general, if the unknown case conditions are represented by the schematic hy-

pothesisCC(x−→), adding the conditioncond(x−→) gives the following instantiation:

CC= λx−→. cond(x−→)∧CC′(x−→)

whereCC′ is the remaining unknown condition.

Speculative and Definite Ripples

As explained in §2.7.1, Kraan distinguished betweenspeculativeripple steps, which

partially instantiate meta-variables via rewriting, anddefiniteripple steps, which do

not. Speculative steps may increase the wave-measure that guarantees the termina-

tion of rippling [Basin and Walsh, 1996]. Hence if unbounded speculative steps are

permitted, rippling may not terminate.

Kraan’s solution of placing a bound on the number of such steps ensures termi-

nation, but there may be proofs that require more speculative steps than this bound

permits. This is illustrated by examining Example 1 further.
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Example 1 (revisited)

The step case schema (4.2) may be rewritten using a wave-ruletaken from the defini-

tion of +:

s(U)
↑

+V ⇒ s(U +V)
↑

The LHS of the conclusion is rewritten:

C(x,y) + D(x,y) = D(x,y) + C(x,y)

⇓

s( C′(x,y) + D(x,y) )
↑

= D(x,y) + s( C′(x,y) )
↑

This is a speculative ripple, asC is partially instantiated toλu.λv.C′(u,v) as a by-

product. If unbounded, speculative ripples can be appliedad infinitum:

s( C′(x,y) + D(x,y) )
↑

= D(x,y) + s( C′(x,y) )
↑

⇓

s(s( C′′(x,y) + D(x,y) ))
↑

= D(x,y) + s(s( C′′(x,y) ))
↑

⇓

s(s(s( C′′′(x,y) + D(x,y) )))
↑

= D(x,y) + s(s(s( C′′′(x,y) )))
↑

⇓

. . .

This problem is revisited in Chapter 7 — for now we assume some arbitrary bound.

4.3.2 Post-Rippling

Strong and weak fertilisation are identical to the non-schematic case, except that, as

during rippling, meta-variables may be instantiated. A hypothesis may be used in
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weak fertilisation several times, so it is oriented as a rewrite rule after its first use,

to prevent looping. A similar technique was employed in theClam 2proof planner

[van Harmelen, 1996].

At the end of a successful rippling proof, tidying-up may be requiredpost-fertilisation,

as some meta-variables may be not fully instantiated. To obtain a non-schematic step

case and proof, each meta-variable representing a term is replaced by a fresh object-

level variable and those representing propositions toλx−→.true.

4.3.3 Multiple Induction Hypotheses

The initial step case schema has a single induction hypothesis, but some proofs involve

multiple hypotheses. To generate additional induction hypothesesProtzen’s Heuristic

is employed [Protzen, 1995]: if an instance of the original goal can be used to rewrite

the conclusion, add it as an induction hypothesis and apply it. This rewrite step should

not instantiate meta-variables in the conclusion. The hypothesis is added to the step

case by partially instantiating the meta-variable representing the unknown induction

hypotheses.

The main problem with this heuristic is its over-applicability. It can be applied to

most goals in several ways, significantly increasing the search space. To control its

use in the step case proof, it must be applied after rippling is blocked, and whenever

possible, fertilisation is prefered instead.

Example 2

The schematic step case for the goal:

∀t:btree(nat). sum(t) = sum( f lip(t))
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may be fully rippled to:

CC(t), sum(t) = sum( f lip(t)), IH (t)

⊢ sum( L(t) )+sum( R(t) )
↑

= sum( f lip( R(t) ))+sum( f lip( L(t) ))
↑

using the following wave rules from the definitions ofsumand f lip:

sum( node(X,Y)
↑
) ⇒ sum(X)+sum(Y)

↑

f lip( node(X,Y)
↑
) ⇒ node( f lip(Y), f lip(X))

↑

Weak fertilisation instantiatesL to λu. u, giving:

CC(t), sum(t) = sum( f lip(t)), IH (t)

⊢ sum(t)+sum( R(t) )
↑

= sum( f lip( R(t) ))+sum(t)
↑

Repeating weak fertilisation with the same hypothesis completes the proof. The result-

ing step case is:

Φ(t) ⊢ Φ(node(t, t))

Our induction strategy will fail to build a complete induction rule using this step case.

Backtracking over the second fertilisation, Protzen’s Heuristic can be applied: an

instancesum(t ′) = sum( f lip(t ′)) of the original goal is added as an induction hypoth-

esis. Applying it instantiatesR to λu. t ′ and completes the proof. The resulting step

case is:

Φ(t), Φ(t ′) ⊢ Φ(node(t, t ′))

This can be used to construct a complete proof.

4.3.4 A Constructor Proof Strategy

The proof strategy for creating constructor style step cases, parameterised by a bound

N > 0, can be summarised as follows,
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1. Construct annotated schema for goal.

2. Ripple-out, with no more thanN > 0 speculative ripples.

3. Either:

• Fertilise with known hypothesis.

• Create hypothesis and fertilise.

4. If goal is open, goto step 2, else collapse remaining meta-variables.

4.4 Extension to Non-Constructor Cases

This section describes extending the techniques for constructor step cases to the full

step case schema (4.1). The major differences are that meta-variables in the induction

hypotheses can be instantiated by creational rippling or fertilisation, and that rippling-

in is permitted.

4.4.1 Creational Rippling

The extra term structure that may appear in the hypotheses innon-constructor step

cases has to be removed using creational rippling (see §3.4).

The initial step case schema is annotated as:

CC(x−→), φ( S1(x
−→) , . . . , Sn(x

−→) ), IH (x−→) ⊢ φ( T1(x
−→) , . . . , Tn(x

−→) ) (4.5)

Rippling takes place in the conclusion as before, with the wave annotation in the

hypotheses being removed by creational rippling. Meta-variables in the hypothesis

may be instantiated during a creational ripple by extendingthe definition of neutralisa-

tion (see 3.4): a wave-frontf (. . .)
↑

corresponds to a potential wave-frontA(x−→) in an
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induction hypothesis iff they are in the same position in theskeleton. The latter term

is instantiated by matching against the termf (U), i.e.A is instantiated toλu. f (A′(u))

for freshA′.

A distinction betweenspeculativeanddefinitecreational ripples is made in an anal-

ogous way to ripple steps. A speculative creational ripple instantiates a meta-variable,

either by unification with the redex or matching during neutralisation. As such ripples

introduce non-termination, they are included in the bound on the number of speculative

steps.

4.4.2 Rippling-In

With wave-fronts in the induction hypotheses, rippling-inbecomes a worthwhile strat-

egy, as a wave-front can be rippled into a position where it neutralises a hypothesis

wave-front. Sinks can be used to distinguish term positionsin the conclusion which

correspond to meta-variables in the induction hypotheses [Bundy et al., 1993], where

rippling-in must always move a wave-front towards a sink.

4.4.3 Multiple Induction Hypotheses

As in the constructor case, additional hypotheses are provided by Protzen’s heuristic

(see §4.3.3 above). Because meta-variables are now allowed in the hypotheses, we

can achieve this by simply adding and fertilising with a fresh schematic induction

hypothesis, i.e. one with fresh meta-variables.

4.4.4 The Extended Strategy

The full strategy to create sink-free simple step cases is asfollows:
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1. Construct annotated schema for goal.

2. Creational ripple, or ripple-out, or ripple-in and -out.

3. Either:

• Fertilise with known hypothesis.

• Create schematic hypothesis and fertilise.

4. If goal is open, goto step 2, else collapse remaining meta-variables.

4.5 Summary

In this chapter a strategy for step case creation have been described in two parts. The

first part deals with constructor style step cases. The second part generalised this strat-

egy to include non-constructor style step cases as well. In Chapter 6 such step cases

are used to construct a valid induction rule.

The main points of this chapter were:

• The step case schema is more general than [Kraan, 1994], and alarger class of

step cases can be generated.

• The step case strategy is more general than the one describedin [Protzen, 1995],

although we take a related approach to generating multiple induction hypotheses

usingProtzen’s heuristic.

• The induction conclusion and case conditions are created asa by-product of

rippling.

• Induction hypotheses are created by creational rippling, and Protzen’s heuristic.
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• The number of speculative steps must be bounded to prevent rippling diverg-

ing. This can eliminate solutions from the search and cause incompleteness, a

problem which is discussed further in Chapter 7.



Chapter 5

Synthesis of Case Structure

‘Enumeration of cases’ . . . is one of the duller forms of mathematical ar-
gument.

— G. H. HARDY, A M ATHEMATICIAN ’ S APOLOGY

5.1 Introduction

Having used the techniques of Chapter 4 to generate a suitablestep case, we are now

faced with the problem of creating a valid induction rule that contains this step case.

As part of this process, our strategy will need to create the other ‘missing’ cases of the

induction rule. This chapter describes a suitable strategyfor generating missing cases

from a partial case analysis. It forms the second component of our induction strategy,

which will be presented in full in Chapter 6.

In §5.2 we formalise the concept of missing cases in terms ofcase formulae, and

in §5.3, restate the problem of finding such missing cases in terms of correcting faulty

case formulae. §5.4 describes a strategy for patching case formulae based on known

corrective techniques [Protzen, 1995, Monroy, 2000]. We give some examples of this

81



Chapter 5. Synthesis of Case Structure 82

proof strategy in §5.5, and describe some simple heuristicsto improve its performance

in §5.6.

5.2 Case Formulae

This section formalises the problem of generating missing cases of a partial case anal-

ysis. In the context of this thesis, this means generating missing cases of a partial

induction rule. The following (partial) rules illustrate the problem:

Φ(x) ⊢ Φ(s(s(x)))

⊢ ∀xnat.Φ(x)
(5.1)

x 6= 0, y 6= 0, Φ(x), Φ(y) ⊢ Φ(x+y)

⊢ ∀xnat.Φ(x)
(5.2)

Both rules are incomplete because they do not have premises that proveΦ(u) for

u = 0 andu = s(0).

The case structure of an induction rule is complete iff it forms an exhaustive case

analysis. We can characterise this using acase formula.

Definition 5 (Case Formula) Given a simple induction ruleI of the form

C1,H1 ⊢ Φ(t1
1, . . . , t1

n)

...

Ck,Hk ⊢ Φ(tk
1, . . . , t

k
n)

⊢ ∀x1 : τ1, . . . ,xn : τn.Φ(x1, . . . ,xn)

where Ci is a set of non-inductive hypotheses and Hi a set of inductive hypotheses, the

correspondingcase formulaC (I ) is of the form

⊢ ∀u : (τ1×·· ·× τn).(D1∨·· ·∨Dk) (5.3)
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where each disjunct Di is of the form

∃Vi.(Ci ∧u = (t i
1, . . . , t

i
n)) (5.4)

andVi is the set of free variables in Ci and ti1, . . . , t
i
n. If n = 1 then the tuple of terms

t i
1, . . . , t

i
n can be written as a single term ti

1. Also, Ci may be optionally omitted.

Informally, the case formula says that anyu of the given type is ‘covered’ by at

least one of the cases of the induction rule, where the disjuncts Di correspond to the

cases. Each disjunct says thatu is covered by the corresponding case, in thatu matches

the pattern(t i
1, . . . , t

i
n) under the conditionsCi.

For example, the partial induction rule (5.1) has the case formula

∀u : nat.∃x : nat.u = s(s(x))

A ‘complete version’ of rule (5.1) has the case formula

∀u : nat.
(

u = 0 ∨ u = s(0) ∨ ∃x : nat.u = s(s(x))
)

The partial induction rule (5.2) has the case formula

∀u : nat.∃x,y : nat.x 6= 0∧y 6= 0∧u = x+y (5.5)

Whereas a ‘complete version’ of rule (5.2) has the case formula

∀u : nat.
(

u = 0 ∨ u = s(0) ∨ ∃x,y : nat.x 6= 0∧y 6= 0∧u = x+y
)

(5.6)

For these examples the truth of the complete case formulae isequivalent a correspond-

ing induction rule having exhaustive case analysis. In general, we define case exhaus-

tiveness for simple induction rules as follows:
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Definition 6 (Case Exhaustive)A simple induction rule iscase exhaustiveiff for any

n-tuple s−→ of typeτ−→ there is a case of the rule with case conditions A(x−→) and conclusion

B such that

1. A(s−→) holds.

2. σ(B) = Φ(s−→) for some substitutionσ.

3. The rule has conclusion∀x−→:τ−→.Φ(x−→)

It follows that case formulae are equivalent to case exhaustiveness:

Theorem 1 A simple induction ruleI is case exhaustive iff the case formulaC (I ) is

true.

Proof Let s−→ be somen-tuple of typeτ−→. The case exhaustiveness ofI is equivalent to

one of the premises of Definition 5 satisfying requirements (1) and (2) from Definition

6, and the conclusion from Definition 5 satisfying (3). Equivalently, for this case the

case conditionsCi hold and there is a substitutionσ such thatσ((t i
1, . . . , t

i
n)) = s−→. This

is equivalent to one of the disjuncts in (5.4) being true, andso to the truth of the case

formulaC (I ).

Q.E.D.

5.3 Case Synthesis via Correcting Case Formulae

Theorem 1 lets us show that the cases of an induction rule are exhaustive, by proving

its case formula. Conversely, we can establish it has missingcases by disproving the

case formula.
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This suggests a method for synthesizing the missing cases ofan incomplete induc-

tion rule. Assume that its case formula

∀u : τ.(D1∨·· ·∨Dk) (5.7)

is a faulty conjecture, and try to find a correct version of theform

∀u : τ.(D1∨·· ·∨Dk∨Dk+1∨·· ·∨Dk+ j) (5.8)

Provided the additional disjunctsDk+1, . . . ,Dk+ j are of the form given by (5.4), a set

of additional cases can be extracted to form an exhaustive case analysis.

5.3.1 Corrective Techniques

The correction of faulty conjectures has been investigatedin the context of inductive

theorem proving [Protzen, 1995, Monroy, 2000]. Given a non-theorem∀x−→.g(x−→), these

methods attempt to build acorrective predicate pthat specifies conditions under which

the theorem is true, i.e.p such that∀x−→.p(x−→) → g(x−→). A relationship between our pro-

posed approach and this work can be seen by rewriting (5.8) as

∀u : τ.
(

¬(Dk+1∨·· ·∨Dk+ j) → (D1∨·· ·∨Dk)
)

(5.9)

Hence a possible approach to synthesizing cases would be to use a known corrective

technique on faulty conjecture (5.7), and to transform the resulting corrective predicate

termp(u) to the form¬(Dk+1∨·· ·∨Dk+ j). However, we will take the alternative route

of adapting the corrective techniques so that they construct the disjunctsDi, as this is

the more direct approach. The process for constructing theDi is the same in both

approaches.

The basic idea behind these corrective techniques is to attempt to prove the faulty
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conjecture, and to extract a definition for a corrective predicatep from the failed proof1.

Each successful and failed proof branch gives rise to a case of the definition of p.

Briefly, if a proof branch resulting from a case analysis succeeds thenp is defined as

true under these case conditions, but if it fails thenp is defined asf alse. Success-

ful inductive proof branches which use an induction hypothesis give rise to recursive

cases ofp. We will not go into more detail here, but refer the interested reader to

[Protzen, 1995] and [Monroy, 2000].

5.3.2 Problems with Existential Quantifiers

However, these corrective techniques were designed to be applied to conjectures con-

taining only universal quantification, whereas case formulae contain existential quan-

tification. In particular, they use standard induction proving techniques which do not

deal with existential quantification (see Chapter 2) to construct a failed proof.

For example, consider an inductive proof of the faulty conjecture (5.5). Unless the

existential quantifiers can be dealt with, the only option isto induct onu. Both the base

and step cases are immediately blocked.

Clearly, if we are to successfully apply corrective techniques to case formulae, they

need to be integrated with techniques for dealing with existential quantification. We

deal with this problem in §5.4.2 below.

5.4 A Corrective Strategy for Case Formulae

This section describes a corrective strategy for case formulae that is based the cor-

rective techniques discussed above, combined with the use of dual skolemisationto

1An advantage of this approach is that it can also be applied totheorems, where the proof can
succeed.
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handle existential variables (i.e. replacing them in a goalwith first-order free vari-

ables), a standard technique in automated theorem proving.As suggested above, we

will directly extract the missing disjuncts of the case formula from the failed proof,

rather than construct a corrective predicate.

The proof attempt proceeds by a standard induction strategy, with corrective dis-

junctsextracted from failed proof branches. Subgoals of the form∀x : τ.x = Y are

trivially true, and are closed.

5.4.1 Extracting Corrective Disjuncts

For each proof branch, we record thecase conditions: a pair (C,T) whereC are any

conditions introduced by case splits (including the cases of inductions) andT is the

instantiation of the universally quantified variable of theoriginal case formula (u in

(5)).

For each failed branch of the proof we take its case conditions (C,T), and extract

a corrective disjunct of the form

∃V .C∧u = T

whereV are the free variables inC andT.

This technique of tagging each proof branch with its case information is used in

both [Protzen, 1995] and [Monroy, 2000].

5.4.2 Instantiating Free Variables

Recall that dual skolemisation transforms the case formula’s existential variables to

free variables. This is permitted whilst proving the case formula, as any value substi-

tuted into a free variable can become a witness in the final proof. How does one treat
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these free variables during the proof? The standard approach is to let them become

instantiated during rewriting. Unfortunately, this is notcompatible with correcting the

case formula.

For instance, consider the following correct dual skolemised case formula:

∀u : nat.(u = 0 ∨ (X 6= 0∧u = X +Y) (5.10)

X andY are the free variables that have replaced existential variables. We can rewrite

the case formula using the base case of the definition of+, instantiatingX to 0 in the

process:

∀u : nat.(u = 0 ∨ (0 6= 0∧u = Y) (5.11)

The goal, which was previously true, can now be reduced tof alse. Following the

corrective approach, we should analyse this failure to produce a corrective predicate.

However, the original case formula does not need correcting.

What’s going on here? Recall that the corrective approach attempts to identify

those proof branches which are false. Reducing a goal tof alseis interpreted as indi-

cating the original goal is false under the current case conditions. This assumes that

the current goal isequivalentto the original goal plus the case conditions. But this

assumption is incorrect if we usenon-equivalence preserving steps, where a true goal

like (5.10) may have a false subgoal (5.11). If we combine non-equivalence preserv-

ing steps and corrective techniques then unnecessary corrections can be made, because

true cases are identified as false.

Hence corrective techniques need to ensure that non-equivalence preserving steps

are either excluded, or only permitted in successful branches of failed proofs, i.e. if a

branch containing such steps fails, one should backtrack rather than correct the original

conjecture. Unfortunately, whenever a free variable is instantiated to a term as a side
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effect of rewriting, e.g.

Φ(0)

Φ(X)
(5.12)

the step is non-equivalence preserving, so our failed proofbranches willalwayscontain

such steps.

So we must instantiate free variables via an equivalence preserving step. For in-

stance, an equivalence preserving version of (5.12) is:

Φ(0)∨Φ(s(X′))

Φ(X)
(5.13)

We can generalise this to a new proof step, theexistential case split. Given an exhaus-

tive case analysis represented by the following skolemisedcase formula

∀u : τ.((α1(Y
−→

)∧u = β1(Y
−→

)) ∨·· ·∨ (αq(Y
−→

)∧u = βq(Y
−→

)) (5.14)

Then an existential case split is represented by the following proof step

c(β1(Y
−→

))∧α1(Y
−→

)∧d(u−→) = t(β1(Y
−→

))

∨·· ·∨

c(βq(Y
−→

))∧αq(Y
−→

)∧d(u−→) = t(βq(Y
−→

))

c(X
−→

)∧d(u−→) = t(X
−→

)
(5.15)

whereX
−→

has typeτ.

The proof step (5.15) is applied backwards to a particular disjunct in a goal, with

the case analysis (5.14) suggested by rewriting. For instance, if we can rewrite with

a defining equation of functionf , then we use the case analysis associated with the

definition of f .

As an example of an existential case split, consider again the correct case formula

(5.10):

∀u : nat.(u = 0 ∨ (X 6= 0∧u = X +Y) (5.16)
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The definition of+ has the following dual skolemised case formula

∀u : nat.(u = 0 ∨ u = s(V)) (5.17)

This suggests an existential case split according to (5.15)with case analysis (5.17),

which gives the subgoal

∀u : nat.(u = 0 ∨ (0 6= 0∧u = 0+Y) ∨ (s(X′) 6= 0∧u = s(X′)+Y)) (5.18)

Further rewriting gives

∀u : nat.(u = 0 ∨ u = s(X′ +Y)) (5.19)

A case split onu completes the proof, confirming that the case formula (5.16)is true.

5.5 Examples

This section gives some examples of our corrective strategyfor case formulae being

used to synthesize missing cases of induction rules. The case conditions of each goal

are shown (i.e. the pair next to each goal).

For each of the proofs, only the correct derivation is shown,and any alternative

steps at each point are ignored. These decisions are justified by a set of heuristics for

the corrective strategy described in §5.6.

Example 1

Consider again the rule (5.1)

Φ(x) ⊢ Φ(s(s(x)))

⊢ ∀xnat.Φ(x)
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This has the faulty skolemised case formula

⊢ ∀u : nat.u = s(s(X)) (true,u)

Attempting a proof, we try a structural case split onu

⊢ 0 = s(s(X)) (true,0)

⊢ ∀v : nat.s(v) = s(s(X′)) (true,s(v))

This simpiflies to

⊢ f alse (true,0)

⊢ ∀v : nat.v = s(X′) (true,s(v))

As the first case fails, we extract the corrective disjunctu = 0. Continuing with the

second case, we apply another structural case split tov

⊢ 0 = s(X′) (true,s(0))

⊢ ∀w : nat.s(w) = s(X′′) (true,s(s(w))

Simplifying again gives

⊢ f alse (true,s(0))

⊢ ∀w : nat.w = X′′ (true,s(s(w)))

The first case fails, and we extract the corrective disjunctu = s(0). The second case is

trivially true.

Adding the corrective disjuncts to the case formula, we obtain

⊢ ∀u : nat.(u = 0 ∨ u = s(0) ∨ u = s(s(X)))
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From this the missing cases of the induction rule can be constructed

⊢ Φ(0)

⊢ Φ(s(0))

Φ(x) ⊢ Φ(s(s(x)))

⊢ ∀xnat.Φ(x)

Example 2

Consider again the partial induction rule (5.2)

x 6= 0, y 6= 0, Φ(x), Φ(y) ⊢ Φ(x+y)

⊢ ∀xnat.Φ(x)

It has the skolemised case formula

⊢ ∀u : nat.X 6= 0∧Y 6= 0∧u = X +Y (true,u)

We attempt to prove this faulty case formula. We proceed by a structural case analysis

onu:

⊢ X 6= 0∧Y 6= 0∧0 = X +Y (true,0)

⊢ ∀v : nat.X′ 6= 0∧Y′ 6= 0∧s(v) = X′ +Y′ (true,s(v))

The definition of+ motivates a existential case split in both cases:

⊢ 0 6= 0∧Y 6= 0∧0 = 0+Y

∨ s(Z) 6= 0∧Y 6= 0∧0 = s(Z)+Y (true,0)

⊢ ∀v : nat.0 6= 0∧Y 6= 0∧s(v) = 0+Y

∨ s(Z′) 6= 0∧Y 6= 0∧s(v) = s(Z′)+Y (true,s(v))
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Some simplification gives us the subgoals:

⊢ f alse∨ f alse (true,0)

⊢ ∀v : nat. f alse∨ Y 6= 0∧v = Z′ +Y (true,s(v))

Hence the first case is false, and we extract the corrective disjunctu = 0 from it. Con-

tinuing with the second case we now perform a structural casesplit onv:

⊢ Y 6= 0∧0 = Z′ +Y (true,s(0))

⊢ ∀w : nat.Y′ 6= 0∧s(w) = Z′ +Y′ (true,s(s(w)))

We could apply another existential case split in both cases,motivated by the definition

of +, as we did above. This would lead to a non-terminating proof.To avoid this, we

prefer a split motivated by any definition or lemma provided the split variable appears

in the ‘conditions’ (i.e.Ci in (5.4)) and not just the ‘main literal’ (i.e.u = (t i
1, . . . , t

i
n)).

The definition-motivated split variableZ′ only appears in the ‘main literals’ in both

cases. But there is an alternative existential split, motivated by the following lemma:

U +s(V) ⇔ s(U +V) (5.20)

In both cases the variable in the split motivated by (5.20) appear in the ‘conditions’ as

well as the ‘main literal’, so we prefer this existential split:

⊢ 0 6= 0∧0 = Z′ +0

∨ s(Q) 6= 0∧0 = Z′ +s(Q) (true,s(0))

⊢ ∀w : nat.0 6= 0∧s(w) = Z′ +0

∨ s(Q′) 6= 0∧s(w) = Z′ +s(Q′) (true,s(s(w)))

Simplification gives:

⊢ f alse∨ f alse (true,s(0))

⊢ ∀w : nat. f alse∨ w = Z′ +Q′ (true,s(s(w)))
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Again, the first case is false, and we extract the corrective disjunctu = s(0). The proof

of the second case succeeds via a structural induction onw and existential case split in

both base and step case, motivated by the definition of+. We omit the details here.

Correcting the original case formula gives

∀u : nat.(u = 0 ∨ u = s(0) ∨ X 6= 0∧Y 6= 0∧u = X +Y)

Using this to construct the missing cases of the original induction rule, we obtain the

following complete rule

⊢ Φ(0)

⊢ Φ(s(0))

x 6= 0, y 6= 0, Φ(x), Φ(y) ⊢ Φ(x+y)

⊢ ∀xnat.Φ(x)

Example 3

Consider the following rule

Φ(l) ⊢ Φ(app(l ,x :: nil))

∀l : list(α).Φ(l)
(5.21)

It has the case formula

⊢ ∀u : list(τ).u = app(X,Y :: nil) (true,u)

To attempt a proof, a structural induction onu is applied

⊢ nil = app(X,Y :: nil) (true,nil)

w = app(A,B :: nil) ⊢ v :: w ↑ = app(X′,Y′ :: nil) (true,v :: w)
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In both goals, the definition ofappsuggests an existential case-split

⊢ nil = app(nil ,Y :: nil)

∨ nil = app(H :: T,Y :: nil) (true,nil)

w = app(A,B :: nil) ⊢ v :: w ↑ = app(nil ,Y′ :: nil)

∨ v :: w ↑ = app( H ′ :: T ′
↑
,Y′ :: nil) (true,v :: w)

Rewriting in the base case, and rippling in the step case, gives

⊢ nil = Y :: nil ∨ nil = H :: app(T,Y :: nil) (true,nil)

w = app(A,B :: nil) ⊢ w = Y′ :: nil ∨ w = app(T ′,Y′ :: nil)
↑

(true,v :: w)

Further rewriting and fertilisation gives

⊢ f alse (true,nil)

w = app(A,B :: nil) ⊢ w = nil ∨ true (true,v :: w)

Hence the base case fails and the step case succeeds. The corrective disjunctu = nil is

extracted from the base case’s conditions(true,nil). The corrected case formula is

⊢ ∀u : list(τ).(u = nil ∨ u = app(X,Y :: nil))

Using this to construct the missing cases of the original induction rule gives the com-

plete rule

⊢ Φ(nil)

Φ(l) ⊢ Φ(app(l ,x :: nil))

∀l : list(α).Φ(l)
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5.6 Heuristics for the Corrective Strategy

In §5.5 we saw that the corrective strategy for case formulaeproceeded by an inductive

proof strategy made up of the following proof steps:

• Structural induction

• Case analyses on universal variables, over the constructorsfor the datatype

• Case analyses on existential variables, over case structureof a function

• Simplification and rippling (forms of rewriting)

• Fertilisation

Examining the examples in §5.5, it is clear that a simple ‘waterfall’ of these proof steps

is not being used. In fact, applying the steps in a fixed order can easily lead to non-

termination. This section describes a set of simple heuristics that can help avoid this.

It is important to note that these heuristics donot guarantee termination, although we

have not encountered any problems with non-termination during the work described

here.

Simplification, rippling and fertilisation should be applied eagerly, so that every

goal is kept in the simplest form possible. This avoids unnecessary case-splits/inductions.

Structural induction and universal case-splits are effectively performing the same

task — producing proof branches with different case conditions. If a universal case-

split works, then an induction with the same case structure will always work, as the

inductive hypotheses need not be used. Hence universal casesplits are subsumed by

induction, so we always use induction.

Induction (including case splits) is applied to a universalvariableu in a disjunct

u = t so that rewriting can be applied. We have observed two situations in example
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proofs. Firstly, the root functor int is a constructor function and rewriting immediately

follows. Secondly, the roof functor int is a defined function, and an existential casesplit

follows, then rewriting. We can restrict induction on case formulae to these situations.

The r̂ole of existential case splits in these proofs is to instantiate a free variableX

so that rewriting can take place. Again, we have identified two situations where this

happens. Firstly,X appears in thet of a disjunctu = t, whereu is a compound term

containing no free variables, andt has a defined root functor. Secondly,X can appear in

a disjunct not of the formu = t. Again, we can restrict the application of an existential

casesplit to these situations.

Deciding between alternative existential case splits is done by looking where the

variable to be split, sayX, appears. Each disjunct will be of the form given by (5.4):

∃V .(C∧u = T)

for universalu. We prefer a split whereX appears inC and possiblyT over one where

it only appears inT. The advantage of this was illustrated in §5.5. In general, splitting

a variable inC will promote rewriting inC and hence its possible removal. This is

desirable, as we would like to end up with a single disjunctu = T, because if we can

makeT variable the proof branch can be closed.

Another helpful addition to the strategy would be the use of valid case formulae as

lemmas. Work could be saved by either recognising that:

• a goal matched a valid case formula, and was hence true.

• a goal partially matched a valid case formula, and so could becorrected by

adding the disjuncts that were not matched against.
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5.7 Summary

In this chapter the problem of automatically finding the missing cases of an induction

rule has been addressed. It was shown that the concept of caseformula characterises

the case exhaustiveness of an induction rule. Hence the problem of finding missing

cases can be restated as one of correcting the associated case formulae.

Applying known techniques on correcting faulty conjectures required some ex-

tensions to deal with existential variables. We used the standard technique of dual

skolemisation, but found that instantiating the resultingfree variables is a non-equivalence

preserving step that interferes with the corrective methods. Instead, we proposed in-

stantiating the free variables using an existential case analysis, an equivalence preserv-

ing step.

A strategy for correcting case formulae was given, based on standard inductive

methods extended with existential case analyses and some simple heuristics. Following

[Protzen, 1995] the case conditions of a failed proof branchare used to correct the

faulty conjecture — in this context, to add extra disjuncts of the case formula, which

correspond to the missing cases of the original induction rule.



Chapter 6

Induction Rule Creation

6.1 Introduction

So far this thesis has identified two major subtasks requiredfor the dynamic construc-

tion of induction rules, and proposed a detailed solution for each. In Chapter 4 a

middle-out strategy that generates candidate base and stepcases was described. Chap-

ter 5 provided a strategy for generating a full case analysisbased on a given case, along

with a proof that the cases are exhaustive. This chapter brings these parts together in a

novel strategy for inductive proof. The strategy creates aninduction rule dynamically

during the proof, and provides a companion proof that this rule is valid.

§6.2 proposes that the validity of the rule is established byproving it is well-

foundedandcase exhaustive. This allows us to give an induction strategy in §6.3 in

terms of three component strategies: REFINE-CASE, EXHAUST-CASESand WELLFOUND-

HYPS. The strategy is modular with respect to these components and §6.4 gives spec-

ifications which must be met by candidate components.

Candidates for the REFINE-CASE and EXHAUST-CASES components have been

99
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proposed in previous chapters. We end the chapter by describing a suitable WELLFOUND-

HYPS strategy in §6.5.

6.2 Validating Induction Rules

This section looks at how our strategy can establish that thegenerated induction rule is

valid, regardless ofhow it is generated. Recall that we only considersimple induction

rules— it was argued in Chapter 3 that this is suitable class of induction rules for au-

tomated proof. This places some syntactic restrictions on the induction rule, although

such rules are general enough to cover most, if not all, previous work on automated

induction. So we may assume that the generated rule is of the form given in Definition

1 (see Chapter 3, p57).

It follows from the definition of simple induction rule that the generated rule will

be of the following form:

...

C1, . . . ,Ck, θ1(∀Y1.Φ), . . . ,θh(∀Yh.Φ) ⊢ σ(Φ)

...

⊢ ∀X .Φ
(6.1)

where all the premises are of the given form,h,k ≥ 0, X andYi are sets of variables,

andθ j andσ are substitutions.

Showing that the induction rule (6.1) is valid can be approached in a number of

ways, e.g. by demonstrating that it is derivable from the Noetherian induction rule (see

§2.2.1), or by directly proving that the consequent followsfrom the premises.

However, a more straightforward method of proof is to show that the rule iswell-

foundedandcase exhaustive. For the rule to be well-founded there must exist a well-

founded relation≺ under which the tuple of induction terms in every induction hy-



Chapter 6. Induction Rule Creation 101

pothesis is smaller than the tuple of induction terms in thatcase’s conclusion. The rule

is case exhaustive if its conclusion is proved for all valuesthat the universal quantifiers

could take. Equivalently, for all such values, there is a case that proves the conclusion

for the values.

Following this proof method, our induction strategy explicitly constructs a validity

proof, by stating and proving three types of goal:

Exhaustive CasesThis goal is thecase formuladescribed in Chapter 5. (Details of

how to construct and prove this goal are given there.) Proving it establishes that

the rule’s case analysis is exhaustive.

Well-Founded Hypothesis For each induction hypothesis, we must show that it is

less than its conclusion under the relation≺. Following the notation rule (6.1),

we have free variables{x1, . . . ,xn} in formulaΦ, and a step case of the form:

C, . . . ,θ(∀Y .Φ), . . . ⊢ σ(Φ) (6.2)

For this induction hypothesis the well-founded goal is:

∀V
(

C→ (θ(β(x1)), . . . ,θ(β(xn))) ≺ (σ(x1), . . . ,σ(xn))
)

(6.3)

whereβ substitutes fresh variables for anyxi ∈ Y , andV are the free variables

in the goal.

Well-Founded Relation States that the relation≺ is well-founded:

well f ound(≺)

The approach adopted here of explicitly stating and provingvalidity requirements

can be contrasted with [Protzen, 1995], which implicitly enforces these through re-

strictions on the generation of the induction rule. This is discussed further in Chapter

13.
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Example

Consider the induction rule

⊢ Φ(0,0)

⊢ Φ(0,s(z))

y 6= 0,∀w:nat.Φ(x,w) ⊢ Φ(x+y,z)

∀u,v:nat.Φ(u,v)
(6.4)

The validity goals for this rule are as follows:

Exhaustive casesConstructed using the case formula method from Chapter 5, the

exhaustive cases goal:

∀u,v:nat.
(

(u,v) = (0,0) ∨

∃z:nat. (u,v) = (0,s(z)) ∨

∃x,y,z:nat. y 6= 0∧ (u,v) = (x+y,z)
)

Well-Founded HypothesesThe step case matches (6.2) with the following values:

x1 = u, x2 = v, Y = {w}, θ = {u/x}, σ = {u/(x+ y),v/z}. Hence the well-

founded hypothesis goal is:

∀x,y,z,n:nat.y 6= 0→ (x,n) ≺ (x+y,z) (6.5)

6.3 The Induction Strategy

We can now describe the components of our induction strategy, shown in Table 6.1.

REFINE-CASE generates a case of the inductive proof by proving a schematic case,

refining the schema as a side effect, as described in Chapter 4.The other two compo-

nents — EXHAUST-CASESand WELLFOUND-HYPS— construct the validity proof of
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Strategy Proves Goal Side Effect Described In

REFINE-CASE Schematic case Instantiates schemaChapter 4

EXHAUST-CASES Exhaustive cases New cases Chapter 5

WELLFOUND-HYPS Well-Found Hyp. Constraints on≺ §6.5

Table 6.1: Components of the induction strategy.

the induction rule. EXHAUST-CASESproves the ‘exhaustive cases’ goal, and generates

any missing cases, as described in Chapter 5.

The WELLFOUND-HYPScomponent, which has not been described yet, proves the

well-foundedness of the hypotheses and of the relation≺ respectively. For each induc-

tion hypothesis WELLFOUND-HYPS generates a set of constraints on the relation≺,

such that the hypothesis is well-founded if these constraints are satisfied. The compo-

nent also provides a constraint solver, which at the end of the inductive proof is used

to pick a≺ which satisfies these constraints.

Our induction strategy is given in Figure 6.1, described in terms of the component

strategies. This strategy constructs a complete inductiveproof of a conjecture, along

with a validity proof for the induction rule1. Note that this thesis will only describe the

implementation of a restricted version of this strategy, inChapter 10.

The strategy searches for a step case first, rather than a basecase. The justification

for this is that step cases are nearly always harder to prove than the base cases. Tackling

the ‘hard part’ first can avoid wasted effort on finding base cases, only to be unable to

prove the step cases. TheClamsystem [van Harmelen, 1996] uses the same heuristic,

attempting to prove step cases first.

Establishing the well-foundedness of the rule takes into account two competing

requirements:

1Whether this is expressible in the object logic is another matter, discussed in §13.
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IND-STRAT(GOAL):

1. Construct an initial schematic step case S for GOAL, with case structure C.

2. Construct a global constraint store STORE

3. Apply CASE-STRAT to S.

4. Apply NEW-CASES to C.

5. Instantiate≺ with the result of solving STORE.

NEW-CASES(CASES)

1. Prove CASESexhautive via EXHAUST-CASES, possibly generating new cases NC.

2. For each X in NC

(a) Apply CASE-STRAT to X.

(b) If X has been further refined then apply NEW-CASES to this sub-case.

CASE-STRAT(CASE):

1. Construct a proof of CASE using REFINE-CASE.

2. If CASE now contains any induction hypotheses then use WELLFOUND-HYPS to
produce a proof CASE is well-founded given constraints T on≺ are satisfied.

3. Add T to STORE.

Figure 6.1: The dynamic induction strategy

• We want to eagerly apply WELLFOUND-HYPS in order to have some guarantee

that every hypothesis is well-founded before we proceed with the proof. This

means WELLFOUND-HYPS occurs early on in the proof.

• We want to delay choosing≺ until after all the induction hypotheses have been

generated, so that our choice is not incompatible with any hypotheses that help

us to complete the proof. Hence≺ is chosen at the end of the proof.

These requirements are reconciled by representing≺ with a meta-variable and having
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WELLFOUND-HYPSproduce a proof of well-foundedness for each induction hypothe-

sis that depends on a generated set of constraints on≺ being satisfied, i.e. WELLFOUND-

HYPS proves that a certain set of constraints implies the well-foundedness of each hy-

pothesis. At the end of the entire proof the constraint solver provide by WELLFOUND-

HYPS instantiates≺ with a well-founded relation that satisfies these constraints.

6.4 Component Specifications

As mentioned above, an advantage of our strategy is itsmodularitywith respect to its

component strategies (see Table 6.1). This allows individual components to be replaced

with alternatives, to yield a variety of inductive strategies — although in this thesis we

only suggest a single candidate for each component. For example, this could be done

in order to tailor the strategy to a particular domain. In this section we provide detailed

specifications for the three components that must be met if the strategy is to work.

The strategy begins with aninitial goal:

∀x1:τ1, . . . ,xn:τn. Φ(x1, . . . ,xn) (6.6)

From this we can generatecase schemas, described in Chapter 4, where meta-variables

represent unknown parts of the goal.

6.4.1 REFINE-CASE Specification

The REFINE-CASE component must provide a proof of acase schemagoal, refining

the schema as a side-effect. Its specification is as follows:
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Input Case Schema

C(x−→), H(x−→) ⊢ Φ(A1(x
−→), . . . ,An(x

−→) (6.7)

Output A partial instantiation of

• C with a conjunction of case conditions (non-inductive hypotheses)

• H with a list of simple induction hypotheses (see Definition 1)

• A1, . . . ,An with induction terms

and a proof of the instantiated case.

6.4.2 EXHAUST-CASES Specification

The EXHAUST-CASEScomponent must take a set of known proof cases and generate

a set of additional cases, such that the union of the two sets forms an exhaustive case

analysis. Its specification is as follows:

Input Known proof cases

C1(x
−→), H1(x

−→) ⊢ Φ(A1
1(x

−→), . . . ,A1
n(x

−→))

...

Cm(x−→), Hm(x−→) ⊢ Φ(Am
1 (x−→), . . . ,Am

n (x−→))

Output Additional proof cases

Cm+1(x
−→), Hm+1(x

−→) ⊢ Φ(Am+1
1 (x−→), . . . ,Am+1

n (x−→))

...

Ck(x
−→), Hk(x

−→) ⊢ Φ(Ak
1(x

−→), . . . ,Ak
n(x

−→))
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and a proof that these form an exhaustive case structure withthe input cases,

with partial instantiation of allCi andAi
j (with the same restrictions as given in

REFINE-CASE). Hm+1, . . . ,Hk are uninstantiated meta-variables.

6.4.3 WELLFOUND -HYPS Specification

The WELLFOUND-HYPScomponent must take asingleinduction hypothesis and prove

that it is less with respect to≺ than the corresponding step case conclusion, under given

conditions. Its specification is as follows:

Input A step case conclusion

Φ(A1(x
−→), . . . ,An(x

−→))

an inductive hypothesis

H(B1(x
−→), . . . ,Bn(x

−→))

and a conjunction of case conditionsC(x−→).

Output A setSof constraints on≺, and a proof that

S∧C(x−→) → (B1(x
−→), . . . ,Bn(x

−→)) ≺ (A1(x
−→), . . . ,An(x

−→)) (6.8)

Also, a constraint solver which generates a wellfounded relation from a set of

constraints, along with a proof that such a relation will be wellfounded.

6.5 Validating Hypotheses

The WELLFOUND-HYPS strategy is required to prove well-founded hypothesis goals

(see (6.3) or (6.8)) of the form:

c→ (b1, . . . ,bn) ≺ (a1, . . . ,an) (6.9)
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where≺ is the unknown well-founded relation. We have decided to usea strategy that

chooses≺ by finding asingle tuple argument positionk and a measure functionM

such that for every goal (6.9):

c→ M(bk) < M(ak)

There do exist induction rules which cannot be proved well-founded by considering

only a single tuple argumenti. Whether there is a need for a stronger well-foundedness

strategy, and what that strategy would be, is an interestingquestion, which we leave

for further research.

In §6.5.1 we explain how each application of the WELLFOUND-HYPS strategy

generates constraints on≺. The basis of the strategy is a simple adaptation of esti-

mation [Walther, 1994b] to unary measure functions, described in §6.5.2 and §6.5.3.

A further extension to estimation, required for non-destructor induction rules, is given

in §6.5.4. We enhance the basic WELLFOUND-HYPS with an optionalside condi-

tion critic (§6.5.5) that responds to the failure of estimation by adding extra step case

conditions.

6.5.1 Constraints on ≺

Recall that after each step case proof, the WELLFOUND-HYPS strategy must prove

that given some constraints on≺ the resulting well-founded hypothesis goals (6.9)

are satisfied (see §6.3), hence avoiding an early commitmentto ≺. Our strategy does

this by delaying commitment to the particular tuple argument position that will justify

well-foundedness, although for each tuple argument it commits to a particular measure

function from the very first induction hypothesis.

As the induction proof progresses, some tuple positions will become unusable, as

for some induction hypothesis they did not reduce under the chosen measure. The
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ith tuple position is identified as unusable by the constraintignore(i) posted to the≺

constraint store.

For each well-founded hypothesis goal (6.9) the WELLFOUND-HYPSstrategy pro-

duces a set of subgoals, such that for each tuple positioni such that the constraint store

does notcontainignore(i), we have a subgoal:

c→ Mi(bi) < Mi(ai) (6.10)

for some measure functionMi (see below).

The behaviour of the strategy depends on whether this is the first well-founded

hypothesis goal or not. As each successful application of WELLFOUND-HYPS adds

constraints to the store, the strategy detects whether thisis the first application by

testing whether the constraint store is empty or not.

First Induction Hypothesis

For the first hypothesis, the measure functionMi in the goal (6.10) is represented by a

fresh meta-variable. The goal is passed to the estimation strategy (see §6.5.2) below),

which instantiates it to a measure function during the proof.

If the proof succeeds for the subgoals (6.10) correspondingto the tuple argument

positionsp1, . . . , pq then the following constraint is posted:

measure(p1,Mp1)∨·· ·∨measure(pq,Mpq) (6.11)

For any tuple argument positionp for which the corresponding subgoal (6.10) fails,

the constraintignore(p) is posted. The proof fails if all the tuple positions are given

ignoreconstraints.
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Subsequent Induction Hypotheses

For subsequent induction hypotheses, the measure functionMi in the ith goal (6.10) is

instantiated with the measureM from the disjunctmeasure(i,M) from the constraint

(6.11). The goal is passed to the estimation strategy (see §6.5.2 below). Again, for

failed positionp the constraintignore(p) is posted, and some positions must always

remainignore-free (or the proof fails).

Example (contd)

Consider again the well-founded hypothesis goal (6.5) from the first (and only) induc-

tion hypothesis in rule (6.4):

y 6= 0→ (x,n) ≺ (x+y,z)

Given this the WELLFOUND-HYPS strategy will produce two subgoals:

y 6= 0→ M1(x) < M1(x+y) (6.12)

y 6= 0→ M2(n) < M2(z) (6.13)

These are passed to the estimation strategy. As we will see below, subgoal (6.12)

succeeds withM1 instantiated to the size measure #nat. The subgoal (6.13) fails.

Hence the WELLFOUND-HYPS strategy succeeds with the following constraints

posted:

measure(1,#nat)

ignore(2)

6.5.2 The Estimation Strategy

Our WELLFOUND-HYPSstrategy is based on Walther’s estimation calculus [Walther, 1994b]

(see §2.9.1). It was chosen because it provides an automatedmethod for well-foundedness
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proofs, and yet is simple enough to be recast into our framework, i.e. as a strategy to

guide the construction of an explicit proof, and as part of our ‘constraint based’ well-

foundedness strategy.

Walther’s original calculus proves well-foundedness goals using a well-founded

relation based on thesize measure function— so there is effectively only one possible

choice of≺ per datatype [Walther, 1994b]. In [Giesl, 1995a] the calculus is adapted

to work with polynomial norm measure functions, provided the measure is chosen

beforehand. It may be possible to develop a WELLFOUND-HYPS strategy based on

polynomial norms. However, we have chosen instead to use a strategy based on a

different extension of the estimation method to arbitaryunary measure functionsM,

which is given in §6.5.2 below.

The estimation calculus manipulates formulae of the form〈a≤M b, ∆〉, which are

interpreted as follows:

〈a≤M b, ∆〉 ≡ a≤M b ∧
(

∆ ↔ a <M b
)

(6.14)

The calculus is used to prove such goals, which establish that somea is less than or

equal to someb under a given measureM, and that there is some formula∆ that is

equivalent to this bound being strict. Demonstrating welfoundedness is now a matter

of showing∆ holds under the current conditions.

Thedifference equivalent∆ is unknown at the beginning of the proof. To prove a

strict inequalityc→ a <M b we apply the calculus to the goal〈a≤M b, ∆〉, where∆ is

the unknowndifference equivalentthat will ensure the inequality is strict. We can use

a meta-variable for∆, which becomes instantiated to a formula during the estimation

proof. If the proof succeeds, the strict inequality is established by provingc→ ∆.
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6.5.3 Upper Estimation

The basic operation of our estimation strategy is the application of the following rule:

Upper Estimation Rule For variablesx−→

〈ai ≤M b, ∆〉 〈 f (x−→) ≤M xi, ∆i
M f (x−→)〉

〈 f (a−→) ≤M b, ∆∨∆i
M f (a−→)〉

(6.15)

The rule is applied backwards — the first premise becoming thenew subgoal, whilst

the second premise matches a knownargument bound lemma2 for f . Argument bounded

properties of functions are automatically generated from their definitions before the

proof, using the procedure from [Walther, 1994b]. The original calculus includes other

rules to perform various trivial reasoning tasks — we simplypass these to a simple

rewriting strategy.

This approach is much the same as Walther’s original calculus, except an arbitary

unaryM is used, rather than the size measure. Our generalised rule is easily shown to

be sound:

Theorem 2 (Soundness of Upper Estimation)Rule is (6.15) is sound.

Proof From the premises we know that

1. ai ≤M b

2. ∆ ↔ ai <M b

3. f (a−→) ≤M ai

4. ∆i
M f (a−→) ↔ f (a−→) <M ai

2These are Boyer & Moore’sinduction lemmata[Boyer and Moore, 1979], the inspiration for
Walther’s calculus.
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It follows that f (a−→) ≤M b, by (1) and (3). Also:

∆∨∆i
M f (a−→) ↔ ai <M b∨ f (a−→) <M ai By (2) and (4)

↔ f (a−→) <M b By (1) and (3)

Hence〈 f (a−→) ≤M b, ∆∨∆i
M f (a−→)〉.

Q.E.D.

6.5.4 Lower Estimation

A problem with using upper estimation is that it only works for inequalities of the form

F(x) <M x, i.e. the ‘lesser’ term is broken up until a copy of the ‘greater’ term is found.

This is useful for showing destructor style induction rulesare well-founded, as term

structure only appears in the ‘lesser’ term. However, non-destructor inductions will

generate well-foundedness goals with term structure in the‘greater’ term, such as

x 6= 0→ x <M x+y

The solution is to add a complementary form of estimation forthe right-hand side of

the equality [Gow et al., 1999]. We call this thelower estimationrule:

Lower Estimation Rule For all variablex−→

〈a≤M bi, ∆〉 〈xi ≤M f (x−→), ∆i
M f (x−→)〉

〈a≤M f (b
−→

), ∆∨∆i
M f (b

−→

)〉

The soundness proof is similar to Theorem 2. Similarly, lower argument bound

lemmas (which match the second premise of our rule) can be generated automatically

before the proof. See [Gow et al., 1999] for further details of lower estimation.
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Example (contd)

Consider the goal (6.12) from above:

y 6= 0→ M1(x) < M1(x+y)

This is passed to the estimation strategy as:

〈x≤M1 x+y, ∆〉

where∆ is a fresh meta-variable. The proof depends on the followinglemma, auto-

matically generated from the definition of+ beforehand:

〈u≤#nat u+v, v 6= 0〉

The lemma allows us to apply lower estimation, which instantiatesM to #nat and∆ to

(y 6= 0)∨∆′, giving:

〈x≤#nat x, ∆′〉

The goal is trivially discharged with∆′ = f alse.

The estimation proof is completed by showing that the instantiated difference equiv-

alent∆ follows from the side condition in (6.12):

y 6= 0 → y 6= 0∨ f alse

6.5.5 The Side Condition Critic

One way in which the estimation strategy can fail is when the non-strict inequality

proof succeeds, but the strict inequality proof fails. Thisfailure occurs because we

cannot show that the difference equivalent (∆ in (6.14)) follows from the step case’s

side conditions.
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To try and recover from this kind of failed proof, we use a critic to the estimation

strategy which responds to the failure of the difference equivalent proof. It patches the

proof by adopting the difference equivalent∆ as a side condition of the corresponding

step case. Some simplification of∆ may be possible before we adopt it as a side

condition.

Example

Consider the following step case, generated by our inductionstrategy:

Φ(x) ⊢ Φ(x+y) (6.16)

Applying the WELLFOUND-HYPS strategy we soon end up with the estimation sub-

goal:

〈x≤M1 x+y, ∆〉

As in the previous example, this is discharged withM1 = #nat and∆ = (y 6= 0∨ f alse).

To complete the proof we need to show:

true→ y 6= 0∨ f alse

The proof fails, and the side condition critic responds by simplifying ∆ to y 6= 0 and

adding this as a side condition to the step case (6.16). The new well-founded step case

is:

y 6= 0, Φ(x) ⊢ Φ(x+y) (6.17)

6.5.6 Choosing ≺

After the proof of an exhaustive set of base and step cases hasbeen completed, a

constraint solver supplied by WELLFOUND-HYPS is invoked. For the wellfoundedness
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strategy described above, the solver has a simple task: for the proof to have got this

far, there must be at least one tuple argument positioni such that:

• measure(i,Mi) appears as a disjunct in the constraint (6.11).

• The constraintignore(i) does not appear.

The solver need only pick one suchi, and instantiate≺ to λx.λy.(Mi(x) < Mi(y)). It

follows from the WELLFOUND-HYPS strategy that every induction hypothesis must

be less than its conclusion under this relation.

The instantiated≺ is also guaranteed to be well-founded, as any relation defined

in terms of a measure function in this way is well-founded. (The proof of this is

straightforward, and we omit it here.)

6.6 Summary

This chapter has described the induction rule creation strategy in terms of a number of

distinct components. The strategy delays the choice of well-founded relation until the

end of the proof, reducing the need for unnecessary search.

The strategy is modular with respect to the components, in that any strategy that

satisfies the component’s specification could be used — providing they are consistent

in the constraints on≺. We have suggested candidate strategies for all the components:

• The middle-out strategy of Chapter 4 can be used for REFINE-CASE.

• The case synthesis strategy of Chapter 5 can be used for EXHAUST-CASES.

• The estimation strategy of §6.5 can be used for WELLFOUND-HYPS.



Chapter 7

Controlling Speculation

7.1 Introduction

Speculative ripple steps, discussed in §4.3.1, are those which instantiate a meta-variable

in the goal as a side-effect. Kraan noted in her work on middle-out induction selec-

tion that speculation caused rippling to be non-terminating (see [Kraan, 1994], also

example in §2.7.1). Worse still, non-termination occurs inmany simple examples, for

both theorems and non-theorems. This chapter proposes a proof critic for controlling

speculative ripple steps.

To ensure termination, Kraan’sPeriwinklesystem places a fixed bound on the num-

ber of speculative steps. Unfortunately, a given theorem may require an arbitrary num-

ber of such steps for a middle-out strategy to find a proof, as we cannot put ana priori

bound on the amount of ‘induction term structure’ required to prove a theorem, i.e. if

we set a bound at 4 steps, there may be a solution only for 5 or more. Hence the bound

excludes solutions from the search space.

In this section we propose aspeculation criticthat employs speculative rippling
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as a patch to overcome the failure of definite (i.e. non-speculative) rippling. This

allows speculative rippling to be applied in a controlled way, and significantly re-

duces the risk of non-termination. The critic is based on theinduction revision critic

[Ireland and Bundy, 1996].

7.2 Divergent Speculation

The key to controlling speculation is identifying which speculative steps will progress

the rippling proof. After the (compulsory) initial speculative step, which introduces a

set of initial wave fronts, further speculative steps can only be useful if they help move

the existing wave fronts.

Divergent Example

An example of useless speculation causing non-terminationis given in Figure 7.1, from

the example introduced in Chapter 1. (We abbreviatefoldleft tr to f ld here.) Wave

rule (7.4) is used repeatedly to speculate new wave fronts, which cannot be removed by

further rippling. Each speculation contributes another blocked wave front to either side

of the conclusion. However, the process will not stop because speculation is always

possible, no matter how many blocked wave fronts accumulate. This speculation is

useless, as it does not help unblock these wave fronts, and socannot help the proof.

Such non-termination will occur inany schematic step case proof where blocked

wave fronts arise that cannot be removed. This often happensduring proof attempts of

theorems because of a missing lemma, or during the proof of non-theorems.
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f ld(◦, X(x−→) , L(x−→) ) = y◦ f ld(◦, id, L(x−→) )

⇓ (∗)

f ld(◦, X(x−→) ◦L′(x−→)
↓

, L′′(x−→) ) = y◦ f ld(◦, id, L′(x−→) :: L′′(x−→)
↑

)

⇓

f ld(◦, X(x−→) ◦L′(x−→)
↓

, L′′(x−→) ) = y◦ f ld(◦, id ◦L′(x−→)
↓
, L′′(x−→) )

⇓ (∗)

f ld(◦, ( X(x−→) ◦L′(x−→))◦L′′′(x−→)
↓

, L′′′′(x−→) ) = y◦ f ld(◦, id ◦L′(x−→)
↓
, L′′′(x−→) :: L′′′′(x−→)

↑

)

⇓

f ld(◦, ( X(x−→) ◦L′(x−→))◦L′′′(x−→)
↓

, L′′′′(x−→) ) = y◦ f ld(◦, (id ◦L′(x−→))◦L′′′(x−→)
↓
, L′′′′(x−→) )

⇓

etc.

Figure 7.1: Divergent speculation in the schematic step case proof for theorem ∀x,y:

τ.∀l:list(τ). f ld(◦,x, l) = y◦ f ld(◦, id, l), using the wave rules from Figure 7.2. Only the

induction conclusion is shown. The speculative ripples steps (marked with asterisks)

are motivated by wave rule (7.4).

Convergent Example

Now consider Figure 7.3, an example where further speculation is actually useful.

The initial goal undergoes one speculative ripple with waverule (7.1), followed by a

definite ripple with (7.2). Both wave fronts are now blocked, but a further speculative

ripple with (7.1) provides the extra wave front required to remove the wave fronts with

(7.3) and fertilise, finishing the proof. This second speculative step unblocks the wave
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s(X)
↑

+Y ⇒ s(X +Y)
↑

(7.1)

X + s(Y)
↑

⇒ s(X +Y)
↑

(7.2)

even( s(s(X))
↑
) ⇒ even(X) (7.3)

f ld(F,A, H :: T
↑
) ⇒ f ld(F, F(A,H)

↓
,T) (7.4)

Figure 7.2: Wave rules used in the speculation examples.

fronts created by the first.

7.3 Ireland & Bundy’s Induction Critic

To summarise the last section, after an initial speculativestep, the resulting wave fronts

may become blocked. Further speculative steps are only useful if they help ripple the

existing wave fronts. We can view this in terms of fixing a proof failure (see §2.4.4):

when definite rippling fails we can patch it with speculativerippling, which provides

the missing wave fronts that allow rippling to continue.

This analysis shows that the problem of speculation is very similar to the situation

described in [Ireland and Bundy, 1996], where rippling failswith a wave rulepartially

matchinga goal — the wave rule requires some extra wave fronts that do not appear in

the goal (see §2.5.5). Ireland and Bundy propose a proof critic which overcomes this

failure by revising the induction rule. This is done by creating the necessary missing

wave fronts and ‘rewinding the proof’ to see what induction rule could introduce them.

We can rationally reconstruct the patch from [Ireland and Bundy, 1996] as a four

step process:
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even( C(x,y) + D(x,y) ) ↔ even( D(x,y) + C(x,y) )

⇓ (∗)

even( s( C′(x,y) + D(x,y) )

↑

) ↔ even( D(x,y) + s( C′(x,y) )

↑

)

⇓

even( s( C′(x,y) + D(x,y) )

↑

) ↔ even( s( D(x,y) + C′(x,y) )

↑

)

⇓ (∗)

even( s(s( C′′(x,y) + D(x,y) ))

↑

) ↔ even( s( D(x,y) + s( C′′(x,y) )

↑

)

↑

)

⇓

even( s(s( C′′(x,y) + D(x,y) ))

↑

) ↔ even( s(s( D(x,y) + C′′(x,y) ))

↑

)

⇓

even( C′′(x,y) + D(x,y) ) ↔ even( D(x,y) + C′′(x,y) )

Figure 7.3: Convergent speculation leads to a successful step case proof for the theo-

rem ∀x,y:nat.even(x+y)↔ even(y+x), using the wave rules from Figure 7.2. Only the

induction conclusion is shown. The speculative ripples steps (marked with asterisks)

are motivated by wave rule (7.1).
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Insert New Wave Fronts Insert the missing wave fronts and term structure into a

copy of the failed goal — where each meta-variable is copied to itself — so

that the partially matching wave rule could be applied. Erase the old wave fronts

from the copy.

Reverse Ripple Reverse the direction of new wave fronts, so that outwards wave

fronts are inwards and vice versa. Ripple the new wave fronts completely in-

wards using the rewrite relation⇐ instead of⇒. This takes us ‘backwards’

through the proof1. Sinks are used to indicate meta-variables, so that wave fronts

may be rippled in towards them (see §2.5.1).

Change Induction Revise the original selection of induction rule so that theserippled-

in wave fronts are actually introduced as induction terms bythe induction rule.

The proof critic selects a suitable rule from a prestored set. Update the partial

proof to take account of the new induction.

Continue Proof Continue the proof from the patched goal, and discard the copymade

in the first step.

Note that the goal produced byInsert New Wave Frontsmay be a non-theorem. This

is acceptable, because it is a purely meta-level goal that isused to determine a suitable

instantiation, and will not appear in the final proof plan.

Convergent Example (contd)

As an example of Ireland and Bundy’s induction critic, consider the example theorem

from Figure 7.3. If we try ripple analysis on this goal, it suggests structural induction

1Although we are already doing backwards proof — trying to finda path from goal to axioms — so
this ‘backwards’ step is actually forwards proof!
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for nat (the dual induction for+). Using the wave rules from Figure 7.2, this proof

fails as follows:

even( s(x)
↑

+y) ↔ even(y+ s(x)
↑
)

⇓

even( s(x+y)
↑
) ↔ even(y+ s(x)

↑
)

⇓

even( s(x+y)
↑
) ↔ even( s(y+x)

↑
)

Both wave fronts are now blocked.

However, the induction critic spots that wave rule (7.3) partially matches the left-

hand wave front. Inserting the missing wave front into the goal we get:

even( s(s(x+y))
↑
) ↔ even( s(y+x)

↑
)

Notice that this goal is a non-theorem. This is acceptable, as we are only going to use

this goal to determine a suitable instantiation — it will notappear in the final proof

plan. The critic now erases the old wave-fronts, turns the new wave front inwards and

reverse ripples:

even(s( s(x+y)
↓
)) ↔ even(s(y+x))

⇓

even( s(x)
↓

+y) ↔ even(s(y+x))

This suggests that the step case requires an additionals(x)
↑

in the original induction

term. Searching our set of known induction rules, we find thattwo-step induction on

nat fufills this requirement, and we choose this induction rule instead.

The proof needs to be updated: an extra base case is required,and additional in-

duction terms are introduced apart from the one we found via reverse rippling. The
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patched step case goal is:

even( s(s(x+y))
↑
) ↔ even( s(y+ s(x)

↑
)

↑

)

7.4 A Speculation Critic

The analogy between the Ireland-Bundy critic and our approach is as follows: the new

induction terms introduced in theChange Induction step are the equivalent of a use-

ful speculative step which instantiates meta-variables, and so create/modify induction

terms. This suggests that we can control speculation by adapting the induction revision

critic.

We propose the following replacement for thechange inductionstep: every wave

front in the fully rippled in goal should surround a meta-variable. Providing no meta-

variable has two occurrences surrounded bydifferent wave fronts, then record each

meta-variable/wave front pairA(x1, . . . ,xn)/ F(. . .)
↓
. Allow a speculative ripple only

if it instantiates eachA to λu1. . . .λun.F(A′(u1, . . . ,un)) for some freshA′.

We will refer to the new critic as thespeculation criticand the old critic as the

induction critic. The essential difference between them is that in the induction critic

the missing wave fronts suggest a particular choice of induction rule from a given set,

whilst in the speculation critic they suggest a speculativeripple which will contribute

towards creating a suitable induction rule.

Figure 7.4 shows a succient description of the critic in terms of preconditions and

effects. The application of the speculation critic is illustrated in Figure 7.5.

Note that the speculation critic as defined here only works with constructor style

induction, just as original induction critic did. It is compatible with non-constructor

style schematic proofs, but will only suggest patches that correspond to constructor



Chapter 7. Controlling Speculation 125

'

&

$

%

Critic: Speculation Critic

Preconditions:

• The failed rippling goalG is not fertilisable.

• There is a wave ruleR that partially matchesG.

• ConstructG′, a copy ofG — the goals now share meta-variables. InG′:

– Insert wave frontsW1, . . . ,Wn into G′ so thatR could be applied.

– Erase any other wave fronts.

– TurnW1, . . . ,Wn inwards.

– Fully ripple-inW1, . . . ,Wn with backwards ripple stepsS1, . . . ,Sm.

– Check no meta-variable inG′ surrounded by different wave fronts.

Effects:

• Instantiate each meta-variable inG′ surrounded by wave front — this will also in-
stantiate meta-variables inG.

• DiscardG′ and its subgoals.

• Ripple out inG by applying normal ripple stepsSm, . . . ,S1.

• Apply R to G and continue rippling.

Figure 7.4: Definition of the speculation critic

style step cases. We do not extend it to the destructor style in this thesis, although we

hypothesise that this could be done (see §13.7).

Divergent Example (contd)

To get a clearer idea of how the new critic works, consider again the divergent example

from Figure 7.1. After an initial speculative ripple, definite rippling becomes blocked
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Blocked GoalG Goal CopyG′

?

Time

f ( a(. . .A. . .)
↑
)

q

(1) Copy

f (a( b(. . .A. . .)
↓
))

?
(2) Ripple In

f (a(. . . d(A)
↓
. . .))

?
(3) Instantiate

f (a(. . . d(d(A′))
↓
. . .))¾

(4) Sharing
f ( a(. . . d(A′)

↑
. . .)

↑

)

?
(5) Ripple Out

f ( a(b(. . .A′ . . .))
↑
)

?
(6) Unblock

c( f (. . .A′ . . .))
↑

Figure 7.5: An application of the speculation critic: 1) the blocked goal is copied, with

new inwards wave fronts 2) which are rippled in; 3) the fully rippled in wave fronts

suggest an instantiation A = d(A′); 4) meta-variables are shared between both goals,

producing new wave fronts in the blocked goal 5) which are rippled out; 6) the new wave

fronts allow the goal to be unblocked.
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with the following subgoal:

f ld(◦, X(x−→) ◦L′(x−→)
↓

, L′′(x−→) ) = y◦ f ld(◦, id ◦L′(x−→)
↓
, L′′(x−→) )

There is no partially matching wave rule for this goal, and the critic is not applied. It

cannot fix the ripple proof with further speculation. Hence the divergence illustrated

in Figure 7.1 has been avoided.

Convergent Example (contd)

Now let us look at how the new critic handles the example of convergent speculation

from Figure 7.3. After the initial speculative ripple, definite rippling becomes blocked

with the following subgoal:

even( s( C′(x,y) + D(x,y) )
↑

) ↔ even( s( D(x,y) + C′(x,y) )
↑

) (7.5)

The wave rule (7.3) partially matches this goal — itwouldmatch if we were to insert

additional wave fronts into §7.5 as follows:

even( s(s( C′(x,y) + D(x,y) ))
↑

) ↔ even( s( D(x,y) + C′(x,y) )
↑

)

Because definite rippling has failed with a partial wave rule match, we can invoke

the speculation critic. It inserts the ‘missing wave front’into the goal (7.5), then re-

verses its directions to give:

even(s( s( C′(x,y) + D(x,y) )
↓

)) ↔ even(s( D(x,y) + C′(x,y) ))

These wave fronts are now ‘reverse’ rippled-in. We have the following ‘reverse’ ver-

sion of the wave rule (7.1) available:

s(X +Y)
↓

⇒ s(X)
↓

+Y (7.6)
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Rippling-in with (7.6) on the LHS gives:

even(s( s( C′(x,y) )
↓

+ D(x,y) )) ↔ even( s( D(x,y) + C′(x,y) )
↑

)

The new wave fronts have been fully rippled in. At this stage,thechange induction

step of the old induction critic would look for induction rules which introduced these

wave fronts as induction terms. Instead, our new critic spots that one instances ofC′

is surrounded bys(. . .)
↓
. Hence the patch to (7.5) is any speculative ripple that will

instantiateC′ to λu.λv.s(C′′(u,v)).

This patch allows the second speculative ripple in Figure 7.3 to go ahead, and the

proof to be completed.

7.5 Summary

This chapter looked at the problem of divergent speculation, and:

• Provided an analysis of why speculation may not terminate.

• Adapted Ireland and Bundy’s induction critic in order to control speculation.



Chapter 8

Controlling Rewrite Search

8.1 Introduction

Our induction strategy relies heavily on rewriting to obtain a proof. This has the po-

tential to introduce a large amount of search into our approach, and in this chapter

we proposeposition ordered rewritingas a technique for reducing redundant search

caused by backtracking during rewriting.

A great deal of research into theorem proving by rewriting has concentrated on

eliminating the need for search by demonstrating that a set of rewrite rules is, or can be

made,confluent[Baader and Nipkow, 1998]. Confluence is the property that alternate

rewritings of a given term are alwaysjoinable — they can be rewritten to the same

term. There is no need to backtrack over alternative rewritings when using a confluent

system, as they all lead to the same result.

However, there are good reasonsnot to restrict a theorem prover to confluent rule

sets. A non-confluent ruleset may be the most natural, or only, way to represent a

particular problem. Alternative normal forms for a term mayrepresent alternative

129
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approaches to solving a problem, and so could be useful to a theorem prover. In other

words, there can be genuine choice points during rewriting.This is illustrated by the

fact that rewrite rules may be based on non-equivalence preserving lemmas, where a

true goal may give rise to a false subgoal. Confluence is not desirable here, as true and

false should not be joinable!

Neither theClamor λClaminduction strategies, nor our induction strategy, assume

confluent rewrite rule sets.

Overview

In this chapter we identify the problem of redundant search during non-confluent

rewriting, and propose a technique for reducing it. §8.2 shows how redundancy arises

when normal forms are rederived. It introduces the concept of confluent branches,

along with sufficient conditions for identifying them.

In §8.3 we describe how position order rewriting can be used to block alternative

paths to a term. The approach is formalised asπ- and σ-rewriting. The question

of completeness is addressed in §8.4, which gives a proof of the completeness ofπ-

rewriting. Finally, in §8.5 we show the compatibility of thetechnique with meta-

variables, and hence our induction strategy.

8.2 Redundancy in Rewriting

The redundant search caused by rederiving normal forms may be illustrated by the

following simple example: consider the rule set{a→ b} and the initial termf (a,a).

The term is normalised in two steps:

f (a,a) → f (b,a) → f (b,b)
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If this normal form turns out to be unsatisfactory, we may backtrack over the first step,

and find an alternative normalisation:

f (a,a) → f (a,b) → f (b,b)

The first normal form has been rederived, so this second derivation is redundant.

Similar examples have the potential to cause a combinatorial explosion, as parts

of the term can be ‘independently’ rewritten, and may be in any order. This could

produce a significant amount of redundant rewriting search.Another source of redun-

dancy comes from the rôle rewriting plays within the theorem prover. A given normal

form may be the input to another, potentially expensive, strategy. Such work will be

duplicated if normal forms are rederived. Both these sourcesof redundancy may be

arbitrarily large.

One solution would be to construct an explicit representation of the search space

as an acyclic directed graph — assuming rewriting is terminating — and to extract

the distinct normal forms from this. This completely avoidsthe problem of redundant

search, but the graph may be infeasibly large, even for simple rewrite systems. Fur-

thermore, constructing an explicit search space does not fitwell into many reasoning

frameworks, including theλClam proof planner. The technique we propose below

does not have either of these drawbacks.

8.2.1 Confluent Branches

The problem of rederiving normal forms can be restated as follows: non-confluent

rule sets may still exhibit ‘locally confluent’ behavior, inthat someterm may have

alternative rewritings that are joinable. In general, there may be a terms which has a

confluent branch:
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ւ ց

t1 t2

ց∗ ւ∗

t

As there are at least two paths to the ‘joining’ termt, it may be visited more than once.

If there are more than two alternative reductions ofs, then there may be more than two

ways to get froms to t, or there may be multiple ‘joining’ termst. However, we define

a confluent branch as involving exactly two alternative reductions, so in these casess

is considered to have more than one confluent branch.

By considering confluent branches, we can formulate a principle for reducing search.

At each term try to:

1. Identify confluent branches and

2. For each confluent branch block one of the paths to the joining term.

Below we show how this can be done in certain cases.

8.2.2 Identifying Confluent Branches

Consider a terms with two possible redexes:a at position p and b at positionq.

Subterma may be reduced toa′. Subtermb may be reduced tob′ by rewrite rulel → r

with substitutionσ. Without loss of generality, we may assume exactly one of three

cases, shown in Figure 8.1. The case analysis is taken from the proof of the Critical

Pair Lemma in [Baader and Nipkow, 1998]. For each case we will consider whether

there is a confluent branch.
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Figure 8.1: A term containing two redexes a and b = σ(l). The redexes are either

non-overlapping (left) and so form parallel subterms, or are non-critically overlapping

(middle) where a is within the substitution σ, or critically overlapping (right) where a

overlaps with the left-hand side l . ([Baader and Nipkow, 1998], pp136.)

Case 1: No overlap

In this case the two redexesa andb are parallel subterms ofs, shown in the left term in

Figure 8.1. The two reductions trivially form a confluent branch, illustrated in Figure

8.2. There are two paths: left (subterma) then right (subtermb), or right then left.

Case 2: Non-critical overlap

Here one redex is the subterm of the other, but the inner redexa is entirely contained

within the substitutionσ of the outer reduction, i.e. it is within a subtermc[a] that

matches a variableX in l , the lefthand side the outer rewrite rule. This case is illustrated

by the middle term of Figure 8.1.

A confluent branch is formed in this case. The first derivationbegins with rewriting

the outer termb→ b′. The righthand side of the outer rewrite rule,r, will contain zero

or more copies ofX. Henceb′ will contain subtermc[a] at a set of positionsP. Let us

rewrite each of these toc[a′] with the inner rule, to give a final term equal tob′ with
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the subterms at positionsP replaced withc[a′].

The second derivation begins by rewriting each subterm thatmatchedX in the

first derivation fromc[a] to c[a′]. Now outer rulel → r will still apply, but with an

amendedσ which replacesX with c[a′]. Applying the rule, we have the termb′ with

the subterms at positionsP replaced withc[a′] — the same term as before. Hence there

are two alternate routes to the same term, and there is a confluent branch.

Case 3: Critical overlap

This case has one redex as a subterm of the other, shown in the right term of Figure

8.1. However, the inner term is not contained in a variable during the outer redex’s

reduction. In this case the branch may or may not be confluent —examples of both

kinds are easily constructed. Because we cannot definitely identify whether a conflu-

ent branch exists, and if so what form it takes, we cannot apply the search reduction
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principle described above. Hence we ignore this case below.

8.3 Position Ordered Rewriting

To summarise the last section, if there is no overlap or a non-critical overlap between

the two redexes — when the reductions are ‘independent’ of each other — then a

confluent branch can be identified. Hence we have sufficient conditions for identifying

a confluent branch. We ignore the case of a critical overlap between redexes, because

a confluent branch may or not be present.

Given a confluent branch, the next step is to block one of the two paths to the

joining term, as discussed in §8.2.1. Recall the possible reduction paths in the two

‘independent’ cases:

No overlap Left term then right, OR right then left.

Non-critical overlap Outer term then any copies of inner term created, OR all occur-

rences of inner term needed for outer rule to apply, then outer term.

The number of paths in each case can be cut down by imposing constraints on the

reductions, based on the position of the redexes, which onlyallow a specific ordering

of the independent steps. We will consider the following orders1:

Parallel Constraint Left cannot follow right.

Subterm Constraint Outer cannot follow inner.

We call this approachposition ordered rewriting. More formally, we use the rewrit-

ing strategy given in Figure 8.3. The strategy prevents the alternate paths being taken

1It may be possible to develop techniques based on other orders.
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1. The first redex may be chosen freely.

2. Subsequently, for last reduced subtermt and redext ′:

Parallel if t andt ′ are parallel thent must be to the left oft ′.

Subterm if t is belowt ′ and rewrite rulea→ b reducest ′ then for any unique (single
occurrence) variableX in a, t must not be wholly contained within the subterm
that matchesX.

Figure 8.3: The position ordered rewriting strategy.

when we have confluent branches with independent redexes. Only the left-first/outer-

first path should ‘get through’ to the joining term.

The subterm constraint in Figure 8.3 requires some explanation: it says that if we

follow a reduction with another higher up the term, the result of the inner one cannot

entirely be contained within auniquevariable in the lefthand side of the outer rewrite

rule, i.e. a variable that occurs only once. The next sectionworks through some simple

examples, and illustrates why this variable has to be unique.

Restricting rewriting in this way is obviously sound, but it is not obvious whether or

not it is complete with respect to the original rewrite relation. §8.3.2 lays the ground-

work for a proof of completeness, by giving a formal presentation of position ordered

rewriting. In §8.4 we prove that using the parallel constraint alone gives a complete

restriction.

8.3.1 Examples

This section illustrates position ordered rewriting with several examples.



Chapter 8. Controlling Rewrite Search 137

The Parallel Constraint

Recall the motivating example mentioned at the beginning of §8.2: the single rewrite

rule a→ b is applied to the termf (a,a). Two derivations of the normal formf (b,b)

are possible. However, the parallel constraint blocks one of these paths, as follows (in

each term the redex is underlined):

f (a,a) → f (b,a) → f (b,b)

f (a,a) → f (a,b) 6→ f (b,b)

This step is blocked as the redex is to the left of the last reduced subterm.

The Subterm Constraint

Now consider the two rule rewrite set{a→ b, g(X)→ h(X)} applied to the termg(a).

The normal formh(b) can be derived via two separate paths, one of which is blocked

by the subterm constraint, as follows:

g(a) → h(a) → h(b)

g(a) → g(b) 6→ h(b)

This step is blocked as the last reduced subterm entirely within the subterm that matches

the unique variableX when we match the lefthand sideg(X) to g(b).

Why A Unique Variable?

This example shows why the subterm constraint specifies auniquevariable, i.e. one

with a single occurrence in the term. Allowing the constraint to work with an arbitrary

variable would prevent redundant search in a greater numberof cases. Unfortunately,

this form of the subterm constraint is incomplete with respect to the original rewrite

relation.
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To see why, consider the two rule rewrite set{a→ b, f (X,X) → g(X)} applied to

the termf (a,b). If we use the non-unique version of the subterm constraint,then:

f (a,b) → f (b,b) → g(b)

The step is blocked because the last reduced subterm is entirely within the subterm

that matches the variableX when we match the lefthand sidef (X,X) to f (b,b). There

are no other derivations ofg(b), so the term has been pruned from the search space —

hence the non-unique subterm constraint is incomplete.

It may be possible to design a complete position ordered rewriting strategy that

blocks a step when the last reduced subterm is entirely within a subterm that matches

anyvariable. We speculate that this would involve taking into account the positions of

several previous rewrite steps, rather than just the last reduced subterm.

8.3.2 π- and σ-Rewriting

In order to formalise position ordered rewriting, we introduce notation for some for-

mal rewriting concepts. Where possible, we have followed thestandard notation of

[Baader and Nipkow, 1998].

Positions A position p of a subterms of a termt is the list of positive integers that

determines a path from the root oft to the root ofs. pq is the listp appended to

the listq. ε is the empty (root) position.posn(s, t) returns the set of positions of

subterms within t.

Above/Below The order< is defined on positions asp < q iff there existsp′ 6= ε such

thatq = pp′, i.e. whenp is aboveq in the term tree.>, ≤ and≥ are defined in

the obvious manner.
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Parallel If p 6= q, p 6< q and p 6> q then p is parallel toq, written p || q. Note that

p = q, p < q, p > q andp || q are mutually exclusive and exhaustive cases.

Before/After The order≺ is defined as the lexicographic ordering on positions. This

meansp≺ q iff p comes beforeq in a depth-first traversal of the term tree.≻, ¹

andº are defined in the obvious manner.

Rewrite Step For positionp and rewrite ruler, the rewrite stepγ = [p, r] is the trans-

formationt →p
r t ′. We use the functional notationγ : t 7→ t ′ andγ(t) = t ′.

SequenceA sequence of rewrite stepsφ = [p1, r1], . . . , [pn, rn] is applied to a term by

iteratively applying the steps to the term in the given order. As with rewrite steps,

we use the functional notationφ : t 7→ t ′ andφ(t) = t ′. ε is the empty sequence.

Definition 7 (πσ-sequence)A sequence of rewrite steps is aπσ-sequenceiff for any

two consecutive rewrite steps[p, r] and[q,s], where s= (a→ b)

(π) if p || q then p¹ q

(σ) if p > q and variable a|u occurs only once in a then p6≥ qu

Enforcing these constraints on rewriting is calledπσ-rewriting . If only the (π)

constraint is enforced a rewrite sequence is called aπ-sequence, and restricting rewrit-

ing in this way is calledπ-rewriting. σ-sequence andσ-rewriting are defined analo-

gously.

8.4 Completeness

Having formalised position ordered rewriting we can now consider its completeness.

By completeness we mean that usingπσ-rewriting does not prevent any terms being
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derived. More formally, ift →∗ t ′ then there exists aπσ-sequenceφ such thatφ(t) = t ′.

In other words, any term that has a particular path to it blocked by theπσ restrictions

can be reached by some other acceptable path.

This is not the only form of completeness that could be considered. For example,

the completeness with respect tonormal forms[Baader and Nipkow, 1998], i.e. that

exhaustively applyingπσ-rewriting is equivalent to normal rewriting. However, we

have not found such results any simpler to prove than our stronger notion of complete-

ness given above.

In this section we prove thatπ-rewriting is complete, and discuss the possible com-

pleteness ofσ- andπσ-rewriting. First we provide some additional concepts thatwill

simplify our proofs:

Composition We writeφ1φ2 to denote the sequence obtained by applyingφ1 thenφ2.

Equivalence Two sequencesφ1,φ2 are equivalent (writtenφ1 ≡ φ2) iff φ1(t) = φ2(t)

for any termt.

Length |φ| is the number of steps inφ.

Segment A sequenceφ′ is called a segment of a sequenceφ if φ = φAφ′φB for some

φA,φB.

8.4.1 π-Rewriting is Complete

In this section we prove the completeness ofπ-rewriting: for any sequence there ex-

ists an equivalentπ-sequence. Our proof treats the given sequence as a ‘broken’π-

sequence which can be ‘fixed’.

The proof requires three lemmas, the first of which is trivial.
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Lemma 1 (Segment Lemma)Any segment of aπ-sequence,σ-sequence orπσ-sequence

is also a sequence of this type.

The following simple lemma shows that swapping the order of the steps ‘fixes’ a

‘broken’ π-sequence of length 2.

Lemma 2 (π-Swap Lemma) For rewrite stepsγ1 and γ2, if γ1γ2 is not aπ-sequence

thenγ2γ1 is, andγ2γ1 ≡ γ1γ2

Proof γ1γ2 = [p, r][q,s] is not aπ-sequence, sop || q and p ≻ q. Henceq || p and

q¹ p, so[q,s][p, r] is aπ-sequence. Also[q,s][p, r] ≡ [p, r][q,s] becausep || q.

Q.E.D.

We now introducek-brokenπ-sequenceswhere thekth step breaks theπ-constraint,

and removing it gives a validπ-sequence. The definition is followed by a lemma which

shows that we can always fixk-brokenπ-sequences. This definition and lemma are

motivated by the step case of the inductive completeness proof which follows, where a

k-brokenπ-sequence arises and is fixed.

Definition 8 (k-Broken π-Sequence)A sequenceφ is a k-brokenπ-sequencefor k≥ 2

iff there is a rewrite stepγ such thatφ = φAγφB and|φAγ|= k for some sequencesφA,φB,

and that:

1. φA is a π-sequence.

2. φAφB is a π-sequence.

3. φAγ is not a π-sequence.

Lemma 3 (π-Fix Lemma) For any k-brokenπ-sequence there exists an equivalentπ-

sequence.
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Proof Induction onk, the position of the broken rewrite step.

Case n= 2. Let φ = γ1γ2φB be a 2-brokenπ-sequence. Following the definition:

A1. γ1 is aπ-sequence, which is trivially true anyway.

A2. γ1φB is aπ-sequence.

A3. γ1γ2 is not aπ-sequence.

By (A3) and theπ-swap lemmaγ2γ1 is a π-sequence andγ1γ2 ≡ γ2γ1. Therefore by

(A2) γ2γ1φB is aπ-sequence equivalent toφ.

Step Case. Assume that we can fix anyk-brokenπ-sequence. Consider a(k+ 1)-

brokenπ-sequenceφ. As φ must have at least three steps, we may writeφ = φAγ1γ2φB

where|φAγ1γ2| = k+1. It follows from the definition that:

B1. φAγ1 is aπ-sequence.

B2. φAγ1φB is aπ-sequence.

B3. φAγ1γ2 is not aπ-sequence.

By (B1) and (B3)γ1γ2 is not aπ-sequence. Henceγ2γ1 ≡ γ1γ2 by theπ-swap lemma.

Defineφ′ = φAγ2γ1φB ≡ φ. Now if φ′ is aπ-sequence then we are done, so let us assume

it is not. Therefore:

C1. φA is aπ-sequence, by (B1) and theπ-segment lemma.

C2. φAγ1φB is aπ-sequence, which is (B2).

C3. φAγ2 is not aπ-sequence. If it were,φAγ2γ1φB = φ′ would be by (B2) and the

π-segment lemma, a contradiction.
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Given that|φAγ2γ1| = k+1 then|φAγ2| = k, soφ′ is ak-brokenπ-sequence. Hence by

the inductive hypothesis there exists aπ-sequenceφ′′ ≡ φ′ ≡ φ.

Q.E.D.

Theorem 3 (π-rewriting is complete) For any sequence there exists an equivalentπ-

sequence.

Proof By induction onn, the length of the sequence. The casesn = 0 andn = 1 are

trivial. The casen = 2 was shown by theπ-swap lemma.

Step Case. Assume then = k case, and consider a sequenceφ of lengthk+ 1. Let

φ = φAγ. By the inductive hypothesis, there exists aπ-sequenceφ′A ≡ φA. Now define

φ′ = φ′Aγ ≡ φ. If φ′ is aπ-sequence we are done, so let us assume it is not. Observe that

φ′ must now be a(|φ′A|+ 1)-brokenπ-sequence, so by theπ-fix lemma there exists a

π-sequenceφ′′ ≡ φ′ ≡ φ.

Q.E.D.

Note that the equivalentπ-sequences are constructed by reordering the original

sequences, so we can conclude that they are of the same lengthas the originals. Hence

π-rewriting will not cause inefficiency by eliminating the shortest path to a term — a

π-sequence of equal length will exist.

8.4.2 Towards πσ-Completeness

In this section we provide a swap lemma forσ-rewriting, as part of an attempted proof

of the completeness ofσ-rewriting. In theπ case lemma 2 put the ‘left’ rewrite step

before the ‘right’ step. In theσ case lemma 4 puts the ‘higher’ step before the ‘lower’

step. As a result, the ‘lower’ redex may change position and be duplicated. This makes

the statement of the lemma more complex than in theπ case.
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However, we have so far been unable to prove the completenessof σ-rewriting

by the route of a correspondingσ-Fix lemma. We leave its completeness, and the

completeness ofπσ-rewriting, as open conjectures.

Lemma 4 (σ-Swap Lemma) If [p, r][q,s] is not a σ-sequence then there exists an

equivalentσ-sequence[q,s]
m
Φ
i=1

[quiv, r] for certain positions u1, . . . ,um,v.

Proof If the (σ) constraint is broken, then by definitionp > q and fors= (a → b)

there is some variablex = a|u such thatp ≥ qu. Let posn(x, rhs(s)) = {u1, . . . ,um}.

Without loss of generality, assume thati < j ⇒ ui ≺ u j . Theui are the positions of a

variable, and so must be mutually parallel. Also, as we knowp > q, let v be such that

p = quv.

First, we show that the given sequence is aσ-sequence: as theui are mutually

parallel, so mustquiv for i ∈ [1,m]. Furthermore,i < j ⇒ quiv≺ qujv, so
m
Φ
i=1

[quiv, r] is

a σ-sequence. Now, asq 6≥ qu1v, [q,s]
m
Φ
i=1

[quiv, r] is also aσ-sequence.

Next, we show that the given sequence is equivalent to[p, r][q,s]: Suppose the

original sequence was applied to a termt0, such that[p, r] : t0 7→ t1 and[q,s] : t1 7→ t2.

t1 is the result of one step and the input to another, so it follows that there are terms

a, b, c andd for which [ε, r] : a→ b, [ε,s] : c→ d andt0|p = a, t1|p = b, t1|q = c and

t2|q = d.

Let t ↓p [t ′] denote a termt with a subtermt ′ at p. We know thatp = quvand that

the subtermt1|qu matches the variablex and is copied by[q,s] to positionsqu1, . . . ,qum,

so we may write

t0 = t0 ↓q [c ↓u [e↓v [a]]]

t1 = t0 ↓q [c ↓u [e↓v [b]]]

t2 = t0 ↓q [d ↓{u1,...,um} [e↓v [b]]]
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wheree= t0|qu. Now

[q,s](t0) = [q,s](t0 ↓q [c ↓u [e↓v [a]]])

= t0 ↓q [d ↓{u1,...,um} [e↓v [a]]]

and

m
Φ
i=1

[quiv, r](t0 ↓q [d ↓{u1,...,um} [e↓v [a]]]) = t0 ↓q
[

m
Φ
i=1

[uiv, r](d ↓{u1,...,um} [e↓v [a]])
]

= t0 ↓q [d ↓{u1,...,um} [[v, r](e↓v [a])]]

= t0 ↓q [d ↓{u1,...,um} [e↓v [b]]]

= t2

Hence[q,s]
m
Φ
i=1

: t0 7→ t2 and so is equivalent to[p, r][q,s].

Q.E.D.

8.5 Compatibility with Meta-variables

As it stands, position ordered rewriting is incompatible with terms containing meta-

variables, as it can be shown to be incomplete. The followingexample2 illustrates the

problem. Consider the rewrite system:

a → b

g(a) → c

Following the use of meta-variables throughout this thesis, we let rewriting instanti-

ate them on the condition that the redex is never meta-flexible, i.e. so we cannot just

endlessly rewrite a meta-variable subterm.

2Alan Smaill, private communication.
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Taking the initial termp(X,g(X)) we can uniquely derive the normal formp(b,c)

via the following derivation (in each term the redex is underlined):

p(X,g(X)) → p(a,c) → p(b,c)

However, this is not aπ-sequence, and so is blocked by position ordered rewriting.

This is because the second redex is to the left of the first redex (i.e. 2|| 1 and 2≺ 1),

which is disallowed by the definition ofπ-rewriting. Because there is no other way to

derivep(b,c) from the initial term, a normal form has been excluded from the search

space.

The general problem is that a rewrite step may instantiate a meta-variable that has

other occurrences in parts of the term in whichπσ-rewriting disallows rewriting. A

solution to this problem is to treat meta-substitutions as unrestricted rewrite steps. That

is, instantiating a meta-variable at positionp is considered as a rewriting atp. For the

example above:

p(X,g(X)) → p(a,c) → p(b,c)

Note that the first term is now reduced at two positions simultaneously. This is ok, as

we can regard the leftmost/highest position (the smallest by ≺) as the ‘real’ position.

By this definition the above is now aπσ-sequence.

This approach overcomes the known problems with using position ordered rewrit-

ing with our induction strategy, and other techniques basedon meta-variables. Based

on this we conjecture that the technique is complete in the presence of meta-variables.

8.6 Summary

This chapter examined the problem of redundant search during non-confluent rewrit-

ing, and:



Chapter 8. Controlling Rewrite Search 147

• Provided an analysis of redundant rewriting in non-confluent systems based on

confluent branches.

• Introduced position ordered rewriting as an approach to reducing redundancy,

and formalised it asπσ-rewriting.

• Proved the completeness ofπ-rewriting.

• Showed how it can be made compatible with middle-out reasoning.



Chapter 9

A Proof Planner with Critics

9.1 Introduction

Having laid out the various components of our induction strategy in Chapters 4 to 8, we

now consider its implementation. TheλClamproof planner was chosen, and extended

with proof critics, for this purpose.

After explaining in §9.2 why an extendedλClam was used, the rest of the chap-

ter describes the novel critics-based proof planning architecture implemented in the

system. The main features of the architecture areplanning instructions(see §9.4) to

allow more flexible specification of when critics should be applied , andcriticals (see

§9.5) which can be used to specify critic strategies in a analogous manner tomethod-

icals [Richardson and Smaill, 2001]. §9.6 briefly describes a planner based on these

techniques. The architecture is general enough to be of use to a wide variety of proof

planning strategies.

The λClam system has undergone development since the implementationof out

new critics architecture, and in §9.7 we briefly describe howthe current implementa-

148
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tion relates to the our design presented here.

9.2 Why λClam?

Our induction strategy is essentially anon-uniformcollection of heuristics for guiding

proof search, i.e. different parts of the proof require verydifferent guidance. This is

especially true for our use of meta-variables. Proof planners are designed for the imple-

mentation of such non-uniform strategies, and a wide variety of such examples have

already been implemented, e.g. [Kraan, 1994], [Cheikhrouhou and Siekmann, 1998],

[Melis and Meier, 2000]. For the purposes of prototyping ourstrategy, using a proof

planner is simpler than the adapting another theorem proveror writing a stand-alone

system. Furthermore, some parts of the strategy are even described in terms of proof

planning operators, e.g. the speculation critic (see Chapter 7). For these reasons, it was

decided that a proof planning system would be used.

The choice of which proof planner to use came down to theΩMEGA system and

one of theClam planners (see §2.4). TheClam planners were chosen because, un-

like ΩMEGA, they have already been successfully used for the implementation of a

number of inductive strategies. It is easier to build upon this work than begin a new

implementation inΩMEGA — although this would be an interesting exercise.

Of theClam family of planners, only theClamv3 system has provision for proof

critics, and our strategy specifies two proof critics: the speculation critic (see §7.4)

and the side condition critic (see §6.5.5). However, of these systems, onlyλClam is

being actively maintained and developed. It also has other advantages for our induc-

tion strategy: its higher-order meta-logic provides built-in unification for higher-order

meta-variables, and methodicals greatly facilitate the specification of complex strate-
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gies (see §2.4.2). Hence it was decided to implement a suitable critics mechanism in

theλClamsystem, in order to implement our induction strategy.

9.3 Defining Proof Critics

In this section we describe how proof critics are defined inClam v3 [Ireland, 1992]

[Ireland and Bundy, 1996] and in our new architecture. Each proof critic is associated

with a proof planning method (by virtue of sharing its name),and when a method fails

the planner attempts to apply an associated critic. A criticis defined by a 4-tuple:

Method The name of the associated method.

Input The partial proof plan, including the method’s failed preconditions.

Preconditions Conditions under which the critic is applied.

Effects Instructions to modify the partial plan.

Figure 9.1 shows an example of such a critic definition, for awavecritic. Once a critic

is chosen, its preconditions are tested, and if they are satisfied, its effects are executed.

As well as the partial proof plan, the critic has access to thefailed preconditions of its

associated method, allowing it to provide an appropriate patch for a particular kind of

method failure.

To handle methods with multiple associated critics, a preference order is defined for

a set of critics. For example, forwavemethod’s critics, the critic with the most general

preconditions is chosen [Ireland and Bundy, 1996]. The planner may backtrack over

this choice.



Chapter 9. A Proof Planner with Critics 151

'

&

$

%

critic(wave,
Plan,
[preconds(Plan, [], [P4: sinkable(Pos,G,SPos)])],
[speculate_lemma(Pos, SPos, G, Rn:Lemma),

add_wave_rules(Lemma),
insert_method(Plan, [], wave(Pos,[Rn,_]))]).

Figure 9.1: The Clam v3 definition of the lemma speculation wave critic (from

[Ireland, 1992]).

9.3.1 Critic Definition in λClam

In theλClamcritics architecture we adopt a variation of the definition of proof critic

outlined above. Firstly, the critic is named independantlyof its associated method.

This allows a critic to be associated with several methods, e.g. several variations of the

wavemethod could be served by the same critic, or to have different occurrences of

the same method associated with different critics. This is discussed further in §9.4.

Secondly, there is a slot in the defining tuple representing the output plan. This

brings the definition of critics in line with methods. Hence critic preconditions and

effects are declarative statements that relate the input and output slots.

Thirdly, the critic definition also relates an input and output planning agenda, i.e.

the list of open nodes in the plan tree. This gives critics theability to further control

the search for a proof plan by changing the agenda. For example, to change the current

attention of the planning search. Figure 9.2 shows how thewavecritic definition from

Figure 9.1 might appear in the new format.

Our definition of critics clarifies their function: they are declarative1 planning oper-

ators that work on a global level, i.e. the whole plan and the agenda. This complements

1Declarative in theory —λProlog can be used to write non-declarative programs.
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critic (lemma_speculation Pos Lemma)
Plan
Agenda
(preconds Plan [] [(sinkable Pos G SPos)])
(speculate_lemma Pos SPos G Rn:Lemma,

add_wave_rules Lemma,
insert_method Plan Agenda [] (wave Pos [Rn,_]) NewPlan NewA genda)

NewPlan
NewAgenda.

Figure 9.2: How the lemma speculation wave critic from Figure 9.1 would be defined

in our new critics architecture. The output plan and input/output agendas are explicitly

represented, and the critic’s name differs from its associated method.

methods which are planning operators that work on a local level, i.e. the individual

nodes of the plan tree. Hence our definition of critics bringsthem more into line with

methods.

9.4 Planning Instructions

A feature of clam v3 critics is that a critic is invoked if and only if its associated

method fails. However, critics may be of more general utility than this: a proof strategy

could invoke a critic without a method failure, in order topositively critiquea partial

plan. For example, a global change to the proof could be part of a proof strategy’s

design, rather than an exception to it. Furthermore, it would be useful if a critic could

have acontextual associationwith a method, i.e. it is invoked only in certain strategic

contexts2.
2Ian Green and Alan Smaill, personal communication.
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In Clam v3 such features do not make sense, as it does not explicitly represent

proof strategies above the method level. But inλClam, proof strategies are represented

by compound methods. Hence ourλClam critics planner provides support for both

positive critiquing and contextual association with a method. Both are achieved by ex-

tending the method expression language withplanning instructionswhich modify the

planner’s behaviour, rather than being applied to the current goal. Planning instruc-

tions are treated as atomic methods by the methodical transformations used to obtain

the ‘next method’ from a method expression [Richardson and Smaill, 2001].

9.4.1 Postive Critiques: crit inst

The planning instruction(crit_inst C) may be included in a method expression to

invoke a positive critique of the plan. The planner interrupts normal planning and

applies the criticC to the partial plan. For example, the following method expression

would apply thewave method and then wouldalwaysapply thelemma speculation

critic (not a sensible strategy...) :

(then_meth (wave Pos [T,D])

(crit_inst (lemma_speculation Pos Lemma)))

9.4.2 Contextual Method/Critic Association: patch inst

The planning instruction(patch_inst M C) may be included in a method expression

to invoke an association with failure of the atomic methodM. The planner attempts

to apply methodM. If it succeeds then planning continues as normal. If it fails the

critic C is applied to the partial plan. InλClam, the method’s evaluated preconditions

are stored at the corresponding plan node, so the critic has access to them in order to
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analyse the method failure. To illustrate, the following method expression would apply

thewave method, and if it failed apply thelemma speculation critic:

(patch_inst (wave Pos [T,D]) (lemma_speculation Pos Lemma ))

Note that using(patch_inst M C) in a method expression is the only way a critic

can be associated with a method in theλClamcritics planner, and it does not univer-

sally associate a critic with a method. This is not a serious restriction, as e.g. a new

compound methodwave2 could be defined with the above method expression, which

would behave like thewave method with a universally associatedlemma speculation

critic.

9.5 Criticals

λClamuses methodicals to compose methods into compound methods,in an analogous

way to the composition of tactics via tacticals [Richardson and Smaill, 2001]. The

advantage of this is that complex proof strategies involving multiple methods may be

explicitly defined, allowing a declarative reading of methods, and making them easier

to write.

Another novel aspect of our proof planning architecture is criticals, which allow

critics to be composed in an analogous way to methodicals. Using criticals, critic

strategies can be built from critics. As well as making complex critics easier to write by

breaking them down into small, conceptually simple critics, it allows critic strategies

(such as the ‘most general preconditions’ strategy mentioned in §9.3) to be explicitly

declared, rather than hard-coded in the planner.

Critic expressions are defined as critics composed via criticals. A critical expres-

sion is eitheratomic, containing no criticals, else it iscompound. Table 9.1 describes
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Critical Type Description

id crit crit Do nothing

orelsecrit crit → crit → crit Apply first or second

thencrit crit → crit → crit Apply first then second

repeat crit crit → crit Iterate at least once

try crit crit → crit Apply or do nothing

cond crit (plan→ bool) → crit First if condition, else second

→ crit → crit

subcrit ad→ crit → crit Apply to subplan at address

somecrit (A→ crit ) → crit Apply for some substitution

Table 9.1: Types and descriptions of criticals. The base types are of critics (crit ), meth-

ods (meth), proof plans (plan), plan node addresses (ad) and the boolean type (bool).

the various criticals available in theλClamcritics planner, and their types.

Following the definition of methodicals [Richardson and Smaill, 2001], we define

a meta-interpreter for criticals by a set of rules, given in Figure 9.3. The notation

C : P 7→ Q is taken here to mean criticC applied toP may returnQ, whereP andQ

are critic inputs and outputs. The rules in Figure 9.3 give aninductive definition of7→.

The order of the rules in the figure indicates the order in which they should be applied.

TheλClamcritics planner uses these rules to evaluate critic expressions.

Most of the criticals have analogs inλClam’s methodical set and are quite straight-

forward. The exceptions aresubcrit , which applies a critic to a specified subplan

of the current partial plan, andsomecrit which provides existential quantification for

variables in the given critic. This allows variables that are quantified withinλClam’s

plan structure to be mentioned in the arguments of critics that are applied to the plan
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id crit : P 7→ P

C1 : P 7→ Q
orelsecrit C1 C2 : P 7→ Q

C2 : P 7→ Q
orelsecrit C1 C2 : P 7→ Q

C1 : P 7→ R C2 : R 7→ Q
thencrit C1 C2 : P 7→ Q

C : P 7→ R repeatcrit C : R 7→ Q
repeat crit C : P 7→ Q

repeat crit C : P 7→ P

C : P 7→ Q
try crit C : P 7→ Q

try crit C : P 7→ P

C1 : P 7→ Q
cond crit (λx.∆) C1 C2 : P 7→ Q

if ∆[P/x] holds

C2 : P 7→ Q
cond crit (λx.∆) C1 C2 : P 7→ Q

if ¬∆[P/x] holds

C : Q 7→ Q′

subcrit α C : P[Q]α 7→ P[Q′]α

C[v/x] : P 7→ Q
somecrit (λx.C) : P 7→ Q

v not inC

Figure 9.3: Rules for interpreting criticals
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plan_goal Goal Method Plan :-
construct_root Goal Method Root,
planner [nil] Root Plan.

planner [] Plan Plan.

planner Agenda Plan FinalPlan :-
Agenda = [Address|_],
expand_node Address Plan ExpandedPlan Critic,
apply_critic Critic Agenda ExpandedPlan NewAgenda NewPla n,
planner NewAgenda NewPlan FinalPlan.

Figure 9.4: The main loop of a depth-first proof planner with critics

belowthe variable’s binder, whilst still permitting these critics to appear in compound

critics which are appliedaboveit3.

9.6 A Critics Planner

In this section we provide a more detailed description of a depth-first planner that

uses the techniques outlined above, in order to more precisely specify the intended be-

haviour. Figure 9.4 shows the main planning loop of the planner as a simpleλProlog

program. The planner is called viaplan goal , which constructs the root node of

the proof plan and initiates the planning loop. The loop applies planning stepsun-

til the agenda is empty, viaplanner . Each planning step consists of two actions:

expand node followed byapply critic .

3In fact, we subsequently extendedλClamwith a similarsome meth methodical as part of building
theDynamissystem (see the next chapter).
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9.6.1 Expand Node

The planner takes the first address on the agenda and finds the corresponding node of

the partial proof plan. The method expression at this node isevaluated to find the next

atomic method, following the rules in [Richardson and Smaill, 2001]. In our planner

this may return a planning instruction instead. If so, the remainder of the method

expression is stored at the current node.

A new plan and critic are computed as follows:

• For a method, the planner attempts to apply the method. If successful, then the

child nodes are added to this node. The critic is taken to be(children A) ,

whereA is a list of the new child node addresses.

• For a(patch_inst M C) , the planner attempts to apply the methodMas above.

But if M fails, the planner stores the failed preconditions in the plan node, and

the critic is taken to beC. The failure ofMon backtracking causesexpand node

to fail.

• For a(crit_inst C) , the critic is taken to beC.

9.6.2 Apply Critic

The critic fromexpand node is a critic expression of the form(children A) , indi-

cating a method has already been applied. If the latter is true then normal depth-first

proof planning continues: the address at the top of the agenda is removed and replaced

with the new child addressesA.

Otherwise the critic expression is used to transform the agenda/partial proof plan,

using the rules given in Figure 9.3. Note that in this case theagenda has not necessarily

been changed by the planning step. Unless the critic explicitly alters the top of the
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agenda, the next planning step will return to the same node. However, the method

expression has been changed, so this step will not necessarily be repeated.

9.7 Development in λClam

The critics planner is implemented inλClam version 2.0. Although the actual im-

plementation was complicated by other considerations (e.g. tracing, alternative search

strategies) its behaviour was essentially the same as described in §9.6.

Subsequent development of theλClam system by a number of other authors has

changed the implementation of the planner, but has not affected the critics functional-

ity. In the next chapter we useλClamversion 4.0. The most significant change is the

move to acontext planner, which replaces an explicitλProlog term representation of

the partial proof plan with an implicit representation using asserted facts.

As a result the critic definitions have no explicit plan input/output slot. Instead of

an input plan slot the preconditions are used to access the plan. The output plan slot

takes the form of an add/delete node list. The critics are described in Chapter 10.

9.8 Summary

This chapter presented a novel proof planning architecturebased on proof critics ex-

tended withcriticals andplanning instructions. The advantages of this architecture

are:

• A critic may be specified as being associated with the failureof multiple meth-

ods or a method in a specific strategic context, using thepatch inst planning

instruction.
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• A critic need not be tied to a method failure, instead being invoked as part of a

strategy’s normal execution, using thecrit methplanning instruction.

• Complex critics and critic strategies can specified in a modular and declarative

manner using criticals.

• By changing the planning agenda a critic can influence the proof search.

Our definition of critics brings them more into line with methods. TheλClam proof

planner was extended with this critics architecure in orderto implement our strategy.



Chapter 10

The Dynamis System

10.1 Introduction

In order to test the inductive theorem proving strategy described in this thesis, we

implemented it as a set of methods and critics in theλClamproof planner (version 4.0)

[Dennis and Brotherston, 2002]. This chapter describes the implementation, which we

have calledDynamis.

Dynamis’s method/critic architecture is based on the three part modular structure

described in Chapter 6:

REFINE -CASE A middle-out strategy for constructing a suitable step case. This is

implemented in themo step case method, described in §10.3.

WELLFOUND -HYPS A strategy for proving there exists a wellfounded relation under

which each inductive hypothesis is less than its conclusion. This is implemented

in thewellfound strat method, described in §10.4.

EXHAUST-CASES A corrective strategy that shows that the induction cases are ex-

haustive. This is implemented in thecase strat basic andcase strat rec

161
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methods, described in §10.5.

In addition, a fourth strategy is used to discharge base cases and post-fertilisation goals.

This is implemented in thewaterfall method, described in §10.6. These strategies

can be employed by a small number of top-level methods that direct the search for a

proof plan of an inductive conjectures, which we describe in§10.2.

This chapter gives theλProlog definitions for allDynamis’s compound methods,

the speculation critic and some of the key atomic methods. Most of the lower-level

atomic methods are omitted, as they are not essential for understanding the overall

operation of the system. More information about theDynamissystem, including the

omitted methods and explanations of theλProlog predicates used in the method con-

ditions, is given in Appendix C.

10.1.1 What’s Not Implemented

Several aspects of our strategy have not been realised in this implementation:

• Planning step cases with multiple induction hypotheses (see Chapter 4).

• Generating induction rules with multiple step cases (see Chapter 6).

• The side condition critic for the wellfoundedness strategy(see Chapter 6).

Also, the rippling and rewriting methods do not perform casesplits. All of these fea-

tures were not implemented due to a lack of time only — we foresee no difficulties in

principle.
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10.2 The Top-Level Strategy

The top-level strategy coordinates the search for a complete plan. It is implemented

via the methoddynamis main , which can be configured to use a variety of submeth-

ods for certain parts of the proof.dynamis main is defined in terms of the methods

schematic induction , construct cases andwellfounded . This section describes

all four methods.

The Dynamis Knowledge Baseis used to store the following global information

about the planning attempt:

• a list of the types of the leading universal quantified variables in the original

conjecture;

• a list of the inductive proof’s base and step cases;

• the wellfounded relation used to justify the induction;

• a list of constraints on this relation and the correspondingconstraint solver.

See the predicatesdkb types etc. in Appendix C for details about accessing the knowl-

edge base.

Method: schematic induction

Theschematic induction method, shown in Figure 10.1, is the key method inDy-

namis’s strategy. It corresponds to the application of the (as yetunknown) induction

rule. The precondition (1) succeeds if the input goalGoal is a sequent with a uni-

versally quantified conclusion. It constructs a schematic step caseStepGoal and the

Dynamisknowledge baseKB. The postconditions (2) and (3) construct respectively a

wellfoundedness goalWellGoal for this step case, and a goalCaseGoal stating that
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Method: (schematic_induction KB)

Goal: Goal

Pre: (schematic_stepcase Goal KB StepGoal) (1)

Post:

(wellfound_goal Goal KB WellGoal, (2)
exhaustive_goal Goal KB CaseGoal) (3)

SubGoal:

(StepGoal ** (WellGoal ** (CaseGoal
** ((maybeCases Goal KB) ** (wfGoal KB)))))

Figure 10.1: schematic induction is the first atomic method applied by Dynamis,

parameterised by the knowledge base KB. Compare with dynamis main (Figure 10.3)

to see how each subgoal is planned.

this step case is an exhaustive case analysis1. Note thatλClam uses** to represent

goal conjunction.

The method also produces a subgoal(maybeCases Goal KB) that will be trans-

formed into any additional proof cases that are found later in the planning attempt, and

a subgoal(wfGoal KB) that represents the satisfiability of the constraints on thewell-

founded relation used to justify the induction. This last meta-level goal is distinctive in

that it will not be mapped onto an object-level goal in any execution of the proof plan.

It plays a purely meta-level rôle in the final stage of planning, when a wellfounded

relation that satisfies the constraints is selected (see §10.2).

If the proof plans were used to produce object-level proofs,the wellfoundedness

1This goal will always fail, with the failed proof used to find the missing cases. See Chapter 5, and
§10.5 below.
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StepGoal

WellGoal

wfGoal

maybeCases

CaseGoal

Figure 10.2: Goal ordering for the schematic induction method (see Figure 10.1).

of ≺ would have to be shown. This could be done by providing a prefabricated proof

that any relation defined using a measure function is wellfounded. However, no proof

search would be required for this either on the object or meta-level, so there is no need

to associate this withwfGoal or the method which plans it. It could be associated e.g.

with theschematic induction method.

The ordering ofschematic induction ’s subgoals is important, and assumes the

use of a depth-first planner, or at least one that respects thegoal order. This is the

result of dependencies between the subgoals that require certain branches to be com-

pleted before others are planned, else the final plan will notrepresent a valid inductive

proof. For example, if thecaseGoal is planned before theStepGoal it will be trivially

discharged, as no meta-variables have been instantiated. Any wellfounded step case

found by planningStepGoal will then be considered case exhaustive, and the strategy

will terminate with a only one step case and no base cases. Violations of other goal

dependancies cause similar problems.

The order requirements are shown in Figure 10.2.DynamisusesλClam’s depth-
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Method: (dynamis main StepStrat WellStrat CaseStrat BaseStrat)

(complete_meth
(then_meths (schematic_induction KB)

(pair_meth (then_meth StepStrat BaseStrat)
(pair_meth WellStrat
(pair_meth CaseStrat
(pair_meth (then_meth construct_cases BaseStrat)

(wellfounded Relation)))))))

Figure 10.3: dynamis main is Dynamis’s main top-level method. It is parameterised by

four methods.

first or iterative-deepening planner to ensure this order inthe method definition is re-

spected. A more sophisticated approach could represent this information in a declara-

tive manner, but this cannot be done withinλClam’s planning framework.

The goal order necessary for soundness does not specify whenWellGoal is planned

relative to CaseGoal and maybeCases . As discussed in Chapter 6, it is better to

plan WellGoal as soon as possible, in order to avoid wasting time on step cases that

cannot be shown to be wellfounded. Hence,WellGoal is planned immediately after

StepGoal .

Method: dynamis main

The main top-level method forDynamisis dynamis main , shown in Figure 10.3. It

first appliesschematic induction , followed by an appropriate method for each of

the resulting subgoals — compare Figure 10.3 and Figure 10.1to see the mapping

between goals and methods.
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Method: dynamis crit

(dynamis_main (mo_step_case spec_critic_ripple)
wellfound_strat
case_strat
(waterfall dynamis_crit))

'

&

$

%

Method: dynamis crit once

(dynamis_main (mo_step_case spec_critic_ripple)
wellfound_strat
case_strat
(waterfall (ind_strat normal_ind)))

'
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%

Method: (dynamis lim N)

(dynamis_main (mo_step_case (n_spec_ripples N))
wellfound_strat
case_strat
(waterfall (dynamis_lim N)))

'
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%

Method: (dynamis lim once N)

(dynamis_main (mo_step_case (n_spec_ripples N))
wellfound_strat
case_strat
(waterfall (ind_strat normal_ind)))

Figure 10.4: Some configurations of the the top-level method dynamis main .
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In our implementationdynamis main is actually a methodical, parameterised by

four methods. Hence it acts as a template for a range of top-level methods. In order,

these parameters are:

• StepStrat , a method for the initial schematic step case, e.g.mo stepcase (see

§10.3).

• WellStrat , a method for the wellfoundedness proof, e.g.wellfound strat

(see §10.4).

• CaseStrat , a method for the exhaustive cases proof, e.g.case strat (see §10.5).

• BaseStrat , a method used to plan base cases and post-fertilisation subgoals e.g.

(waterfall IndStrat) (see §10.6).

Some possible configurations ofdynamis main are shown in Figure 10.4. For in-

stance,dynamis crit uses the speculation critic in the step case, and a rewriting-

generalisation-induction waterfall to discharge base cases, where it may be called re-

cursively to plan nested inductions. Contrast this withdynamis lim once which uses

a fixed number of speculation steps in the step case, and uses the standardλClaminduc-

tion methods to plan nested inductions. AllowingDynamisto use a variety of methods

gives us a straightforward way of comparing various combinations of strategies.

Method: construct cases

The (maybeCases Goal KB) goal produced byschematic induction is passed to

the construct cases method, shown in Figure 10.5. The latter constructs the ad-

ditional proof cases that the exhaustive cases strategy hasidentified as missing and

already added to the knowledge base.
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Method: construct_cases

Goal: (maybeCases Goal KB)

Pre: true

Post:

(dkb_cases KB [_|Cases],
list_to_goal Cases (new_case Goal) NewGoals)

Subgoal: NewGoals

Figure 10.5: The construct cases method generates subgoals NewGoals corre-

sponding to the proof cases Cases that have been added to the knowledge base during

the case synthesis strategy.

The preconditions are trivial, so the method always applies. The postconditions re-

trieve the added casesCases from the knowledge baseKB, ignoring the initial step case

that has already been proven. Each case is mapped onto a new subgoal, constructed by

restricting the original goalGoal to that case.NewGoals is a conjunction of these new

proof cases.

Method: wellfounded

The last step during a successful planning attempt is alwaysthe application of the

wellfounded method to the final subgoal produced byschematic induction . The

wellfounded method is shown in Figure 10.6. It chooses a wellfounded relation which

satisfies the constraints built up during during the proof. The preconditions retrieve

the relation, constraints and constraint solver from the knowledge base. Applying the
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Method: (wellfounded Relation)

Goal: (wfGoal KB)

Pre:

(dkb_solver KB Solver,
dkb_relation KB Relation,
dkb_constraints KB Constraints,
Solver Relation Constraints)

Post: true

Subgoal: trueGoal

Figure 10.6: The wellfounded method applies a constraint solver to the constraints on

the wellfounded relation and the meta-variable representing this relation, instantiating

the latter.

solver to the other data instantiates the relation.

As mentioned above, this is a purely meta-level step which would not have any

underlying object-level proof if the proof plan were executed2. However, it does in-

stantiate the meta-variable representing the wellfoundedrelation in the plan, which is

required to give a executable plan.

10.3 The Step Case Strategy

Recall from Figure 10.1 that theschematic induction method sets up a schematic

step case goal using the precondition

(schematic_stepcase Goal KB StepGoal)

2A general object-level proof of wellfoundedness can be given, and need not be associated with this
method.
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Method: (mo_step_case Ripple)

(then_meth embed_hypothesis
(then_meth Ripple
(then_meth mo_fertilise

(try_meth (repeat_meth redundant)))))

Figure 10.7: The mo step case method.

whereGoal is the original universally quantified goal. This instantiatesStepGoal to

a caseSchema subgoal where the universal variables are replaced by meta-variables.

This is best illustrated by example: ifGoal has a single universal quantifier, i.e. it is if

the form:

(seqGoal (H >>> (app forall [T, (abs F)])))

thenStepGoal is of the form

(allGoal T x\ (caseSchema (C x) H

(preRippleHyps (F x) [(F (A x))]) (F (B x))))

ThecaseSchema contains a meta-variable condition on the step case(C x) , the step

case skeleton(F x) , a single induction hypothesis(F (A x)) and an step case con-

clusion (F (B x)) . Note that the induction terms in hypothesis and conclusionare

represented by meta-variablesA andB respectively. The types of the induction terms

and a representation of this proof case are entered into the knowledge baseKB.

The method works in a similar way for goals with more than one universal quanti-

fier.
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Method: mo step case

The strategy for planning a proof of the schematic step case goal is implemented by

the compoundmo step case method, shown in Figure 10.7. Likedynamis main , it

is a methodical, taking a rippling method as an argument. Themethod follows the

standard step case proof plan outline: embed the hypothesesin the conclusion, ripple,

then fertilise. Redundant universal quantifiers are removedpost-fertilisation.

Suitable choices for theRipple method would ben spec ripples , which allows a

fixed number of speculative ripple steps, orspec critic ripple , which uses a critic

to control speculation. Both are described in §10.3.2.

10.3.1 Embeddings

Embeddings inDynamisare implemented in a slightly different way from the standard

λClam methods. InλClam, an embedding is a tree which has the same structure as

the skeleton term syntax tree, and has, at each node, a term address that indicates

where this node is mapped to on the target term. Wave fronts are implicit in this

representation: they correspond to the parts of the target term syntax tree which are

not referenced by address in the embedding.

Because our strategy involves a lot of explicit computation with wave fronts, e.g.

neutralisation, we have modified embeddings to explicitly represent wave fronts with

a constructor. This saves a great deal of effort by avoiding the repeated reconstruction

of this information.

Wave fronts may be of varying thickness in our representation, so for example a

wave front of thicknessn+mwill be equivalent to two wave fronts of thicknessn and

m. Hence, wave fronts may be merged and split. We keep wave fronts in maximally

merged form.
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Method: (n_spec_ripples N)

(then_meth (cond_meth isSideCond solve_sidecond
(speculative_ripple _ _ _))

(cond_meth (g\ (N > 1, M is N - 1))
(n_spec_ripples M)
definite_rippling))

Figure 10.8: The n spec ripples method.

Explicitly representing wave fronts increases the number of possible embeddings,

as wave fronts may now be individually directed. In order to reduce the number of

possible embeddings, we apply the following constraints:

• Blocks of wave fronts must all have the same direction.

• Outwards wave fronts may not appear below inwards wave fronts.

• Variables may only be embedded in or into by terms of the same type. This

constraint is not enforced in the version ofλClamused, leading to the possibility

of spurious embeddings.

Method: embed hypothesis

The embed hypothesis method embeds the step case skeleton into the schema’s in-

duction hypothesis and conclusion. The embeddings and their weights are stored in

the step case goal. This method is described in greater detail in §C.2.

10.3.2 Speculative Rippling

Speculative rippling decides the form of the step case by instantiating the step case

meta-variables. We have two alternative methods for doing this: a strategy with a fixed
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Method: spec_critic_ripple

(then_meth (speculative_ripple _ _)
(repeat_meth

(cond_meth isSideCond solve_sidecond
(some_meth2 rule\ ad\

(patch_meth (definite_ripple rule ad)
speculation_critic)))))

Figure 10.9: The spec critic ripple method.

number of speculative steps (n spec ripples ), and a more flexible critic-based strat-

egy (spec critic ripple ). They are shown in Figures 10.8 and 10.9 respectively.

Then spec ripples method, takes an integer argumentN and applies the atomic

methodspeculative ripple N times before applyingdefinite rippling . Side

conditions are passed tosolve sidecond (see §10.3.4).

In contrast, thespec critic ripple method appliesspeculative ripple once,

then repeatedly applies definiteripple. If this fails, the speculation critic is applied.

Method: speculative ripple

The speculative ripple method, shown in Figure 10.10, performs a speculative

ripple step, i.e. one where meta-variables are instantiated. As it is such a key atomic

method, we now describe the preconditions in greater detail:

1. The goal’s meta-variablesVars are identified.

2. The conclusionConc is rewritten toNewCwith a wave ruleRule and side condi-

tion Cond. The rewrite relationrewrite unif is used, which allows the meta-

variables inConc to be instantiated.
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Method: (speculative_ripple Rule Ad)

Goal: (caseSchema Case Hs (rippleHyps [IndHyp]) Conc)

Pre:

(IndHyp = (annHyp Hyp Skel EH1 _ _ _ _),
meta_variables Conc [] ConcVars,
meta_variables Hyp ConcVars Vars, (1)
wave_rule_list Rules,
rewrite_inner (rewr_list Rules rewr_unif) Rule _ Conc NewC Cond Ad, (2)
embedding Skel EC1 NewC, (3)
reverse Ad At,
speculative_rule Rule Flag, (4)
cancel_context Flag At Skel NewSkel Hyp EH1 EH2 NewC EC1 EC2, (5)
reembed NewSkel bool Hyp bool EH2 EH3,
not_all_meta_vars Vars) (6)

Post:

(tidy_hyp_context EH3 EH4 HW,
tidy_conc_context EC2 outward EC3 Out In,
NewIndHyp = (annHyp Hyp NewSkel EH4 HW EC3 Out In),
Main = (caseSchema Case Hs (rippleHyps [NewIndHyp]) NewC),
condition_goal Cond Case Hs

(c\ (caseSchema Case Hs sideCond c)) Main SubGoal)

Subgoal: SubGoal

Figure 10.10: The speculative ripple method.
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Critic: speculation_critic

Agenda: (active_agenda [PlanAd|Agenda])

Pre:

(get_goal PlanAd Goal,
not (fertilisable Goal),
Goal = (caseSchema Case Hyps (rippleHyps IndHyps) Conc),
partial_lhs Rule LHS PartLHS Dir,
rewrite_so PartLHS LHS Dir Conc ReqConc TermAd,
once (embedding Conc E1 ReqConc))

Post:

(tidy_conc_context E1 inward E2 _ NewIn,
get_continuation PlanAd Continue,
InGoal = (caseSchema Case Hyps (blockedGoal Conc E2 NewIn) R eqConc),
InMeth = (then_meth (ripple_in_and_speculate Ripples) Cu rrentPlan),
PatchMeth = (ripple_patch Ripples Rule TermAd Continue))

Add/Delete:

[(add_node [1|PlanAd] (and_node InGoal [1|PlanAd] InMeth _ _ _)),
(add_node [2|PlanAd] (and_node Goal [2|PlanAd] PatchMeth _ _ _))]

New Agenda: (active_agenda [[1|PlanAd]|[[2|PlanAd]|Agenda]])

Figure 10.11: The speculation critic critic.
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3. The rewrite step is checked to be skeleton preserving by reembedding the skele-

ton Skel into NewC.

4. If Rule is classified as non-constructor , thenFlag is switched on, which indi-

cates neutralisation may instantiate meta-variables inHyp.

5. Zero or more corresponding wave fronts in hypothesis and conclusion are can-

celled out via neutralisation (cancel context ). New embeddings,EH3 and

EC2, are found for hypothesis and conclusion, along with an expanded skele-

ton,NewSkel .

6. A check that at least one meta-variable inVars has been instantiated.

The postconditions simply construct the new subgoal, adding an optional subgoal for

the rewrite side conditionCond if it is trivially true or false.

Critic: speculation critic

Figure 10.11 shows the criticspeculation critic . Its preconditions first check that

the failed goal is not fertilisable. They then find a partially matching wave ruleRule

that would apply if the conclusionConc were of the formReqConc. The postconditions

set up two goals: the firstInGoal which aims to rippleReqConc inwards to match

Conc, via the methodripple in and speculate (see Figure 10.12); the secondGoal

tries to continue the ripple proof with the methodripple patch (see Figure 10.13),

which will apply, in reverse, the ripple stepsRipples used to solveInGoal .

10.3.3 Definite Rippling

Figure 10.14 shows thedefinite rippling method, which implements definite (nor-

mal) rippling, where no meta-variable instantiation takesplace. It repeatedly applies
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Method: (ripple_in_and_speculate RipplePlan)

(orelse_meth
(speculate_wavefronts Ripples RipplePlan)
(then_meth

(repeat_meth
(some_meth2 rule\ ad\ (forwards_ripple rule ad Ripple)))

(speculate_wavefronts Ripples RipplePlan)))

Figure 10.12: The ripple in and speculate method.
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Method: (ripple_patch Ripples Rule TermAd Continue)

(then_meth redo_embeddings
(then_meth Ripples
(then_meth (definite_ripple Rule TermAd)

Continue)))

Figure 10.13: The ripple patch method.
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Method: definite_rippling

(repeat_meth
(cond_meth isSideCond solve_sidecond

(orelse_meth meta_ripple
(some_meth2 definite_ripple))))

Figure 10.14: The definite rippling method.
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definite ripple andmeta ripple . Side conditions are passed tosolve sidecond

(see §10.3.4).

Method: definite ripple

Thedefinite ripple method peforms a single definite ripple step. This can be either

a wave measure decreasing ripple, or a creational ripple that remove hypothesis wave

fronts. In both cases, the conclusion is rewritten with the relationrewr match , which

does not instantiate metavariables. This method is described in more detail in §C.2,

Method: meta ripple

Themeta ripple method replaces the conclusion embedding with one that is smaller

under the wave measure, without rewriting the conclusion. See §C.2 for the method

definition.

10.3.4 Side Conditions

Side conditions are defined as goals of the form

(caseSchema _ _ sideCond _)

and are sometimes generated by the atomic ripple methods. The compound method

solve sidecond is used to solve these goals, by repeated application of the atomic

methodsimplify sidecond (see Appendix C for both methods). This simplifies or

discharges a side condition goal in one of a the following ways:

• Discharge a trivially true goal.

• Discharge using the step case condition.
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Method: mo_fertilise

(orelse_meth strong_fertilise
(then_meth (orelse_meth (weak_fertilise _)

strong_fertilise_prop)
replace_metavariables))

Figure 10.15: The mo fertilise method.

• Discharge using a hypothesis.

• Simplify using propositional rules.

• Simplify using symbolic evaluation.

• Discharge by assuming it is true. This partially instantiates the meta-variable

part of the step case condition.

No search is allowed over these options to avoid a side condition being repeatedly

solved during backtracking and causing unnecessary search. If a cut methodical had

been available inλClam it would have been possible to have a more modular imple-

mentation that made use of generic rewriting methods and still avoided backtracking,

rather than the extremely special-purpose method used here.

10.3.5 Fertilisation

Themo fertilise method, shown in Figure 10.15, applies either a) strong fertilisation

or b) weak fertilisation or strong fertilsation which leaves a residue goal. The latter is

followed byreplace metavariables , which transforms the schematic step case goal

into a sequent goal without meta-variables.
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Method: wellfound_strat

(then_meth (construct_wf_goals Consts)
(orelse_meth estimation_strat

(some_meth ignore_position)))

Figure 10.16: The wellfound strat method.

These fertilsiation submethods are reimplementations of standard inductive meth-

ods, and are described in full in §C.2. Briefly,strong fertilise unifies the hypothe-

sis and conclusion, whereas (strong fertilise prop ) uses the induction hypothesis

to rewrite an arbitary subproposition of the conclusion. Weak fertilisation rewrites one

side of an equality or iff with an induction hypothesis (weak fertilise ).

10.4 The Wellfoundedness Strategy

Theschematic induction method sets up a wellfoundedness goalWellGoal for the

step case, using the query(wellfound goal Goal KB WellGoal) , whereGoal is the

original universally quantified goal andKB is the knowledge base. For aGoal of the

form

(seqGoal (Hyps >>> Conc))

the wellfoundedness goal is of the form

(stepReduces Hyps KB)

This is simply a dummy meta-level goal which acts as a place holder for the wellfound-

edness goals, as we do not know the form they should take untilafter the step case is
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complete. The case may involve an arbitary number of induction hypotheses.

The actual explicit construction of the reduction goals is delayed until the applica-

tion of thewellfound strat method, shown in Figure 10.16. This first applies the

construct wf goals method, which builds the wellfoundedness goals from informa-

tion stored in the knowledge base, i.e. the induction cases created so far, the types of

the potential induction positions and the constraints on the wellfounded relation.

The predicatewellfound goals (see Appendix C) is used to turn each induction

case into a set of wellfoundedness goals. For each case and for each induction position,

a goal is constructed which states that this position is reduced under some measure.

Therefore, taken together, the goals for a given case state thateveryinduction position

reduces under some measure. This is clearly an unnecessarily strong requirement,

so we allow some of these goals to be ignored,provided that the constraints on the

wellfounded relation remain satisfiable. A goal can be ignored if it cannot be planned

usingestimation strat (see below) — instead theignore position method (see

§C.3) is applied to end the plan branch. The method a) adds anignore constraint

to the knowledge base, indicating that the induction position must be ignored and b)

checks that constraints remain satisfiable. This prevents the system ignoring all the

induction positions, and so producing a plan that fails to validate the induction.

10.4.1 Estimation

The estimation strategy discharges wellfoundedness goals, and is implemented via

the estimation strat method, shown in Figure 10.17. It uses four submethods:

begin estimation , lower estimate , upper estimate andtrivial estimate (see

§C.3). These implement Walther’s estimation technique, extended with upper estima-

tion, in a straightforward manner (see §6.5).



Chapter 10. The Dynamis System 183

'

&

$

%

Method: estimation_strat

(then_meths (begin_estimation N)
(pair_meth

(then_meth (repeat_meth (orelse_meth lower_estimate
upper_estimate))

trivial_estimate)
(then_meth abstract_metavars

rewrite)))

Figure 10.17: The estimation strat method.

Submethodbegin estimation converts the initial meta-levelredGoal to two sub-

goals: anestGoal , representating the estimation goal, and a sequent, which states that

the difference equivalentDiff generated by the estimation proof plan is true. Note

that begin estimation also adds to the knowledge base constraints on the measure

for the corresponding induction position.

Submethodlower estimate andupper estimate implement the lower and up-

per estimation rules respectively. Finally,trivial estimate terminates trivial esti-

mation plan branches.

These definitions of these submethods are given in §C.3.

10.5 The Case Synthesis Strategy

The case synthesis strategy described in Chapter 5 is implemented by the compound

methodicalcase strat (see Figure 10.18). It relies on the following submethods:

• set conditions instantiates totrueP any remaining meta-variable part of the

side-conditions of the known step case, i.e. no more conditions can be imposed
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Method: case_strat

(then_meth set_conditions
(then_meth (case_equiv _)
(then_meth (case_induction (tuple_split _))

(repeat_meth
(then_meth (some_meth case_equiv)

(orelse_meth trivial_case
(orelse_meth (some_meth missing_case)
(orelse_meth (some_meth exists_casesplit)

case_indstrat))))))))

Figure 10.18: The case strat method.

on the step case.

• thecase equiv method simplifies the case synthesis goal.

• the trivial case method, which identifies trivial plan branches.

• themissing case method, which identifies failed plan branches, to be patched

by adding the missing case(s).

• an existential casesplit (see 5.4.2) methodexists casesplit .

• thecase indstrat tries to solve the case synthesis goal with induction or a case

split.

All these methods are given in §C.4.

Figure 10.19 shows thecase indstrat method, which performs induction and

case splits in the case synthesis strategy. After applying an induction or case split

with thecase induction method, the method tries rippling and fertilisation, either of
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Method: case_indstrat

(then_meth (some_meth case_induction)
(then_meth (try_meth (some_meth exists_casesplit))
(then_meth (try_meth (then_meth (repeat_meth (some_meth case_ripple))

(repeat_meth case_fertilisation)))
remove_case_hyps)))

Figure 10.19: The case indstrat method.

which may fail without causing the method to fail. These submethods are defined in

§C.4.

The submethodscase ripple andcase fertilisation are reimplementations

of standard inductive methods in the context of the case synthesis proof. It should be

possible to use these here instead of special-purpose methods.

10.6 The Base Case Strategy

For base case and post-fertilisation subgoals, a rewriting/generalisation/induction wa-

terfall is used [Boyer and Moore, 1979]. It is implemented in thewaterfall method,

presented in Figure 10.20. The submethods used in this definition can be found in

§C.5.

Rewriting and generalisation are performed by therewrite andgeneralise meth-

ods, whereas the induction method is passed towaterfall as a parameter, allowing

a variety of inductive strategies to be used. Note thatall e nf is used to reintroduce

stripped universal quantifiers for generalisation and induction.
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Method: (waterfall IndStrat)

(then_meth (try_meth rewrite)
(then_meth (normalise all_e_nf)
(then_meth (try_meth (repeat_meth generalise))
(then_meth (cond_meth univ_quantified Induction fail_me th)

(waterfall IndStrat)))))

Figure 10.20: The waterfall method.

10.7 Summary

In this chapter we detailed the implementation of our inductive proof strategy as a set

of λClam methods and critics. This makes concrete the theoretical ideas outlined in

previous chapters, and allows us to test these theories, as described in the next two

chapters.



Chapter 11

Experimental Evaluation

11.1 Introduction

In this chapter we report on the evaluation of our induction strategy by experimental

testing of theDynamissystem. The test set was made up of problems that could not be

solved using recursion analysis, either gathered from or inspired by the literature. The

experiments were intended both to test the strategy and compare it with lazy induction

[Protzen, 1995], the previous state-of-the-art in induction selection.

The current implementation of the strategy inDynamiscan construct only induction

rules with single step cases containing single induction hypotheses. This limited the

scope of the evaluation to theorems that can be solved with such induction rules.

The hypotheses under consideration were:

1. The induction strategy works as described, automatically generating induction

rules to plan proofs for a range of theorems which recursion/ripple analysis can-

not solve, or for which it selects a sub-optimal rule.

187
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2. There are theorems the strategy proves using non-destructor1 style induction that

cannot be proved by destructor-only lazy induction.

3. All theorems proved by Protzen’s lazy induction can also be proved by the strat-

egy.

Unfortunately, direct comparison with a lazy induction system was not possible be-

cause the original implementation of the technique in INKA was not available, and

the published description [Protzen, 1995] was not detailedenough for a faithful re-

construction. Consequently, evaluation of hypothesis (3) was limited to a comparison

based on the results of four theorems published in [Protzen,1995].

The rest of the chapter is structured as follows: §11.2 describes the methodology

adopted for these experiments. In §11.3 we report on the results, and in §11.4 discuss

to what extent they support the hypotheses presented above.

11.2 Methodology

A collection of 24 theorems was compiled, selected on the basis that they are not

solvable using recursion/ripple analysis given the lemmasprovided. The set included

eight theorems taken from the literature. These were used asinspiration in designing

the rest of the set. Their unsolvability by using recursion/ripple analysis was checked

by hand. Although this could have been checked automatically — for example, using

λClam— we have found that, in general, simulation of a technique byhand is more

likely to produce a proof than an actual implementation, because it is not subject to

the particular idiosyncrasies of the system. It is more relevant to this experiment that a

1i.e. induction rules which are destructor style, or neitherconstructor nor destructor, i.e. they have
term structure in both induction hypothesis and conclusion(see §3.2).
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Theorem Statement Source

D1 hal f(s(x)+y) ≤ x+y [Protzen, 1995]

D2 odd(x+y) ↔¬odd(s(y+x)) [Protzen, 1995]

D3 odd(x+y) ↔ odd(y+x) Variant D2

D4 sum(l ,x) = sum(l ,0)+x Variant T15

D5 last(qsort(smaller(n, l))) ≤ n [Protzen, 1995]

Table 11.1: The development theorem set.

recursion/ripple analysis cannot prove a theoremin principle, rather than in the context

of a single system.

The theorems fall into four main groups:

Arithmetic (D1 to D3, T1 to T8) — Theorems about Peano arithmetic.

Lists (D4, D5, T9 to T14) — Theorems about list length and order.

Folding (T15 to T17) — Higher order theorems about list folding functions.

Gilbreath Card Trick (T18, T19) — Two theorems about lists over thered/black

datatype [Huet, 1991].

We use the following naming system: D or T indicates a development or test theorem

(see below). Each of these sets of theorems are numbered (e.g. D1). Finally, each the

theorem identifier is followed by a C or a D to indicate whetherconstructor style or

destructor style function definitions were used (e.g. D1C).

Three of the theorems — T14, T18 and T19 — required proofs withmultiple step

cases. However, we included them in our evaluation to see ifDynamiscould construct

the initial step case.
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Theorem Statement Source

T1 x×y = y×x Original

withoutU ×s(V) = (U ×V)+U

T2 hal f(s(x)) ≤ x Original

T3 hal f(n+s(m)) ≤ n+m Variant D1

T4 hal f(n+m) ≤ m+n Variant D1

T5 hal f(quot(n,m)) = quot(hal f(n),m) [Protzen, 1995]

T6 even(x+y)∧even(y+z) → even(x+z) Original

T7 x 6= 0→ (odd(x+y) ↔¬odd(y+ p(x))) Variant D2

T8 y 6= 0→ (odd(x+y) ↔¬odd(p(y)+x)) Variant D2

T9 rotate(len(l), l <> k) = (k <> l) [Ireland and Bundy, 1996]

T10 hal f(len(l)) ≤ hal f(len(l <> m)) Original

T11 len(oddelems(l <> m) ≤ len(m<> l) Original

T12 len(evenelems(l <> m)) ≤ len(m<> l) Original

T13 len(evenelems(l <> x :: m)) ≤ len(l <> m) Original

T14 perm(x,y) = perm(y,x) [Protzen, 1995]

T15 x◦ id = x ∧ x◦ (y◦z) = (x◦y)◦z

→ foldleft tr(◦,x, l) = (x◦ foldleft tr(◦, id, l)) [Paulson, 1991]

T16 foldleft tr(◦,x, l) = foldleft(◦,x, rev(l)) Original

T17 foldright tr(◦,x, l) = foldright(◦,x, rev(l)) Original

T18 shu f f le(x,y,z)∧alter(x <> y)∧even(len(x <> y)) [Huet, 1991]

∧head(x) 6= head(y) → paired(z)

T19 shu f f le(x,y,z)∧alter(x <> y)∧even(len(x <> y)) [Huet, 1991]

∧head(x) = head(y) → paired(tail(z) <> head(z) :: nil)

Table 11.2: The test theorem set.
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We divided the collection into a small development set and a larger test set. The

first set was used to improve the performance ofDynamisduring its development,

and is shown in Table 11.1. The development set also includeda number of theorems

which could be solved by recursion analysis, e.g. the associativity and commmutativity

of plus, which we omit here. The system was developed in orderto improve the per-

formance on all these problems. For the main test phase, the development ofDynamis

was halted. The system was then run for the first time on the test theorems, shown

in Table 11.2. This two-phase approach was chosen to avoid the development process

‘tuning’ the system to these particular examples.

TheDynamissystem was compiled and run using the TeyjusλProlog version 1.0

(beta 33-MRG)2. All the timings are from representative runs on a Dell Optiplex

GX240 PC with a 1.8GHz Pentium 4 processor running RedHat Linux 8.0.

11.2.1 Configuring Dynamis

In this section we describe howDynamiswas configured for the experiments.

Both development and test theorems were tried with both constructor and destruc-

tor style function definitions, each in separate test runs. For each theorem, the system

was run with a variety of lemma configurations, and, if successful, a minimal con-

figuration was determined. If unsuccessful, we tried to determine the lemmas which

enabled the system to make the most progress. For constructor (destructor) style defi-

nitions we used lemmas that gave a constructor (destructor)style induction.

Some argument bounded lemmas (see §6.5.2) and rewrites rules related to datatypes

were made available to the system. The latter group fell intofour categories:

2Available from the Mathematical Reasoning Group, University of Edinburgh,
http://dream.dai.ed.ac.uk/
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Destructor definitions e.g.p(s(X)) = X

Equality axioms e.g.s(X) = s(Y) ↔ X = Y

Inequality axioms e.g.s(X) 6= 0

Exhaustive casesplitse.g.∀n:nat.((n = 0) ∨ ∃x : nat.(n = s(x)))

Definitions and lemmas may be loaded intoλClamas rewriting and/or wave rules.

Each rule was classified by hand as being suitable for generalrewriting and/or rip-

pling. A rule was classified for use with general rewriting ifit maintained the termi-

nation of the rule set. For example, recursive cases of destructor style definitions were

not accepted. A rule was classified as a wave-rule if it could be annotated as such,

with the additional constraint that definitional rules for afunction f had the skele-

ton f (X1, . . . ,Xn). The order of the rewrite and wave rules was not specified exactly,

although definitions were placed before lemmas and ‘simpler’ rules came first.

For constructor style problems the default strategy wasdynamis crit (see §10.2),

which uses the speculation critic. If this failed, we attempted to plan the theorem with

this strategy modified in one of the following ways:

• Use a fixed number of speculative steps instead of the speculation critic. Top-

level methods(dynamis lim 1) and(dynamis lim 2) use one and two steps

respectively (see Chapter 10).

• Use the standardλClaminduction methods for nested inductions. This is achieved

using the top-level methodsdynamis crit once , (dynamis lim once 1) and

(dynamis lim once 2) (see Chapter 10).

Using these alternative strategies allowed us to diagnose problems with the default

strategy — for example, we can test whether the speculation critic was the cause of
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particular failure by rerunning the test with a fixed speculation strategy.

For destructor style problems, the strategydynamis lim1 was used by default, as

the speculation critic was designed for constructor style induction only. If the single

step strategy failed, the double stepdynamis lim2 was tried — this was also consid-

ered as a default approach, simulating the iterative increase of the bound on the number

of speculation steps.

Overall, there were three ways the configuration could be modified during the ex-

periment, if the initial default settings failed:

• Adding and removing lemmas.

• Forcing a lemma to be tried before the definitions, using theDynamisclause

needs priority/5 .

• Modifying the default strategy in one of the predetermined ways outlined above.

In the results below we describe the configurations used for each theorem.

11.3 Results

The results of the evaluation are summarised in Table 11.3. Each theorem has results

obtained with constructor and destructor style definitions, and we indicate this with a

C or D after the theorem name, e.g. theorem T9 is considered tobe two theorems T9C

and T9D.

The full results are shown in Tables 11.4 to 11.6. Table 11.4 gives the results for the

development theorems. Table 11.5 and Table 11.6 show the results for the constructor

and destructor style test theorems respectively. The lemmas used in the evaluation are

given in Table 11.7 and Table 11.8.
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Set Style # Theorems # Planned # With Default

Development Both 10 8 4

Cons. 5 4 3

Dest. 5 4 1

Test Both 38 27 19

Cons. 19 14 9

Dest. 19 13 10

Overall Both 48 35 23

Cons. 24 18 12

Dest. 24 17 11

Table 11.3: Results summary.

Tables 11.4 to 11.6 show whether a plan was found for each theorem, and if so

the time taken, the number of speculative steps and the minimal set of lemmas used.

The constructor style default strategy used the speculation critic, while the destructor

style default was the fixed speculation limit strategy. Eachtable also indicates if an

alternative to the default strategy was needed. Alternative strategies involved one or

more of the following variations:

Lemma One lemma (marked *) is considered before definitions duringrewriting.

Nest Nested inductions are handled by the standardλClam induction strategy.

Limit For constructor style examples, a fixed speculation strategy was used instead of

the critic.

For destructor style (DS) theorems, additional lemmas wererequired to the ones

shown in the results tables, in the form of constructor style(CS) definitions. For exam-
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Theorem Plan Time (sec) Alt. Strategy Spec. Lemmas

D1C Yes 4 — 2 L2, L3, L10

D1D Yes 15 — 2 L2, L3, L4, L8, L9, L10

D2C Yes 23 — 2 L2, L3

D2D Yes 22 Nest 2 L2, L3, L4

D3C Yes 4 — 2 L2, L3

D3D Yes 14 Nest 2 L2, L3, L4

D4C Yes 35 Lemma 1 L15a*, L18

D4D Yes 58 Lemma 1 L2, L4, L15b*, L18

D5C No — — — L21, L22

D5D No — — — L21, L22

Table 11.4: Development results. 8 of 10 theorems were planned, 4 with the default

strategy. * = lemma considered first by rewriting.

ple, if we define the functions in theorem T4 as DS, the CS version of the definitions

of hal f and≤ are still required to ripple out wavefronts ‘generated’ by the definition

of +. We do not include these particular kind of CS lemmas in the reported results,

because, in theory, all the ones used here could be automatically generated from the

DS definitions by replacing type destructors with type constructors.

11.4 Analysis

In this section we assess to what extent the test set results support or refute our hy-

potheses. Recall that these were:

1. The induction strategy works as described, automatically generating induction
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Theorem Plan Time (sec) Alt. Strategy Spec. Lemmas

T1C No — — — L5, L6a*, L7a

T2C Yes 1 — 2 L8

T3C Yes 10 — 2 L2, L3, L4

T4C Yes 10 — 2 L2, L3, L4

T5C No — — — L2, L3, L11, L13, L14

T6C Yes 55 — 2

T7C Yes 26 Lemma/Nest 2 L1, L2, L3

T8C Yes 26 Lemma/Nest 2 L2, L3

T9C Yes 7 — 1 L17

T10C Yes 7 — 2

T11C Yes 21 — 2 L16, L19, L23

T12C Yes 23 — 2 L8, L16, L19, L24

T13C Yes 30 — 2 L16, L24

T14C No — — —

T15C Yes 6 Lemma 1 L28*

T16C Yes 4 Limit 1 L25, L28, L31

T17C Yes 4 Limit 1 L25, L27, L31

T18C No — — —

T19C No — — —

Table 11.5: Constructor style test results. 14 of 19 theorems were planned, 9 with the

default strategy. * = lemma considered first by rewriting.
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Theorem Plan Time (sec) Alt. Strategy Spec. Lemmas

T1D No — — — L5, L6b*, L7b

T2D No — — —

T3D Yes 15 — 2 L2, L3, L4, L9, L10

T4D Yes 16 — 2 L2, L3, L4, L9, L10

T5D No — — — L2, L3, L12, L13, L14

T6D Yes 159 — 2

T7D Yes 41 Nest 2 L2, L3, L4

T8D Yes 40 Nest 2 L2, L3, L4

T9D Yes 10 — 1 L17, L32

T10D Yes 15 — 2

T11D Yes 114 — 2 L16, L20, L23

T12D Yes 113 — 2 L8, L16, L20, L24

T13D Yes 143 — 2 L16, L24

T14D No — — —

T15D Yes 4 Lemma 1 L30*

T16D Yes 5 — 1 L26, L30, L31

T17D Yes 5 — 1 L26, L29, L31

T18D No — — —

T19D No — — —

Table 11.6: Destructor style test results. 13 of 19 theorems were planned, 10 with the

default strategy. * = lemma considered first by rewriting.
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Lemma Statement

L1 x 6= 0→ p(s(x)) = s(p(x))

L2 x+0 = 0

L3 x+s(y) = s(x+y)

L4 y 6= 0→ x+y = s(x+ p(y))

L5 u = x∧v = y→ u+v = x+y

L6a x× (y+z) = (x×y)+(x×z)

L6b x×y = ((x−z)×y)+(y×z)

L7a (x+z)×y = (x×y)+(y×z)

L7b x×y = (x× (y−z))+(x×z)

L8 x≤ y→ x≤ s(y)

L9 hal f(x) ≤ x

L10 hal f(s(x)) ≤ x

L11 hal f((n+m)+m) = hal f(n)+m

L12 (m+m) ≤ n→ hal f(n) = hal f((n−m)−m)+m

L13 quot(0,y) = y

L14 hal f(quot(s(0))) = 0

Table 11.7: Arithmetic lemmas.
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Lemma Statement

L15a sum(h :: t,x) = sum(t,x)+h

L15b l 6= nil → sum(l ,x) = sum(tail(l),x)+head(l)

L16 (l <> nil) = l

L17 (l <> m) <> n = l <> (m<> n)

L18 nil 6= l <> x :: nil

L19 len(l <> x :: m) = s(len(l <> m))

L20 m 6= nil → len(l <> m) = s(len(l <> tail(m)))

L21 y 6= 0→ last(oapp(x,y)) = last(y)

L22 bigger(x,smaller(y, l)) = smaller(bigger(x, l))

L23 len(evenelems(x :: l)) ≤ len(l)

L24 len(oddelems(x :: l)) ≤ s(len(l))

L25 rev(l <> x :: nil) = x :: rev(l)

L26 l 6= nil → rev(l) = last(l) :: rev(chop(l))

L27 foldright tr( f ,x, l <> y :: nil) = f (y, foldright tr( f ,x, l))

L28 foldleft tr( f ,x, l <> y :: nil) = f (foldleft tr( f ,x, l),y)

L29 l 6= nil → foldright tr( f ,x, l) = f (last(l), foldleft tr( f ,x,chop(l)))

L30 l 6= nil → foldleft tr( f ,x, l) = f (foldleft tr( f ,x,chop(l)), last(l))

L31 x = u∧y = v→ x◦y = u◦v

L32 head(l) :: tail(l) = l

Table 11.8: List and folding lemmas.
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rules to plan proofs for a range of theorems not solved by recursion analysis.

2. There are theorems the strategy proves using non-destructor induction that can-

not be proved by destructor-only lazy induction.

3. Theorems proved by lazy induction can also be proved by thestrategy.

Overall the system planned 27 of the 38 test theorems, but only 19 of these were

with the default strategy, i.e. fully automatically. Recallthat the default is different for

constructor and destructor style problems: constructor problems use the critic-based

strategy.

Evaluating the hypotheses involves assessing the strategybased on the performance

of its implementation inDynamis. Hence we need to examinewhy the system failed

completely on 11 theorems, and required human interventionon a further 8.

We can classify these failures of the default strategies into six categories:

• Failure of the wellfoundedness proof (T1C/D).

• Failure to generate missing cases (T5C).

• Divergent applications of the speculation critic (T7C, T8C).

• Lack of case splitting during rewriting (T7D, T8D).

• Failure due to runtime errors (T15C/D, T16C, T17C).

• The need for multiple step case/hypotheses (T14C/D, T18C/D, T19C/D).

Theorems T2D and T5D also failed, for which there is no clear explanation other

than the inadequacy of our strategy. We discuss the various categories of failure below.



Chapter 11. Experimental Evaluation 201

11.4.1 Non-wellfounded step cases

The default strategies successfully constructs the step case for theorems T1C and T1D.

If we give the system lemmas L6a and L7a this step case is the constructor style:

Φ(x) ⊢ Φ(x+y)

If instead we use lemmas L6b and L7b we get the destructor style:

Φ(x−y) ⊢ Φ(x)

In both cases the step case is not wellfounded, asy may be zero. Consequently, the

estimation strategy produces the following unsolvable difference equivalent:

⊢ y 6= 0

Dynamistries to apply rewriting, and the planning attempt fails.

This problem could be overcome by implementing the side condition critic pro-

posed in §6.5.5, which is not currently part ofDynamis’s wellfoundedness strategy.

The critic would respond to such unsolved difference equivalents by adding them to

the conditions on the step case. In the case of T1, the critic would have made the step

case wellfounded, and the theorem would have been planned successfully.

11.4.2 Failure to generate missing cases

For one theorem (T5C) planning failed at the exhaustive casesproof, after the follow-

ing a wellfounded step case had been generated:

y 6= 0, Φ(x,y) ⊢ Φ((x+y)+y,y)

The case strategy fails to find missing cases to complete the induction rule.
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11.4.3 Divergent speculation critiques

Theorems T7C and T8C are the only two examples to expose a weakness of the spec-

ulation critic: repeated applications can sometimes diverge. The theorems are very

similar, and essentially the same problem arises in both. Weillustrate this with theo-

rem T7C.

The step case is blocked immediately after the the first speculative ripple, with the

following conclusion (meta-variables are shown asx, y etc. for simplicity):

s(x′)
↑
6= 0→ odd( s(x′ +y)

↑
) ↔¬odd(y+ p( s(x′)

↑
)) (11.1)

The speculation critic is applied to unblock the ripple proof, and it succeeds following

the definition ofodd. A wavefront is inserted abovex′ + y and rippled inwards to

suggest an instantiation. As a result eitherx′ or y is instantiated — thex′ branch fails,

soy is chosen. The post-critic conclusion ripples to:

s(x′)
↑
6= 0→ odd(x′ +y′) ↔¬odd( s(y′ + p( s(x′)

↑
))

↑

)

Rippling is blocked once again, and the speculation critic succeeds again with the

definition of odd, this time on the right-hand side. The critic instantiates the meta-

variabley′ and the post-critic conclusion ripples to:

s(x′)
↑
6= 0→ odd( s(x′ +y′′)

↑
) ↔¬odd(y′′ + p( s(x′)

↑
))

This goal is of the same form as the original blocked goal (11.1), and so the ripple

proof continues indefinitely, cycling through these two applications of the speculation

critic.

This problem was avoided by prioritising the lemma L3, whichis then used for the

initial speculation instead of the definition of+. However, the proof still fails, because

of the case split problem described in the next section.
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11.4.4 No case splitting

Dynamissuccessfully constructs wellfounded step cases, and generates base cases for

theorems T7D and T8D, and theorems T7C and T8C with prioritised lemma L3 (dis-

cussed in the previous section). However, in all these examples it fails to plan the base

cases. The problematic base case goals are all of the form:

x 6= 0→ odd(x) ↔¬odd(p(x)) (11.2)

Dynamistries schematic induction. After the initial speculative ripple, the conclusion

is as follows:

s(s(x′))
↑
6= 0→ odd(x′) ↔¬odd(p( s(s(x′))

↑
))

This is blocked, as the wavefronts cannot be rippled past theterm p(...), and weak

fertilisation is blocked because of the implication. No further progress can be made.

Interestingly, the standardλClam induction methods can solve this base case. The

key difference is that when a ripple proof fails without fertilisation, the goal is passed

directly to rewriting. This simplifies our blocked goal to:

odd(x′) ↔¬odd(s(x′)) (11.3)

This is easily proved by induction.

By allowing induction without fertilisation,λClamis essentially performing a case

split on (11.2), suggested by the definition ofodd. Whether this is a sensible strategy

in general is questionable — if the abandoned induction cannot be simplified by rewrit-

ing, but if induction is applicable again, the strategy could diverge — but the ability to

apply case splits is clearly useful.

A safer approach in general would be to apply a case split during rewriting, pro-

vided each case can be reduced. For the goal (11.2) we could split over the definition

of p, and we would end up with the solvable subgoal (11.3).
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Dynamiscan plan the theorems T7 and T8 with a strategy that usesλClam to per-

form nested inductions, taking advantage of the ability to case split that our implemen-

tation lacks.

11.4.5 λProlog errors

Theorems T16C and T17C both fail because of runtime errors. The following error

message is given in both cases:

Attempting atomic critic speculation_critic

Access to unmapped memory!

/home/jeremy/dynamis//bin/dynamis: line 9: 1095 Aborted

$TEYJUS_HOME/tjsim --solve "lclam." ${1:-dynamis}

This is clearly a memory problem with the underlyingλProlog implementation, and

needs to be investigated further. The theorems are planned successfully without the

critic, usingdynamis lim2 .

The plan search for theorem T15 begins with a single speculative step using the

definition of foldleft tr. In order to find a proof, the planner needs to backtrack over

this choice, and speculate with the lemma L28/L30 for a constructor/destructor style

induction. However, the initial search branch is never completed — a runtime memory

error occurs after about 15 minutes of search — and this backtrack never occurs. It is

not clear whether this search branch was divergent, or whether it would have bottomed-

out and allowed the backtrack. A plan is found if the lemma L28or L30 is given

priority over the definitions.

Clues to what might happen without the runtime error can be found by looking at

the post-fertilisation goals produced during the search. The first such goal is:

(x◦y)◦ foldleft tr(◦, id, l) = x◦ foldleft tr(◦, id ◦y, l) (11.4)
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Dynamisperforms a nested induction, again speculating with the definition of foldleft tr.

The post-fertilisation goal is:

(x◦y)◦ foldlefttr(◦,(id ◦z), l)

= x◦ foldleft tr(◦,((id ◦y)◦z), l) (11.5)

The proof of this subgoal fails, but identical goals are produced repeatedly on back-

tracking — a process which accounts for the majority of the runtime. Eventually, the

system produces a different post-fertilsation goal for thenested induction:

((x◦y)◦ foldlefttr(◦,(id ◦z), l))◦w

= (x◦ foldleft tr(◦,((id ◦y)◦z), l))◦w (11.6)

We conjecture that as the subgoal (11.5) failed, the subgoal(11.6) will also fail, forcing

the system to backtrack over (11.4), and hence apply the successful speculation step.

However, we will need to address the memory error before we can establish if this is

actually what will happen.

11.4.6 Multiple step cases/hypotheses required

Recall that we did not expect a plan to be found for theorems T14, T18 and T19,

as they require multiple induction hypotheses and step cases. They were included to

see whetherDynamismade as much progress as could be expected under its current

restriction of a single step case/induction hypothesis.

The closestDynamisgets to a proof plan for T14 with constructor style definitions



Chapter 11. Experimental Evaluation 206

is the following goal (with metavariables written as constants for simplicity):

y 6= x, x 6= y,

perm( delete(a,u) ,v) ↔ perm(v,delete(a,u))

⊢ y∈ (x :: m)∧ perm(l , x :: delete(y,m)
↓
)

↑

↔ x∈ (y :: l)∧ perm(m, y :: delete(x, l)
↑
)

↑

HereDynamishas failed to neutralise the context arounddeleteon the left side. This

is most likely a deficiency in the design or implementation ofthe neutralisation algo-

rithm, and needs to be investigated further. If this had beendone, the next stage of

the proof from [Protzen, 1995] involves generating and weakfertilising with two new

inductive hypotheses — one on each side of the iff — and continuing to ripple towards

the initial inductive hypothesis. HenceDynamishas clearly made as much progress as

we can expect with its current single induction hypothesis restriction.

11.5 Conclusions of the Evaluation

Having looked at the reasons for the failure of the unassisted default strategy on 19 of

the 38 test theorems (with complete failure for 11), we can assess how many of these

failures can be attributed to our induction strategy, and how many to problems with its

implementation.

To summarise, the following the shortcomings were found with the implementa-

tion:

1. The proposed side condition critic is not implemented.

2. Case splits are not performed during rewriting.
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3. It can only generate a single step case with a single induction hypothesis.

4. Runtime memory errors occur.

5. Not all wavefronts that could be neutralised are removed.

The first three problems were known about before the evaluation, whereas (4) is an

unanticipated problem with TeyjusλProlog, and (5) is a deficiency in the implementa-

tion of neutralisation. These shortcomings account for 19 of the 18 failures.

The remaining 5 failures — T2D, T5C/D, T7C and T8C — can be attributed to

shortcomings of our induction strategy. Two of these examples have uncovered the

potential for divergent applications of the speculation critic.

The purpose of the evaluation was to provide evidence for or against our three

hypotheses. The first was that our induction strategy performed the task it was designed

to, i.e. prove theorems not solvable with recursion analysis. The evidence of the test

theorems supports this.

The second hypothesis was that our strategy proves theoremsby non-destructor in-

duction that destructor-only lazy induction cannot prove.Considering the constructor

style examples, we have provided a collection of such theorems. It should be noted

that many of these could be proved by lazy induction, given that translating the defini-

tions to destructor style could be done automatically. However, this would not account

for the theorems T1C, T15C, T16C and T17C, where a lemma (e.g. L27) was used to

generate the constructor style induction. Lazy induction could not find these induc-

tions with the given lemma, but would require a different lemma, e.g. L29, involving

different functions, e.g.chopand last instead of<>. This was discussed in Chapter

3.

Furthermore, theorem T2 seems to have no satisfactory destructor style induction,
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and we cannot see how lazy induction could solve it, whereas the constructor style

proof was successful. Hence, the evidence of the test theorems supports the second

hypothesis, with the proviso that the lemmas supplied are a significant factor in the

success of our approach.

Considering the third hypothesis, T5D, T14D, T18D, T19D are the only theorems

cited as successes for lazy induction over recursion analysis in [Protzen, 1995]. None

were planned byDynamis. We have accounted for the failure of all but T5D, but further

evaluation is required to verify whether our suggestions for overcoming these failures

actually work. Even so, it would be a very small set of examples on which to base a

comparison. The third hypothesis — that our strategy is strictly more successful than

lazy induction — is not supported by the evaluation. Ideally, a reimplementaion of lazy

induction inλClamwould be used for a direct comparison over a larger problem set. It

should be noted that for T5D and T14D we could not reconstructfrom [Protzen, 1995]

how the proofs were automatically found, and so we cannot account for why lazy

induction performs better than our system on these examples.
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Case Studies

In this chapter we provide a collection of examples of theDynamissystem in action,

constructing proof plans for theorems from Chapter 11. For clarity, the system traces

are abridged and interspersed with explanatory comments. The abridgement omits a

large amount of system output, but gives an accurate and readable presentation of the

system’s search for a proof plan.

We consider three examples which illustrate the techniquesoutlined in this thesis,

and the range of theDynamissystem:

1. T6C (see §12.2), a constructor style problem which requires multiple specula-

tions.Dynamisuses the speculation critic to justify the second speculative step.

2. T9D (see §12.3), a destructor style problem, for which recursion analysis chooses

the wrong induction variable, butDynamiscreates the correct one. This also il-

lustrates the use of creational rippling, where the conclusion is rewritten to match

wave fronts in the induction hypothesis.

3. T16C (see §12.4), a constructor style problem which requires an induction with

a non-trivial case structure.

209
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12.1 Presenting Dynamis Output

As mentioned above, a number of changes have been made to the system output to

make it shorter and more readable. This involved removing a large amount ofλClam

trace messages (e.g. “Attempting... dynamiscrit”), plan information (e.g. the address

of the current node in plan tree) and some heuristic information (e.g. the wave mea-

sure of annotated goals). The layout of goals and formulae has also been tidied up.

Dynamisdisplays embeddings as wave annotation, for example[[...\\...//]](+) .

For clarity, this has been changed below to the standard rippling box-and-hole notation.

Renaming Variables

Another presentational change is the renaming of variablesand meta-variables.λClam

displays variables asλProlog constants:<lc-0-1> , <lc-0-2> etc. We have renamed

these to more recognisable lowercase letters e.g.x , y etc.

More importantly,λClam displays meta-variables without consistent names – a

shortcoming of TeyjusλProlog. In other words, two occurrences the same meta-

variable may be displayed differently.Dynamisimproves slightly on this by naming

consistently within formulae. It displays them as constants surrounded by curly brack-

ets e.g.{<lc-0-1> }. We have renamed meta-variables by hand with a unique name

for each meta-variable. Uppercase letters are used, e.g.A, B etc. If a meta-variableA is

partially instantiated then the meta-variables in its instantiater will be namedA’ , A’’

etc. As a consequence of this, it is not clear below what variables a meta-variable is

dependant on — but this is not essential to understanding thetraces.
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Pretty Printing

There are also differences which should be noted between pretty printing in λClam

andDynamis. Standard sequent goals (e.g. the root goal) are displayed by the original

λClam code. Other meta-level goals introduced in this thesis, such as the schematic

step case, are displayed using newDynamiscode. Dynamistends to do more pretty

printing, in order to reduce the size of goals. For instance,it displays functions like

plusandoappas+ and<> in the examples below.

12.2 Case Study T6C: Speculation

Theorem T6 is stated as follows:

∀x,y,z:nat.even(x+y)∧even(y+z) → even(x+z)

In test T6C, bothevenand+ (sometimes displayed asplus) have constructor style

definitions, and no lemmas were provided to the system.

This problem needs multiple speculation steps, as two such steps with the definition

of plus are required, in order to create the two wave fronts that can be rippled by

the definition ofeven. RunningDynamison this example illustrates the use of the

speculation critic, where the second speculation is applied as a patch to the definite

ripple method.

T6C: Initial Planning

We begin planning T6C withdynamis crit , the default constructor style method.

Dynamisloads the necessary function and datatype definitions:

This is Lambda-CLAM v4.0.0
Copyright (C) 2002 Mathematical Reasoning Group, Universi ty of Edinburgh
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NOTE: this program uses the MRG patched version of Teyjus 1.0 -b33.

lclam:
dynamis_plan dynamis_crit evenptrans 1 constructor.

Functions: zero :: s :: plus :: even :: nil

Eval Lemmas: nil
Wave Lemmas: nil

Loading Eval Rules: idty :: s_functional :: neq_s_zero :: ne q_zero_s ::
plus1 :: plus2 :: even1 :: even2 :: even3 :: nil

Loading Wave Rules: s_functional :: plus2 :: even3 :: nil

Planning:
evenptrans
>>> forall x:nat forall y:nat forall z:nat

((even plus (x, y) /\ even plus (y, z)) -> even plus (x, z))

Expandingdynamis crit to dynamis main , schematic induction is then applied

to the top-level goal.

Method application: dynamis_crit
Method application: dynamis_main (mo_step_case spec_cri tic_ripple) wellfound_strat

case_strat (waterfall dynamis_crit)
Method application: schematic_induction ...

A conjunction of five subgoals is produced: 1) the schematic step case:

allGoal nat (x\ allGoal nat (y\ allGoal nat (z\
caseSchema
A
(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))
>>> (((even (E + F)) /\ (even (F + G))) -> (even (E + G))))))

2) the wellfounded step case goal:

** stepReduces

3) the exhaustive cases goal:

** allGoal tuple_type (nat :: nat :: nat :: nil) (u\
existsGoal (x\ existsGoal (y\ existsGoal (z\
caseGoal
Case: (trueP, u)
>>> (A /\ (u = E F G))))))

4) the unknown cases:

** maybeCases

5) the wellfounded rule goal:

** wfGoal
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T6C: Step Case Plan

After splitting the conjunction and moving the goal quantification into the proof plan,

the step case goal is considered:

caseSchema
A
(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))
>>> (((even (E + F)) /\ (even (F + G))) -> (even (E + G)))

A single speculative ripple is tried to start the proof off, succeeding with the definition

of plus. This creates two wave fronts in the conclusion, with the leftmost rippled out

by this step:

Method application: mo_step_case spec_critic_ripple
Method application: embed_hypothesis
Method application: spec_critic_ripple
Method application: speculative_ripple plus2 (2 :: 1 :: 2 :: 1 :: 2 :: nil)

caseSchema
A
(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))

>>> (((even (s (E′ +F))
↑

) /\ (even (F + G))) -> (even ( (s E′)
↑

+ G)))

The rightmost wave front is now rippled out with the definition of plus(+):

Method application: patch_meth (definite_ripple plus2 (2 :: 2 :: 2 :: nil)) speculation_critic

caseSchema
A
(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))

>>> (((even (s (E′ +F))
↑

) /\ (even (F + G))) -> (even (s (E′ +G))
↑

))

Rippling is blocked, but the failure ofdefinite ripple suggests the application of

speculation critic . The critic identifies missing wave fronts below the leftmost

wave front — if inserted into the goal they would allow the definition of evento be

applied. It inserts them, then attempts to ripple them inwards to find a suitable instan-

tiation. This is successful:
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Method application: patch_meth (definite_ripple _273629 _273643) speculation_critic
speculation_critic succeeded

caseSchema
A
(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))

>>> (((even (s (s (E′ +F))
↓

)) /\ (even (F + G))) -> (even (s (E’ + G))))

Method application: ripple_in_and_speculate _
Method application: forwards_ripple plus2 (2 :: 2 :: 1 :: 2 :: 1 :: 2 :: nil)

(definite_ripple plus2 (2 :: 2 :: 1 :: 2 :: 1 :: 2 :: nil) :: _)

caseSchema
A
(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))

>>> (((even (s ( (s E′)
↓

+ F))) /\ (even (F + G))) -> (even (s (E’ + G))))

Method application: speculate_wavefronts (definite_rip ple plus2 (2 :: 2 :: 1 :: 2 :: 1 :: 2 :: nil) :: _)
(definite_ripple plus2 (2 :: 2 :: 1 :: 2 :: 1 :: 2 :: nil))

trueGoal!
Branch closed!

The speculation critic has found an instantiation and ripple patch that allows the defi-

nition of evento apply. It now applies this patch and theevenripple:

Method application: ripple_patch (definite_ripple plus2 (2 :: 2 :: 1 :: 2 :: 1 :: 2 :: nil))
even3 (1 :: 2 :: 1 :: 2 :: nil) _

Method application: redo_embeddings
Method application: definite_ripple plus2 (2 :: 2 :: 1 :: 2 :: 1 :: 2 :: nil)
Method application: definite_ripple even3 (1 :: 2 :: 1 :: 2 :: nil)

caseSchema
A
(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))

>>> (((even (E’’ + F)) /\ (even (F + G))) -> (even (s ( (s E′′)
↑

+G))

↑

))

A side effect of the speculation critic’s patch was to createanother wave front on the

right-hand side, which is now rippled out in two steps:

Method application: patch_meth (definite_ripple plus2 (2 :: 2 :: 2 :: 2 :: nil)) speculation_critic

caseSchema
A
(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))

>>> (((even (E’’ + F)) /\ (even (F + G))) -> (even (s (s(E′′ +G))
↑

)

↑

))
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Method application: patch_meth (definite_ripple even3 (2 :: 2 :: nil)) speculation_critic

caseSchema
A
(((even (B + C)) /\ (even (C + D))) -> (even (B + D)))
>>> (((even (E’’ + F)) /\ (even (F + G))) -> (even (E’’ + G)))

Strong fertilisation completes the step case plan:

Method application: mo_fertilise
Method application: strong_fertilise

trueGoal!
Branch closed!

T6C: Wellfounded Step Case Plan

The planner returns to the four remaining goals:

stepReduces
**

allGoal tuple_type (nat :: nat :: nat :: nil) (u\
existsGoal (x\ existsGoal (y\ existsGoal (z\
caseGoal
Case: (trueP, u)
>>>
(A /\ (u = (s (s E’’)) F G))))))

**
maybeCases

**
wfGoal

The next to be planned is the wellfounded step case goal. Having determined the form

of the step case above, theconstruct wf goals method is now applied to explicitly

construct its wellfoundedness goal, using the unknown wellfounded relationH:

stepReduces
Method application: wellfound_strat
Method application: construct_wf_goals (const_disj (mea sure 3 _ :: measure 2 _ :: measure 1 _ :: nil) :: _)

allGoal nat (x\ allGoal nat (y\ allGoal nat (z\
redGoal 1
>>> A -> H (E’’, (s (s E’’)))

**
redGoal 2
>>> A -> H (F, F)

**
redGoal 3
>>> A -> H (G, G))))
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This three-part conjunction actually represents a disjunction, in that only one of the

three induction positionsneedsto be proved to show the step case is wellfounded.

However, in order to build up constraints on all the induction positions a proof of each

subgoal is attempted, with failed subgoals being ‘proved’ by the ignore position

method.

Considering the first goal, the estimation strategy is applied. This produces two

subgoals: the first states that some unknown difference equivalent I holds iff this in-

duction position reduces under an unknown measureJ ; the second states that difference

equivalent holds:

redGoal 1
>>> A -> H (E’’, (s (s E’’)))

Method application: estimation_strat
Method application: begin_estimation 1

estGoal
I <-> J(E’’) < J((s (s E’’)))

**
>>> (trueP -> I)

The plan of both subgoals is straightforward, instantiating the measure function to the

identity:

estGoal
I <-> J(E’’) < J((s (s E’’)))

Method application: lower_estimate

estGoal
I’ <-> id(E’’) < id((s E’’))

Method application: lower_estimate

estGoal
I’’ <-> id(E’’) < id(E’’)

Method application: trivial_estimate

trueGoal!
Branch closed!

>>> (trueP -> (trueP \/ (trueP \/ falseP)))

Method application: rewrite_equiv nil

trueGoal!
Branch closed!
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The other two wellfoundedness goals are unsolvable, but thesystem can ignore them

both as the first goal has been planned:
redGoal 2
>>> A -> H (F, F)

**
redGoal 3
>>> A -> H (G, G)

Method application: ignore_position 2

trueGoal!
Branch closed!

Method application: ignore_position 3

trueGoal!
Branch closed!

This completes the step case wellfoundedness plan.

T6C: Exhaustive Cases Plan

Returning to the three remaining subgoals, the next goal to beplanned is the exhaustive

cases goal:
allGoal tuple_type (nat :: nat :: nat :: nil) (u\
existsGoal (x\ existsGoal (y\ existsGoal (z\
caseGoal
Case: (trueP, u)
>>> (A /\ (u = (s (s E’’)) F G))))))

**
maybeCases

**
wfGoal

Method application: case_strat
Method application: set_conditions

caseGoal
Case: (trueP, u)
>>> (trueP /\ (u = (s (s E’’)) F G))

First the redundanttrueP is removed and the universal variable is split, in order to

separate the three elements of the tuple:
Method application: case_equiv (and3 :: nil)
Method application: case_induction (tuple_split 3)
Method application: case_equiv (tuple_eq_rec :: tuple_eq _rec :: tuple_eq_base :: nil)

caseGoal
Case: (trueP, p q r)
>>> ((p = (s (s E’’))) /\ ((q = F) /\ (r = G)))
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The case strategy goes through a waterfall of methods, eventually trying structural

induction:

Method application: case_induction nat_struct

caseGoal
Case: (trueP, zero q r)
>>> ((zero = (s (s E’’))) /\ ((q = F) /\ (r = G)))

**
allGoal nat (v\
caseGoal
Case: (trueP, (s v) q r)
((v = (s (s E’’))) /\ ((q = F) /\ (r = G)))

>>> (( (s v)
↑

= (s (s E’’))) /\ ((q = F) /\ (r = G))))

The base case(trueP, zero q r) } is reduced tofalseP , and included as a missing

case:

caseGoal
Case: (trueP, zero q r)
>>> ((zero = (s (s E’’))) /\ ((q = F) /\ (r = G)))

Method application: remove_case_hyps
Method application: case_equiv (neq_zero_s :: and1 :: nil)

caseGoal
Case: (trueP, zero q r)
>>> falseP

Method application: missing_case (case_abs nat (x\ case_a bs nat (y\
case trueP (_ x y) (tuple (zero :: y :: x :: nil)))))

trueGoal!
Branch closed!

The step case is simplified so that one of the two constructorsis removed. Induction is

applied again to remove the remaining constructor:

Method application: remove_case_hyps
Method application: case_equiv (s_functional :: nil)

caseGoal
Case: (trueP, (s v) q r)
>>> ((v = (s E’’)) /\ ((q = F) /\ (r = G)))

Method application: case_induction nat_struct

caseGoal
Case: (trueP, (s zero) q r)
>>> ((zero = (s E’’)) /\ ((q = F) /\ (r = G)))

**
allGoal nat (w\
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caseGoal
Case: (trueP, (s (s w)) q r)
((w = (s E’’)) /\ ((q = F) /\ (r = G)))

>>> (( (s w)
↑

= (s E’’)) /\ ((q = F) /\ (r = G))))

Again the base case is false, and this time the case(trueP, (s zero) q r) is added

as a missing case:

caseGoal
Case: (trueP, (s zero) q r)
>>> ((zero = (s E’’)) /\ ((q = F) /\ (r = G)))

Method application: remove_case_hyps
Method application: case_equiv (neq_zero_s :: and1 :: nil)

caseGoal
Case: (trueP, (s zero) q r)
>>> falseP

Method application:
missing_case (case_abs nat (x\ case_abs nat (y\ case trueP ( _ x y) (tuple (app s zero :: y :: x :: nil)))))

trueGoal!
Branch closed!

The step case is trivial:

caseGoal
Case: (trueP, (s (s w)) p r)
((w = (s E’’)) /\ ((p = F) /\ (r = G)))

>>> (( (s w)
↑

= (s E’’)) /\ ((p = F) /\ (r = G)))

trueGoal!
Branch closed!

T6C: Base Case Plans

Dynamisnow explicitly constructs the missing cases identified above:

maybeCases ** wfGoal

maybeCases

Method application: construct_cases

allGoal nat (y\ allGoal nat (x\
>>> ((even plus (0, x) /\ even plus (x, y)) -> even plus (0, y))) )

**
allGoal nat (y\ allGoal nat (x\
>>> ((even plus (s 0, x) /\ even plus (x, y)) -> even plus (s 0, y) )))
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The first base case is simplified by rewriting, then solved by anested induction, which

we omit here:

Method application: waterfall dynamis_crit
Method application: rewrite
Method application: normalise all_i_nf
Method application: rewrite_equiv (plus1 :: plus1 :: nil)

>>> ((even x /\ even plus (x, y)) -> even y)

Method application: normalise all_e_nf
Method application: dynamis_crit
Method application: dynamis_main (mo_step_case spec_cri tic_ripple) wellfound_strat

case_strat (waterfall dynamis_crit)
[...]
Branch closed!

The second base case is planned in a similar way:

allGoal nat (y\ allGoal nat (x\
>>> ((even plus (s 0, x) /\ even plus (x, y)) -> even plus (s 0, y) )))

Method application: waterfall dynamis_crit
Method application: rewrite
Method application: normalise all_i_nf
Method application: rewrite_equiv (plus2 :: plus1 :: plus2 :: plus1 :: nil)

>>> ((even s x /\ even plus (x, y)) -> even s y)

Method application: normalise all_e_nf
Method application: dynamis_crit
Method application: dynamis_main (mo_step_case spec_cri tic_ripple) wellfound_strat

case_strat (waterfall dynamis_crit)
[...]
Branch closed!

T6C: Final Plan

As a final step, the system plans the meta-level goalwfGoal that represents the well-

foundedness of the rule. Thewellfounded method solves the constraints on the rule’s

relation, and instantiates it accordingly:

wfGoal

Method application: wellfounded (app select_induce (tupl e (app s zero :: id :: nil)))

trueGoal!
Branch closed!

reached empty agenda
Plan Succeeded
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schematic induction

embed hypothesis*

speculative ripple
plus2

definite ripple
plus2

definite ripple
(failed)*

forwards ripple
plus2*

speculate wavefronts*

redo embeddings*

definite ripple
plus2

definite ripple
even3

definite ripple
plus2

definite ripple
even3

strong fertilise

and

construct wf goals

begin estimation 1

lower estimate

lower estimate

trivial estimate

abstract metavars

normalise
all i nf

rewrite equiv

ignore position 2* ignore position 3*

(1)

(1)
and

set conditions*

case equiv

case induction
(tuple split 3)

case equiv

case induction
nat struct

remove case hyps*

case equiv

missing case
(case trueP (0, y, z))

remove case hyps*

case equiv

case induction
nat struct

remove case hyps*

case equiv

missing case
(case trueP (s 0, y, z))

remove case hyps*

case equiv

trivial case

and

construct cases*

normalise
all i nf

rewrite equiv

normalise
all e nf

(2)

normalise
all i nf

rewrite equiv

normalise
all e nf

(3)

wellfounded*

Figure 12.1: Proof plan for T6C. (2) and (3) indicate the nested inductions for the sub-

goals even(x)∧even(x+y)→ even(y) and even(s(x))∧even(x+y)→ even(s(y)). We

omit these subplans. * indicates a purely meta-level plan step.
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The proof plan for T6C is shown in Figure 12.1, with the subplans for the two nested

inductions omitted. The plan has 129 nodes, including thosesubplans.Dynamiscre-

ated and validated the following induction rule:

⊢ Φ(0,y,z)

⊢ Φ(s(0),y,z)

Φ(x,y,z) ⊢ Φ(s(s(x)),y,z)

∀x:nat.∀y:nat.∀z:nat.Φ(x,y,z)

12.3 Case Study T9D: Destructor Style

In this section we give an example ofDynamisplanning a destructor style problem.

Theorem T9 is stated as follows:

∀l ,m:olist(nat). rotate(olength(l), l <> m) = m<> l

For test T9D the functionsrotate, olengthand<> (sometimes displayoapp) have

destructor style definitions. The following lemmas were provided:

(x <> y) <> z = x <> (y <> z) (L17)

head(l) :: tail(l) = l (L32)

rotate(s(n),h :: t) = rotate(n, t <> (h :: nil))

(h :: t) <> l = h :: (t <> l)

The last two lemmas are constructor style definitions required for the destructor style

proof.

T9D: Inital Planning

When planning is initiated,Dynamisfirst identifies the defining functions and lem-

mas pertaining to the theorem, then loads the appropriate symbolic evaluation and
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wave rules into theλClamdatabase. It then begins planning with the top-level method

dynamis lim1 , the default method for destructor style problems.

This is Lambda-CLAM v4.0.0
Copyright (C) 2002 Mathematical Reasoning Group, Universi ty of Edinburgh
NOTE: this program uses the MRG patched version of Teyjus 1.0 -b33.

lclam:
dynamis_plan dynamis_lim1 gen_rotlen 1 destructor.

Functions: onil :: ocons :: tail :: zero :: head :: oapp :: s :: o length :: p :: rotate :: nil

Eval Lemmas: def rotate 3 :: oapp2 :: ass_app :: cons1 :: nil
Wave Lemmas: def rotate 3 :: oapp2 :: ass_app :: cons1 :: nil

Loading Eval Rules: idty :: cons_functional :: neq_nil_con s :: neq_cons_nil :: tail1 :: tail2 ::
head1 :: head2 :: oapp1 :: s_functional :: neq_s_zero :: neq_ zero_s :: olength1 :: p1 :: p2 ::
def rotate 1 :: def rotate 2 :: def rotate 3 :: oapp2 :: ass_app : : cons1 :: nil

Loading Wave Rules: cons_functional :: tail2 :: head2 :: oap p3 :: s_functional :: olength3 ::
p2 :: def rotate 4 :: def rotate 3 :: oapp2 :: ass_app :: cons1 :: nil

Planning:
gen_rotlen
>>> forall l:olist nat forall m:olist nat (rotate (olength l , oapp (l, m)) = oapp (m, l))

Dynamisexpands the definition ofdynamis lim1 , which givesdynamis main param-

eterised by four methods. This in turn is expanded, andschematic induction is

applied to give a conjunction of five goals.

Method application: dynamis_lim1
Method application: dynamis_main (mo_step_case (n_spec_ ripples 1)) wellfound_strat

case_strat (waterfall (dynamis_lim 1))
Method application: schematic_induction ...

allGoal olist nat (l\ allGoal olist nat (m\
caseSchema
A
((rotate (olength B) (B <> C)) = (C <> B))
>>>
((rotate (olength D) (D <> E)) = (E <> D))))

**
stepReduces

**
allGoal tuple_type (olist nat :: olist nat :: nil) (u\
existsGoal (l\ existsGoal (m\
caseGoal
Case: (trueP, u)
>>> (A /\ (u = D E)))))

**
maybeCases

**
wfGoal



Chapter 12. Case Studies 224

T9D: Step Case Plan

After splitting the goal conjunction and moving the goal quantification into the plan,

the first goal is the schematic step case:

caseSchema
A
((rotate (olength B) (B <> C)) = (C <> B))
>>> ((rotate (olength D) (D <> E)) = (E <> D))

Planning the step case proceeds by embedding the induction hypothesis into the con-

clusion, and applying a single speculative ripple step withthe definition ofolength—

only one such step is allowed by the step case method used here. This step instantiates

the induction hypothesis, creating three wavefronts in this hypothesis, one of which is

neutralised immediately. The step produces two subgoals, the first of which is a side

condition.

Method application: mo_step_case (n_spec_ripples 1)
Method application: embed_hypothesis
Method application: n_spec_ripples 1
Method application: speculative_ripple olength3 (1 :: 2 :: 1 :: 2 :: nil)

sideCond
A
>>> (neg (D = onil))

**
caseSchema
A

((rotate (olength (tail B’)) ( (tail B′) <> C)) = (C <> (tail B′) ))

>>> ((rotate (s (olength (tail D)))
↑

(D <> E)) = (E <> D))

Dynamisfirst plans the side condition by applying thesimplify sidecond method.

To discharge it the method assumes it as a condition on the step case, by instantiating

A to ((neg (D = onil)) /\ A’) :

sideCond
A
>>> (neg (D = onil))

Method application: simplify_sidecond assume_cond

trueGoal!
Branch closed!
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Returning to the main step case goal, three ripple steps are applied. First, a creational

ripple with the definition ofoapp (<>) which neutralises one of the two remaining

hypothesis wavefronts:

Method application: definite_rippling
Method application: definite_ripple oapp3 (2 :: 2 :: 1 :: 2 :: nil)

caseSchema
((neg (D = onil)) /\ A’)

((rotate (olength (tail B’)) ((tail B’) <> C)) = (C <> (tail B′) ))

>>> ((rotate (s (olength (tail D)))
↑

(ocons (head D) ((tail D) <> E))
↑

) = (E <> D))

Next a ripple with the definition ofrotate:

Method application: definite_ripple (def rotate 3) (1 :: 2 : : nil)

caseSchema
((neg (D = onil)) /\ A’)

((rotate (olength (tail B’)) ((tail B’) <> C)) = (C <> (tail B′) ))

>>> ((rotate (olength (tail D)) ( ((tail D) <> E) <> (ocons (head D) onil))
↑

) = (E <> D))

And finally an inwards ripple with the associativity ofoapp(<>):

Method application: definite_ripple ass_app (2 :: 2 :: 1 :: 2 :: nil)

caseSchema
((neg (D = onil)) /\ A’)

((rotate (olength (tail B’)) ((tail B’) <> C)) = (C <> (tail B′) ))

>>> ((rotate (olength (tail D)) ((tail D) <> ( E <> (ocons (head D) onil))
↓

)) = (E <> D))

Rippling is now blocked, and weak fertilisation is applied:

Method application: mo_fertilise

Method application: weak_fertilise 0

caseSchema
((neg (D = onil)) /\ A’)
>>> (((E <> (ocons (head D) onil)) <> (tail D)) = (E <> D))

Method application: replace_metavariables

>>> forall a:olist nat forall b:olist nat
(oapp (oapp (a, ocons (head b, onil)), tail b) = oapp (a, b))
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Rewriting with the associativity ofoappand function and datatype definitions com-

pletes the step case plan:

Method application: waterfall (dynamis_lim 1)
Method application: rewrite
Method application: normalise all_i_nf

>>> (oapp (oapp (a, ocons (head b, onil)), tail b) = oapp (a, b) )

Method application: rewrite_equiv (ass_app :: oapp2 :: oap p1 :: cons1 :: idty :: nil)

trueGoal!
Branch closed!

T9D: Wellfounded Step Case Plan

Dynamisnow returns to the four remaining induction subgoals. Notice that the exhaus-

tive cases subgoal has become instantiated with the condition ((neg (D = onil))

/\ A’) by the step case planning.

stepReduces
**

allGoal tuple_type (olist nat :: olist nat :: nil) (u\
existsGoal (x\ existsGoal (y\
caseGoal
Case: (trueP, u)
>>> (((neg (D = onil)) /\ A’) /\ (u = D E)))))

**
maybeCases

**
wfGoal

After splitting the goal conjunction, the system tries to plan the wellfoundedness goal.

Theconstruct wf goals transforms the dummy meta-level goalstepReduces into

the wellfoundedness goals for the step case that has just been found. There are two

such subgoals — one for each universal variable in the original conjecture:

stepReduces

Method application: wellfound_strat
Method application: construct_wf_goals (const_disj (mea sure 2 _ :: measure 1 _ :: nil) :: _)

allGoal olist nat (x\ allGoal olist nat (y\
redGoal 1
>>> ((neg (D = onil)) /\ A’) -> F ((tail D), D)

**
redGoal 2
>>> ((neg (D = onil)) /\ A’) -> F ((E <> (ocons (head D) onil)), E )))
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Selecting the first wellfoundedness goal,Dynamisapplies the estimation strategy. Ini-

tially, this gives a conjunction of subgoals: an estimationgoal which states that some

unknown difference equivalentGholds iff the induction terms reduce under some un-

known measureH; and a goal that states the step case conditions imply this difference

equivalent.

redGoal 1
>>>
((neg (D = onil)) /\ A’) -> F ((tail D), D)

Method application: estimation_strat
Method application: begin_estimation 1

estGoal
G <-> H((tail D)) < H(D)

**
>>> ((˜ (D = onil) /\ trueP) -> G)

This goal is planned by estimating the list destructortail , which instantiates the mea-

sure toolength :

estGoal
G <-> H((tail D)) < H(D)

Method application: upper_estimate

estGoal
G’ <-> olength(D) < olength(D)

Method application: trivial_estimate

trueGoal!
Branch closed!

Moving on to the next subgoal, we see the difference equivalent has been instantiated

by the estimation planning. Replacing the meta-variables with universal constants, the

goal is passed torewrite , which discharges it with a tautology checker:

>>> ((˜ (D = onil) /\ trueP) -> (˜ (D = onil) \/ falseP))

Method application: abstract_metavars

>>> ((˜ (z = onil) /\ trueP) -> (˜ (z = onil) \/ falseP))

Method application: rewrite
Method application: normalise all_i_nf
Method application: rewrite_equiv nil

trueGoal!
Branch closed!
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The step case’s second wellfoundedness goal arises from an induction position that

was used to sink a wavefront. As before,Dynamisapplies the estimation strategy:

redGoal 2
>>> ((neg (D = onil)) /\ A’) -> F (E <> (ocons (head D) onil), E)

Method application: estimation_strat
Method application: begin_estimation 2

estGoal
I <-> J((E <> (ocons (head D) onil))) < J(E)

**
>>> ((˜ (D = onil) /\ trueP) -> I)

The estimation plan fails, asocons cannot be upper estimated using any measure func-

tion. On backtracking theignore position method is applied instead, completing the

step case wellfoundedness plan:

estGoal
I <-> J((E <> (ocons (head D) onil))) < J(E)

Method application: ignore_position 2

trueGoal!
Branch closed!

T9D: Exhaustive Cases Plan

The system now considers the two remaining subgoals from theoriginal five goal con-

junction:

allGoal tuple_type (olist nat :: olist nat :: nil) (u\
existsGoal (x\ existsGoal (y\
caseGoal
Case: (trueP, u)
>>> (((neg (D = onil)) /\ A’) /\ (u = D E)))))

**
maybeCases

**
wfGoal

Splitting the conjunction, the first goal is the exhaustive cases goal. The case strategy

is applied. Theset conditions method instantiatesA’ , the remaining meta-variable

part of the step case condition, totrueP :
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allGoal tuple_type (olist nat :: olist nat :: nil) (u\
existsGoal (x\ existsGoal (y\
caseGoal
Case: (trueP, u)
>>> (((neg (D = onil)) /\ A’) /\ (u = D E)))))

Method application: case_strat
Method application: set_conditions

caseGoal
Case: (trueP, u)
>>> (((neg (D = onil)) /\ trueP) /\ (u = D E))

After removing the redundanttrueP ,(case induction (tuple split 2)) is ap-

plied to the universal variableu. This ‘induction’ is actually a case split which allows

the tuple to be broken up into individual terms:

Method application: case_equiv (and4 :: nil)
Method application: case_induction (tuple_split 2)
Method application: case_equiv (tuple_eq_rec :: tuple_eq _base :: nil)

caseGoal
Case: (trueP, p q)
>>> ((neg (D = onil)) /\ ((p = D) /\ (q = E)))

The system goes through thecase strat waterfall of methods, eventually succeed-

ing with exists casesplit . This constructs a disjunct for each of the two possible

instantiations of the meta-variableD. Simplification then removes the first disjunct:

Method application: exists_casesplit list_struct

caseGoal
Case: (trueP, p q)
>>> (((neg (onil = onil)) /\ ((p = onil) /\ (q = E)))

\/
((neg ((ocons K L) = onil)) /\ ((p = (ocons K L)) /\ (q = E))))

Method application: case_equiv (idty :: neg1 :: and1 :: or3 : : neq_cons_nil :: neg2 :: and3 :: nil)

caseGoal
Case: (trueP, p q)
>>> ((p = (ocons K L)) /\ (q = E))

The system goes through the method waterfall again, this time succeeding with struc-

tural induction onp:

Method application: case_induction list_struct

caseGoal
Case: (trueP, onil q)
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>>> ((onil = (ocons K L)) /\ (q = E))
**

allGoal nat (v\ allGoal olist nat (w\
caseGoal
Case: (trueP, (ocons v w) q)
((w = (ocons K L)) /\ (q = E))

>>> (( (ocons v w) = (ocons K L)) /\ (q = E))))

In the base case, rewriting reduces the conclusion tofalseP . The missing case

method adds the(case trueP (tuple [onil, ])) to the list of missing cases,

completing the plan branch:

caseGoal
Case: (trueP, onil q)
>>> ((onil = (ocons K L)) /\ (q = E))

Method application: remove_case_hyps
Method application: case_equiv (neq_nil_cons :: and1 :: ni l)

caseGoal
Case: (trueP, onil q)
>>> falseP

Method application: missing_case (case_abs (olist nat) (w 1\ case trueP (_ w1) (tuple (onil :: w1 :: nil))))

trueGoal!
Branch closed!

Rippling fails in the step case, but simplification completesthe plan branch:

allGoal nat (v\ allGoal olist nat (w\
caseGoal
Case: (trueP, (ocons v w) q)
((w = (ocons K L)) /\ (q = E))

>>> (( (ocons v w) = (ocons K L)) /\ (q = E))))

Method application: remove_case_hyps
Method application: case_equiv (cons_functional :: solve _eq :: nil)

caseGoal
Case: (trueP, (ocons v w) q)
>>> trueP

Method application: trivial_case

trueGoal!
Branch closed!
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T9D: Base Case Plan

There are now only two subgoals remaining: the first representing the missing cases of

the induction, and the second that the rule is wellfounded. For the first goal, the missing

base case determined by the exhaustive cases plan above is explicitly constructed:

maybeCases ** wfGoal

maybeCases

Method application: construct_cases

allGoal olist nat (l\
>>> (rotate (olength onil, oapp (onil, l)) = oapp (l, onil)))

The goal is passed to the rewriting/generalisation/induction waterfall, where it is sim-

plified by rewriting:

Method application: waterfall (dynamis_lim 1)
Method application: rewrite
Method application: normalise all_i_nf
Method application: rewrite_equiv (olength1 :: def rotate 1 :: oapp1 :: nil)

>>> (l = oapp (l, onil))

The waterfall now applies a nested induction using thedynamis lim method. We omit

the induction here, but it succeeds in completing the base case plan:

Method application: normalise all_e_nf

>>> forall l:olist nat (l = oapp (l, onil))

Method application: dynamis_lim 1
Method application: dynamis_main (mo_step_case (n_spec_ ripples 1)) wellfound_strat

case_strat (waterfall (dynamis_lim 1))
[...]
Branch closed!

T9D: Final Plan

The last remaining goal represents the wellfoundedness of the entire induction rule.

Thewellfounded method discharges this by solving the wellfoundedness constraints

built up during planning. This instantiates the wellfounded relation to one induced by

measuring the first induction term byolength. The proof plan for T9D is complete:
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schematic induction

embed hypothesis*

speculative ripple olength3

simplify sidecond
assume cond

definite ripple
oapp3

definite ripple
(def rotate 3)

definite ripple
ass app

weak fertilise 0

replace metavariables*

normalise
all i nf

rewrite equiv

and

construct wf goals

begin estimation 1

upper estimate

trivial estimate

abstract metavars*

normalise
all i nf

rewrite equiv

ignore position 2*

(1)

(1) and

set conditions*

case equiv

case induction
(tuple split 2)

case equiv

exists casesplit
list struct

case equiv

case induction
list struct

remove case hyps*

case equiv

missing case
(case trueP (onil, m))

remove case hyps*

case equiv

trivial case

and

construct cases*

normalise
all i nf

rewrite equiv

normalise
all e nf

(2)

wellfounded*

Figure 12.2: Proof plan for T9D. (2) indicates the nested induction for the subgoal onil =

l <> onil. We omit this subplan. * indicates a purely meta-level plan step.
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wfGoal

Method application: wellfounded (app select_induce (tupl e (app s zero :: olength :: nil)))

trueGoal!
Branch closed!

reached empty agenda
Plan Succeeded

The proof plan for T9D is shown in Figure 12.2, with the subplan for the nested induc-

tion in the base case omitted. Altogether, the plan has 67 nodes.Dynamiscreated and

validated the following induction rule:

⊢ Φ(nil ,m)

l 6= nil , Φ(tail(l),(m<> (head(l) :: nil))) ⊢ Φ(l ,m)

∀l : list(nat).∀m: list(nat).Φ(l ,m)

12.4 Case Study T16C: Case Structure

We now look at a theorem which illustrates the creation of a non-trivial case structure

for an induction rule. Theorem T16 is as follows:

∀l :olist(nat). foldleft tr(◦,el, l) = foldleft(◦,el,orev(l))

The system was provided with the following lemmas:

rev(l <> x :: nil) = x :: rev(l) (L25)

foldright tr( f ,x, l <> y :: nil) = f (y, foldright tr( f ,x, l)) (L27)

x = u∧y = v → x◦y = u◦v (L31)

The induction is motivated by the either of the first two lemmas.

We use the top-level methoddynamis lim1 , as the default constructor style method

dynamis crit causes a memory error with this example because of an error inthe

underlying implementation ofλProlog (see §11.4.5).
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T16C: Inital Planning

Dynamisbegins by loading the appropriate functions and lemmas:

This is Lambda-CLAM v4.0.0
Copyright (C) 2002 Mathematical Reasoning Group, Universi ty of Edinburgh
NOTE: this program uses the MRG patched version of Teyjus 1.0 -b33.

lclam:
dynamis_plan dynamis_lim1 foldleft_rev 1 constructor.

Functions: onil :: ocons :: oapp :: orev :: foldleft :: el1 :: o p1 :: foldleft_tr :: nil

Eval Lemmas: foldltr_last :: rev_last :: oapp1 :: oapp2 :: ni l
Wave Lemmas: foldltr_last :: rev_last :: oapp2 :: op1_funct ional :: nil

Loading Eval Rules: idty :: cons_functional :: neq_nil_con s :: neq_cons_nil :: oapp1 :: oapp2 ::
orev1 :: orev2 :: foldleft1 :: foldleft2 :: foldleft_tr1 :: f oldleft_tr2 :: foldltr_last ::
rev_last :: oapp1 :: oapp2 :: nil

Loading Wave Rules: cons_functional :: oapp2 :: orev2 :: fol dleft2 :: foldleft_tr2 ::
foldltr_last :: rev_last :: oapp2 :: op1_functional :: nil

Planning:
foldleft_rev
>>> forall l:olist nat (foldleft_tr (op1, el1, l) = foldleft (op1, el1, orev l))

The top-level method is expanded todynamis main , andschematic induction is

applied, giving the usual five goal conjunction:

Method application: dynamis_lim1
Method application: dynamis_main (mo_step_case (n_spec_ ripples 1)) wellfound_strat

case_strat (waterfall (dynamis_lim 1))
Method application: schematic_induction ...

allGoal olist nat (l\
caseSchema
A
((foldleft_tr op1 el1 B) = (foldleft op1 el1 (orev B)))
>>> ((foldleft_tr op1 el1 C) = (foldleft op1 el1 (orev C))))

**
stepReduces

**
allGoal tuple_type (olist nat :: nil) (u\
existsGoal (x\
caseGoal
Case: (trueP, <lc-0-2>)
>>> (A /\ (u = C))))

**
maybeCases

**
wfGoal

T16C: Step Case Plan

The step case begins with a speculative ripple with the definition of foldright tr:
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allGoal olist nat (l\
caseSchema
A
((foldleft_tr op1 el1 B) = (foldleft op1 el1 (orev B)))
>>> ((foldleft_tr op1 el1 C) = (foldleft op1 el1 (orev C))))

Method application: mo_step_case (n_spec_ripples 1)
Method application: embed_hypothesis
Method application: n_spec_ripples 1
Method application: speculative_ripple foldleft_tr2 (1 : : 2 :: nil)

caseSchema
A
((foldleft_tr op1 el1 B) = (foldleft op1 el1 (orev B)))

>>> ((foldright tr op1 (op1 C′ el1)
↑

C’’) = (foldleft op1 el1 (orev (ocons C′ C′′)
↑

)))

The speculative step on the left creates a wave front on the right which is now rippled

out with the definition oforev:

Method application: definite_rippling
Method application: definite_ripple orev2 (3 :: 2 :: 2 :: 2 :: nil)

caseSchema
A
((foldleft_tr op1 el1 B) = (foldleft op1 el1 (orev B)))

>>> ((foldright tr op1 (op1 C′ el1)
↑

C’’) = (foldleft op1 el1 ((orev C′′) <> (ocons C′ onil))
↑

))

However, rippling is now completely blocked. The speculation critic is not being used

in this example because ofλProlog problems (see above), so rippling just fails. Fer-

tilisation also fails, andDynamismust backtrack over the initial speculative ripple. It

tries again, this time with lemma (L27) instead of a functiondefinition:

Method application: mo_fertilise

Attempting...
strong_fertilise
Attempting...
weak_fertilise _
Attempting...
strong_fertilise_prop
backtracking over
mo_fertilise
backtracking over
definite_ripple orev2 (3 :: 2 :: 2 :: 2 :: nil)
backtracking over
definite_rippling
backtracking over
speculative_ripple foldleft_tr2 (1 :: 2 :: nil)
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Method application: speculative_ripple foldltr_last (1 : : 2 :: nil)

caseSchema
A
((foldleft_tr op1 el1 B) = (foldleft op1 el1 (orev B)))

>>> ( (op1 C′′ (foldright tr op1 el1 C′))
↑

= (foldleft op1 el1 (orev (C′ <> (ocons C′′ onil))
↑

)))

Again, the speculative ripple on the left creates a wave front on the right. This time the

wave front is rippled out with the lemma (L25), and then with the definition offoldleft:

Method application: definite_rippling
Method application: definite_ripple rev_last (3 :: 2 :: 2 :: 2 :: nil)

caseSchema
A
((foldleft_tr op1 el1 B) = (foldleft op1 el1 (orev B)))

>>> ( (op1 C′′ (foldright tr op1 el1 C′))
↑

= (foldleft op1 el1 (ocons C′′ (orev C′))
↑

))

Method application: definite_ripple foldleft2 (2 :: 2 :: ni l)

caseSchema
A
((foldleft_tr op1 el1 B) = (foldleft op1 el1 (orev B)))

>>> ( (op1 C′′ (foldright tr op1 el1 C′))
↑

= (op1 C′′ (foldleft op1 el1 (orev C′)))
↑

)

The wave fronts on both sides are rippled out over the equality, allowing strong fertili-

sation to be applied. Rewriting completes the step case plan:

Method application: definite_ripple op1_functional nil

caseSchema
A
((foldleft_tr op1 el1 B) = (foldleft op1 el1 (orev B)))

>>> ((C′′ = C′′) /\ ((foldright tr op1 el1 C′) = (foldleft op1 el1 (orev C′))))
↑

Method application: mo_fertilise
Method application: strong_fertilise_prop

caseSchema
A
>>> ((C’’ = C’’) /\ trueP)

Method application: replace_metavariables
Method application: waterfall (dynamis_lim 1)
Method application: rewrite
Method application: normalise all_i_nf
Method application: rewrite_equiv (and4 :: idty :: nil)

trueGoal!
Branch closed!
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T16C: Wellfounded Step Case Plan

Dynamisnow considers the four remaining induction subgoals, starting with the step

case wellfoundedness goal. First, the goal is constructed explicitly:

stepReduces
**

allGoal tuple_type (olist nat :: nil) (u\
existsGoal (x\
caseGoal
Case: (trueP, u)
>>> (A /\ (u = (C’ <> (ocons C’’ onil))))))

**
maybeCases

**
wfGoal

stepReduces

Method application: wellfound_strat
Method application: construct_wf_goals (const_disj (mea sure 1 _ :: nil) :: _)

allGoal olist nat (x\
redGoal 1
>>> A -> D (C’, (C’ <> (ocons C’’ onil))))

The estimation strategy is applied, producing two subgoals: the first stating that un-

known difference equivalentE holds iff the induction terms reduce under some un-

known measure functionF; the second thatE is true:

Method application: estimation_strat
Method application: begin_estimation 1

estGoal
E <-> F(C’) < F((C’ <> (ocons C’’ onil)))

**
>>> (trueP -> E)

Considering the first goal, the lower estimation method is applied — it estimates the

first argument of theoapp(<>) function from the step case conclusion, instantiating

the measure function toolength:

estGoal
E <-> F(C’) < F((C’ <> (ocons C’’ onil)))

Method application: lower_estimate

estGoal
E’ <-> olength(C’) < olength(C’)
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Method application: trivial_estimate

trueGoal!
Branch closed!

The estimation of the first argument ofoappabove had the side effect of instantiating

the difference equivalent. The system now plans its rewriting proof, completing the

wellfoundedness proof for the step case:

>>> (trueP -> (˜ (ocons (C’’, onil) = onil) \/ falseP))

Method application: abstract_metavars
Method application: rewrite
Method application: normalise all_i_nf
Method application: rewrite_equiv (imp3 :: or4 :: neq_cons _nil :: nil)

trueGoal!
Branch closed!

T16C: Exhaustive Cases Plan

The exhaustive cases goal comes next. The goal is non-trivial, as it contains the defined

functionoapp(<>), not just datatype constructors:

allGoal tuple_type (olist nat :: nil) (u\
existsGoal (x\
caseGoal
Case: (trueP, u)
>>> (A /\ (u = (C’ <> (ocons C’’ onil))))))

**
maybeCases

**
wfGoal

Method application: case_strat
Method application: set_conditions

caseGoal
Case: (trueP, u)
>>> (trueP /\ (u = (C’ <> (ocons C’’ onil))))

Even though there is only a single term being considered here, and not a tuple of terms,

there is still a tuple ‘wrapper’ around(C’ <> (ocons C’’ onil)) in the underlying

syntax. This is removed by thecase induction method (rather confusingly, the gen-

erality of the method means we label the step as an induction without any inductive

hypotheses and with only one case!):
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Method application: case_equiv (and3 :: nil)
Method application: case_induction (tuple_split 1)
Method application: case_equiv (tuple_eq_base :: nil)

caseGoal
Case: (trueP, p)
>>> (p = (C’ <> (ocons C’’ onil)))

Moving on, the case strategy goes through a waterfall of methods, eventually applying

structural list induction tov :

Method application: case_induction list_struct

caseGoal
Case: (trueP, onil)
>>> (onil = (C’ <> (ocons C’’ onil)))

**
allGoal nat (v\ allGoal olist nat (w\
caseGoal
Case: (trueP, (ocons v w))
(w = (C’ <> (ocons C’’ onil)))

>>> ( (ocons v w)
↑

= (C’ <> (ocons C’’ onil)))))

In the base case, an existential case split is applied to the first argument ofoapp(<>),

to allow its definition to be applied:

caseGoal
Case: (trueP, onil)
>>>
(onil = (C’ <> (ocons C’’ onil)))

Method application: exists_casesplit list_struct

caseGoal
Case: (trueP, onil)
>>> ((onil = (onil <> (ocons C’’ onil))) \/ (onil = ((ocons G H) <> (ocons C’’ onil))))

Rewriting reduces both disjuncts tofalseP , and the base case is added to the list of

missing cases:

Method application: remove_case_hyps
Method application: case_equiv (oapp1 :: neq_nil_cons :: o r3 :: oapp2 :: neq_nil_cons :: nil)

caseGoal
Case: (trueP, onil)
>>> falseP

Method application: missing_case (case trueP _ (tuple (oni l :: nil)))

trueGoal!
Branch closed!
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The step case also begins with an existential case split motivated by the definition of

oapp(<>). The method reembeds the inductive hypothesis in the conclusion:

allGoal nat (v\ allGoal olist nat (w\
caseGoal
Case: (trueP, (ocons v w))
(w = (C’ <> (ocons C’’ onil)))

>>> ( (ocons v w)
↑

= (C’ <> (ocons C’’ onil)))))

Method application: exists_casesplit list_struct

caseGoal
Case: (trueP, (ocons v w))
(w = (C’ <> (ocons C’’ onil)))

>>> (((ocons v w) = (onil <> (ocons C′′ onil))) \/ ( (ocons v w)
↑

= ( (ocons I J)
↑

<> (ocons C′′ onil))))

↑

Rippling is tried before simplification, and succeeds in fully rippling out the wave

fronts:

Method application: case_ripple oapp2

caseGoal
Case: (trueP, (ocons v w))
(w = (C’ <> (ocons C’’ onil)))

>>> (((ocons v w) = (onil <> (ocons C′′ onil))) \/ ( (ocons v w)
↑

= (ocons I (J <> (ocons C′′ onil)))
↑

))

↑

Method application: case_ripple cons_functional

caseGoal
Case: (trueP, (ocons v w))
(w = (C’ <> (ocons C’’ onil)))

>>> (((ocons v w) = (onil <> (ocons C′′ onil))) \/ ((v = I) /\ (w = (J <> (ocons C′′ onil))))
↑

)

↑

Fertilisation is now applied, which removes the defined function oapp(<>) from the

goal. Simplification can now complete the plan:

Method application: case_fertilisation
Method application: remove_case_hyps

caseGoal
Case: (trueP, (ocons v w))
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>>> (((ocons v w) = (onil <> (ocons C’’ onil))) \/ ((v = I) /\ tru eP))

Method application: case_equiv (and4 :: solve_eq :: or2 :: n il)

caseGoal
Case: (trueP, (ocons v w))
>>> trueP

Method application: trivial_case

trueGoal!
Branch closed!

T16C: Base Case Plan

Having found the missing base case above,Dynamisconstructs the base case and dis-

charges it with rewriting:

maybeCases ** wfGoal

maybeCases

Method application: construct_cases

>>> (foldleft_tr (op1, el1, onil) = foldleft (op1, el1, orev onil))

Method application: waterfall (dynamis_lim 1)
Method application: rewrite
Method application: normalise all_i_nf
Method application: rewrite_equiv (foldleft_tr1 :: orev1 :: foldleft1 :: idty :: nil)

trueGoal!
Branch closed!

T16C: Final Plan

The last step is to solve the constraints on the rule’s wellfounded relation:

wfGoal

Method application: wellfounded (app select_induce (tupl e (app s zero :: olength :: nil)))

trueGoal!
Branch closed!

reached empty agenda
Plan Succeeded

The proof plan for T16C is shown in Figure 12.3. The plan has 37nodes.Dynamis
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schematic induction

embed hypothesis*

speculative ripple
foldltr last

definite ripple
rev last

definite ripple
foldleft2

definite ripple
op1 functional

strong fertilise prop

replace metavariables*

normalise
all i nf

rewrite equiv

and

construct wf goals

begin estimation

lower estimate

trivial estimate

abstract metavars*

normalise
all i nf

rewrite equiv

(1)

(1)
and

set conditions*

case equiv

case induction
(tuple split 1)

case equiv

case induction
list struct

exists casesplit
list struct

remove case hyps

case equiv

missing case
(case trueP (onil))

exists casesplit
list struct

case ripple
oapp2

case ripple
cons functional

case fertilisation

remove case hyps*

case equiv

trivial case

and

construct cases*

normalise
all i nf

rewrite equiv

wellfounded*

Figure 12.3: Proof plan for T16C. * indicates a purely meta-level plan step.
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created and validated the following induction rule:

⊢ Φ(nil)

Φ(l) ⊢ Φ(l <> (x :: nil))

∀l : list(nat).Φ(l)

As part of creating the rule,Dynamisalso invented and validated the following case

split:

∀u:list(nat).(u = nil)∨∃l :list(nat).∃x:nat.(u = (l <> (x :: nil)))

12.5 Summary

This chapter has provided in-depth details of three case studies where theDynamis

system has been used to automatically generate a proof plan.All these examples could

not be automatically solved using recursion/ripple analysis. Furthermore, the case

studies have demonstratedDynamis’s ability to:

• Control problematic speculative steps using a critic.

• Handle both constructor and destructor style examples.

• Generate novel case structure for an induction rule.



Chapter 13

Related & Further Work

13.1 Introduction

In this chapter we compare in detail our strategy and some previous work on induction

rule selection. Specifically:

• Recursion analysis and related approaches.

• Kraan’sPeriwinklesystem [Kraan, 1994].

• Hutter’s labelled fragments [Hutter, 1994].

• Protzen’s lazy induction [Protzen, 1995].

These techniques were surveyed in §2.

13.2 Recursion Analysis

Recursion analysis can be considered to be a group of techniques, descended from the

induction selection methods of [Boyer and Moore, 1979], which all select an induction

244
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rule derived from the relevant recursive functions. The techniques use various methods

to combine and select induction rules, i.e. subsumption [Stevens, 1990], containment

[Walther, 1993] and ripple analysis [Bundy et al., 1989]. They are surveyed in detail in

§2.6. Most inductive theorem provers which automate induction selection use a form

of recursion analysis.

As discussed in §2.7, these techniques have two significant disadvantages: that they

must select a rule from a ‘space’ of induction rules which is predefined by the function

definitions, and that they do not take the effect of the choiceinto account beyond the

first rewriting of each induction term.

Previous work (e.g. [Protzen, 1995] has already addressed these problems to a lim-

ited extent. Our work also has clear theoretical advantagesover recursion analysis in

that it overcomes both these problems, and can prove a wider range of problems. The

evaluation of Chapter 11 has also demonstrated pratical advantages of our strategy, as

theDynamissystem planned proofs for a collection of theorems that cannot be solved

by recursion analysis.

13.3 The Periwinkle System

Like our strategy,Periwinkleuses middle-out reasoning to determine a suitable step

case for an inductive rule, i.e. a schematic step case goal becomes instantiated during

its proof [Kraan, 1994] (see also §2.7.1). The goal schemas are similar in that they use

second order meta-variables to represent unknown induction terms, and use rippling to

guide the step case proof.

However, our work goes beyond Kraan’s in three important respects: the dynamic

construction of induction rules, the generality of the schema and speculation control.
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Periwinkleused the step case obtained by middle-out reasoning to select an induc-

tion rule from a prestored set. In contrast, we use the step case as the basis for an

induction rule which is constructed ‘from scratch’. Our approach lifts the restriction

that all induction rules must be provided to the system beforehand from some outside

source, e.g. generated from function definitions provided by the user.

Our step case schema is more general, as it can be instantiated to destructor style

step cases. We have also suggested using Protzen’s heuristic (see Chapter 4.3.3) to

allow multiple induction hypotheses, although this has notyet been implemented in

Dynamis. Kraan’s step case schema did not allow any of these features, severely re-

stricting the kind of inductive proofs it could perform.

The third key difference is the control of speculative rippling steps — the steps

which instantiate meta-variables — and so determine the form of the induction rule.

Kraan recognised that such steps made rippling potentiallynon-terminating, even when

definite (non-speculative) steps were preferred. In other words, there is no limit on the

complexity of the step case.Periwinkle overcame this problem by placing a finite

limit on the number of such steps, typically a limit of one. This in turn limits step

case proofs, and hence the induction proofs, that the systemcan find. Our strategy

overcame this problem by allowing an initial speculative step, and requiring subsequent

speculations to be licensed by a critic which analysed the failure of rippling. This was

discussed in greater depth in Chapter 7.

Another difference between our work and Kraan’s is that she uses higher-order pat-

tern unification, a decidable restricted form of high-orderunification (HOU), whereas

we use full HOU. Although decidability might be useful in some contexts, we have

not experienced problems with termination in our work. Other authors on middle-out

reasoning have also used full HOU [Hesketh, 1991, Ireland and Bundy, 1996].
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13.4 Labelled Fragments

The first technique which dealt with constructing an induction rule entirely using in-

formation gleaned from proof was the use of labelled fragments in [Hutter, 1994] (see

§2.8.1). The key difference between our approaches is that Hutter’s work was aimed

at proving existential theorems, whilst we have concentrated on universal theorems.

However, it is worth comparing the methods, as there is the potential to extend each

technique into the other’s domain.

Hutter uses labelled fragments — basically an abstract representation of wave rules

— to predict the induction terms which will lead to a successful ripple proof. This is

done by performing a kind of ‘abstract step case’ using the rule fragments. However,

the prediction can be incorrect, i.e. when the actual step case proof is performed it

may fail. In contrast, our strategy determines the same information whilst actually

performing the proof, and so avoids this risk. The techniquewas also restricted to

generating destructor style induction rules, whilst our strategy is not.

13.5 Lazy Induction

Lazy induction [Protzen, 1995] is similar to our strategy inthat it constructs an entire

valid induction rule during a proof attempt, avoiding the need to rely on user provided

rules or those generated from terminating function definitions. It takes the original

conjecture as the step case conclusion, using rippling to guide the proof, definitional

case splits to construct separate proof cases and lazily generating induction hypotheses

whenever they can be used to rewrite the goal (see §2.8.2 for more details).

The technique uses steps which increase the ripple measure,and play the same rôle

as the meta-variable instantiating speculative ripples ofthe schema-based approach.
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We name these speculative steps by analogy, although one of our speculative steps

may be equivalent to many lazy speculative steps.

There are three fundamental differences between our work and lazy induction: the

restriction to destructor-style, the problem of mixed speculation and speculation con-

trol. As far as we know there are no relative disadvantages toour approach.

One key difference is that this method can only generate destructor style inductive

proofs — Protzen’s work is entirely based in a destructor style formalism. We argued

in Chapter 3 why this is overly restrictive for inductive theorem proving: even if one

only ever uses destructor style functions (which authors, in general, do not) then some

useful induction rules are still suggested by ‘constructorstyle lemmas’, e.g.

foldleft tr(F,X,L <> [Y]) = F(foldleft tr(F,X,L),Y)

Unless an equivalent destructor style lemma is also presentthe proof will not be found,

e.g.

L 6= nil → foldleft tr(F,X,L) = F(foldleft tr(F,X,chop(L)), last(L))

(chopremoves the last element of a list.) Converting between the two requires syn-

thesing inverse functions, which is not a practical alternative to allowing constructor

style inductions.

The other fundamental difference between our strategy and lazy induction is that

the latter has no explicit representation of the as-yet-unknown step case throughout the

proof. It does not construct an induction hypothesis until fertilisation, i.e. the point

the hypothesis is applied. The drawback here is that in the middle of the proof, when

some decisions have been made which correspond to a particular form of induction

hypothesis, subsequent proof steps have no way of accessingthis information, and

may make inconsistent decisions. We call this problemmixed speculation, and it can
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significantly increase the size of the search space, as all the search paths where the

speculative steps are not consistent must be explored. The problem arises because

speculation is a local phenomenon, not accessible to the rest of the proof.

In contrast, speculation in our strategy is global. When a decision is made about

the form of the step case, a meta-variable is instantiated, and so this decision is prop-

agated throughout the proof. Future proof steps must be consistent with this choice

of instantiation, and are prevented from making inconsistent choices. This prevents

mixed speculation, and so cuts down the search space compared to lazy induction.

Mixed speculation occurs, for example, if we apply lazy induction to theorems

T15, T16 or T17 from Chapter 11. However, in order to more clearly illustrate the

phenomenon, we use a more concise, abstract example theorem:

f (x) = g(x) (13.1)

where f andg are defined as (omitting base cases):

f (x) = f (p(x)) (13.2)

g(x) = r(g(p(x))) (13.3)

and the following lemmas are given:

f (x) = f (q(x)) (13.4)

g(x) = g(q(x)) (13.5)

Applying lazy induction to the goal (13.1), both (13.2) and (13.4) can be used to specu-

late on the LHS. The same is true for (13.3) and (13.5) on the RHS. Lazy induction will
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try all four possible combinations of these speculative steps, in the following order:

f ( p(x) ) = r(g( p(x) ))
↑

(13.6)

f ( p(x) ) = g( q(x) ) (13.7)

f ( q(x) ) = r(g( p(x) ))
↑

(13.8)

f ( q(x) ) = g( q(x) ) (13.9)

Of these, only the last (13.9) is successful, with the induction hypothesisf (q(x)) =

g(q(x)). The first goal (13.6) almost matches the hypothesisf (p(x)) = g(p(x)), but

the wavefrontr(...) is blocked and the proof fails. Goals (13.7) and (13.8) can beweak

fertilised, but both proofs fail because of mixed speculation — each has induction term

p(...) on one side andq(...) on the other.

If instead we applying our induction strategy to the goal (13.1), we find that only

two of the four combinations are generated (meta-variablesare written asA,B, . . . for

simplicity). The first is:

f (A) = g(A) ⊢ f (B) = g(B)

f (p(A′)) = g( p(A′) ) ⊢ f (p(B)) = g(B)

f (p(A′)) = g(p(A′)) ⊢ f (p(B)) = r(g(p(B)))
↑

This branch corresponds to (13.6), and is blocked. Backtracking over the first step we

get the successful branch:

f (A) = g(A) ⊢ f (B) = g(B) (13.10)

f (q(A′)) = g( q(A′) ) ⊢ f (q(B)) = g(B) (13.11)

f (q(A′)) = g(q(A′)) ⊢ f (p(B)) = g(q(B)) (13.12)

Our strategy has avoided searching the two inconsistent branches. Although the addi-

tional search is not that great in this abstract example, it will increase with the number
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of alternative wave rules and reducible terms. In addition,the search required to estab-

lish that an inconsistent branch will fail could be arbitrarily large.

The third fundamental difference between our strategy and lazy induction, is that

Protzen did not address the problem of non-terminating speculation in his thesis. In

fact, he does not even recognise it, leaving his strategy as described highly prone to

non-termination. Hence our work on speculation control (see §13.3) represents an

advance over lazy induction.

13.6 Further Evaluation

We now discuss various ways in which the work described in this thesis could be

continued. The most immediate area is to extend the implementation of Dynamisto

reflect the full induction strategy set out in Chapter 4 to Chapter 8. This would require:

1. Case splits during rewriting;

2. Creation of multiple induction hypotheses, via Protzen’sHeuristic, i.e. adding

applicable instances of the inductive conjecture as hypotheses during the proof

(see §4.3.3);

3. Creation of multiple step cases (see §6.3);

4. Side condition critic for failed estimation proofs (see §6.5.5);

5. πσ-rewriting (see §8.3.2).

Implementation of features (1) to (4) was suggested by the experimental evaluation in

Chapter 11: they would allow a larger number of theorems to be planned byDynamis

using the default strategies. Feature (5) would reduce the rewriting search — although,
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as discussed below, its completeness has not yet been established. Features (3) to (5)

are novel, and implementation would allow their effectiveness to be evaluated.

In addition, the description of (2) in [Protzen, 1995] does not provide much de-

tail of its implementation or evaluation, and no implementation is currently available.

Including it inDynamiswould allow Protzen’s Heuristic to be assessed. Given our ex-

perience with speculative ripple steps, we anticipate thatadditional search heurisitics

will have to be developed to make this effective.

Another possible direction for research is the implementation of lazy induction

[Protzen, 1995] to allow experimental comparison with our schema-based approach.

The evaluation in Chapter 11 failed to support or refute the hypothesis that our strat-

egy is more powerful than lazy induction, because of shortcomings of the implemen-

tation. However, it did highlight the lack of data on lazy induction, and a working

implementation is required to overcome this problem. It would also allow us to test

the theoretical claim that using a schema reduces search compared to a lazy generation

approach, by avoiding mixed speculation (see §13.5 above).

13.7 Developing the Strategy

As well as fully implementing and evaluating our induction strategy, there are a number

of areas where we can see the strategy could be improved. We discuss these in turn

below.

Extending the Speculation Critic

The speculation critic currently has two obvious shortcomings. Firstly, it can only

create constructor style step cases. However, it may be possible to extend the critic
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patch to destructor style by instantiating a hypothesis meta-variable to match the fully

rippled-in wave fronts in the conclusion. As an example, consider the following, where

a required wave front has been rippled in to find an instantiation that would generate it

(A etc. are meta-variables):

. . .A+B. . . ⊢ . . . s(C+D)
↓
. . .

To find a destructor style step case, a destructor style critic needs to identify that the

wave front can be generated fromC+ D using the destructor style definition of+,

providingA is instantiated top(A′).

Secondly, the current speculation critic can suffer from non-termination, e.g. the-

orem T7C in §11.4.3. This could be prevented by imposing somekind of measure

reduction on the critiqued goals to ensure that the proof hasprogressed since the last

application of the critic. Further experimental work is required to obtain more exam-

ples of desirable and undesirable speculation, in order to formulate a suitable measure.

Formalising Neutralisation

Although the neutralisation procedure used by the step casestrategy has been imple-

mented inDynamis, we have not formulated a clear, formal description. Doing this

would allow a cleaner implementation, and probably help us to understand the bugs in

Dynamisthat allowed certain corresponding wave-fronts in hypothesis and conclusion

to remain unneutralised (see Chapter 11). We have already provided a specification

that any neutralisation procedure must meet (see Definition3). The procedure as im-

plemented is suitable for formulation as a set of rules, similar to those that defined

embeddings [Smaill and Green, 1996].
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Instantiation Selection

We can see two shortcomings with the way in which the strategysearches the possible

instantiations of the meta-variables in a given goal. Firstly, it is prone to searching

the same instantiation multiple times if it is generated by different speculative ripples.

A more efficient strategy would be to identify all possible speculative steps and the

instantiations they generate, and only try each instantiation once.

Interleaving Rule Validation

The induction strategy currently constructs a step case, and then constructs a well-

foundedness plan for it. In contrast, [Protzen, 1995] interleaves the two processes, by

only allowing wave fronts that contain lower argument bounded functions to be moved

towards induction positions, where they may be incorporated into induction hypothe-

ses. Hence the wellfoundedness checks are integrated into rewriting. This is more

efficient, as non-wellfounded step cases are pruned at an early stage, rather than after

they have been completed.

A similar approach could be taken with our strategy, using a planner that is capa-

ble of prioritising open subgoals. By giving a partially instantiated estimation goal a

higher priority than its step case, the strategy could ensure that any instantiation of the

induction terms is immediately validated before the step case continues.

Existential Problems

All the example theorems considered in this thesis have beenpurely universally quanti-

fied. The application to existential theorems — and hence program synthesis — would

be a fruitful research direction, given that one significantproblem in this work is the

need to generate novel inductions rules that cannot be generated from the function
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definitions provided, i.e. the existential witness is a program with a novel recursive

structure [Hutter, 1994].

Object Level Proofs

TheλClamsystem, and hence theDynamissystem built on top of it, does not have any

facility for constructing object level proofs from the proof plans it produces. Indeed,

λClam has been deliberately designed to avoid commitment to a particular logic —

this is entirely the decision of the method designer, who maybe as specific about the

logic as she chooses.

Previous work on proof planning has established that inductive proof plans can be

used by a variety of tactic-based systems to generate proofsin a variety of logics, e.g.

[Bundy et al., 1991, Boulton et al., 1998]. However, our proof plans are substantially

different from those in previous work, in that they also include a proof that the induc-

tion rule is valid. Further work is required to validate these plans by execution to object

level proofs.

13.8 Exploring πσ-Rewriting

Chapter 8 set out a novel technique for controlling our induction strategy’s search

during rewriting/rippling. However, the technique is morewidely applicable to any

non-confluent rewriting system. Several areas of future research suggest themselves.

Firstly, identifying other applications which use such rewriting. Secondly, implemen-

tation and evaluation of the technique, to assess how effective it is in reducing search

for various applications.

Another direction is the proof of completeness forσ-rewriting, which we presume
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could be used with the existingπ-completeness result to prove completeness for full

πσ-rewriting.

13.9 Research on Proof Planning

Another area closely related to our thesis is proof planning, and theλClamproof plan-

ner in particular. On a prosaic level, our evaluation uncovered bugs in theλProlog

implementation underlying theλClam proof planner. These need to be addressed in

some way.

More interestingly, in Chapter 10 we found the lack of a cut methodical inλClam

to be a very significant factor in the design of our methods. Search during proof plan

construction can be made impractical when key choices are preceded by a large num-

ber of unimportant ones — unless the previous choices pointshave been cut. Without

this ability, we were sometimes forced to use a less clear method formulation than

we would have chosen, in order to avoid constant backtracking over such unimpor-

tant choices, e.g. equivalence preserving rewriting. The design could have been much

cleaner if a cut methodical was available. A design for a proof planner which handles

cut using explicit OR branches has been proposed1, but not yet implemented.

In Chapter 9 we gave a design for a critics planner which integrates critics with the

methodical-based approach ofλClam. Further research could assess whether this is,

in general, a suitable proof planning architecture, by perhaps investigating whether it

allows superior reimplementations of previous critic work, e.g. with more declarative

formulations.

Our induction strategy is a case study in delaying search choices using meta-

variables: they are used for induction terms, hypotheses, measure functions etc. Fur-

1Julian Richardson, personal communication.
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ther work is needed to establish how is this related to previous proof planning research

that uses similar techniques e.g. [Cheikhrouhou and Siekmann, 1998], and whether

such work can be included in a common reasoning framework.

13.10 Summary

In this chapter we have compared our induction strategy to four pieces of closely re-

lated research in automated induction rule selection. It had clear advantages over all of

them.

Compared to Kraan’sPeriwinklesystem our strategy has three significant advan-

tages:

• It constructs induction rules dynamically, rather than relying on a prestored set.

• Induction rules may be destructor style and, in theory, havemultiple induction

hypotheses.

• The speculation critic allows speculative rippling to be flexibly controlled, rather

than setting a fixed limit on the search.

Compared to Protzen’s lazy induction our strategy has three advantages:

• Induction rules need not be destructor style. Recall that constructor style rules

are required even if all function definitions are destructorstyle.

• Our strategy does not suffer from mixed speculation, because meta-variables are

used to explicitly represent the developing induction rule.

• The speculation critic controls speculative rippling — a problem not addressed

at all by Protzen.
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We have also outlined a number of future search directions based on our work, which

include:

• Further implementation and evaluation of our strategy withtheDynamissystem.

• Designing a destructor style speculation critic, and finding a measure that forces

the critic to terminate.

• Ensuring that each meta-variable instantiation is considered only once.

• Interleaving the step case proof with the wellfoundedness proof.

• Synthesising programs with novel recursive structures.

• ExecutingDynamis’s plans to object level proofs.

• Implementing and proving completeness ofπσ-rewriting.

• Evaluating our proof planner design.



Chapter 14

Conclusions

14.1 Introduction

In this chapter we review the contributions made by the thesis, and assess whether our

work has met the aims laid out at the beginning.

14.1.1 Contributions of the Thesis

Our thesis contributes specifically to the understanding ofinductive theorem proving

in four key ways:

1. It identifies the significance of restricting induction rules to constructor style or

destructor style.

2. It describes improved search control and coverage for induction rule creation

using a schema-based approach.

3. It includes a novel procedure for generating missing proof cases.

4. It gives a modular induction strategy for creating induction rules during proof.
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We expand on each of these below.

Rule Structure Firstly, in Chapter 3 we have explained the relationship between

constructor and destructor style induction rules and function definition, and explained

why neither style of rule is totally sufficient for inductiveproof. This prompted the

definition of simple induction rules as a suitable class for automated proof, and a novel

formulation of creational rippling in order to provide search control for this class.

Search Control and Coverage Secondly, we have shown in Chapter 4 how a step

case schema can be used to delay key choices until the middle of the step case proof,

giving better choice of induction rule than recursion/ripple analysis, and which unlike

previous work [Kraan, 1994, Protzen, 1995] is not just restricted to either constructor

or destructor style step cases. Search control is also improved: non-terminating spec-

ulative steps are controlled using a critic on the ripple method (Chapter 7), and using a

meta-variable schema avoids the problem of mixed speculation that arises with a lazy

generation approach [Protzen, 1995] (Chapter 13).

Case Synthesis Thirdly, a procedure for generating the missing cases of an in-

duction rule was given in Chapter 5, based on trying to prove that the existing cases are

exhaustive. The failed proof is patched by adding missing cases to the conjecture, fol-

lowing previous work on correcting faulty conjectures [Protzen, 1995, Monroy, 2000].

We identified that non-equivalence preserving steps — in particular instantiating free

variables — are incompatible with such corrective techniques. The equivalence pre-

servingexistential case splitswas proposed instead.

Modular Strategy Lastly, in Chapter 6 an induction strategy for generating in-

duction rules during the inductive proof was described. It is modular with respect to

three sub-strategies: one for step case generation, another for ensuring step case well-

foundedness, and a third for generating missing proof cases. A restricted version of
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this strategy has been implemented in theDynamissystem, using our schematic step

case strategy, Walther’s estimation method and our case generation procedure as the

three sub-strategies ‘modules’.

The thesis also makes more general contributions to automated theorem proving.

Some of the techniques mentioned above have potential applications outside induc-

tion rule creation. Our strategy for generating missing cases of a case analysis, which

connects the problem to research in correcting faulty conjectures. We proposedπσ-

rewriting in Chapter 8 as a way to further reduce the proof search in inductive proof,

and we have proved the completeness ofπ-rewriting, a useful restriction of this tech-

nique. It is a technique that could be applied to other non-confluent rewriting systems.

Furthermore, our arguments for the superiority of a schema approach over lazy gener-

ation has implications for any delayed commitment strategy.

Finally, we have described a novel proof planning architecture for specifying critics

and combining them with method expressions.

14.1.2 Have We Achieved Our Aims?

The aims set out at the beginning of this thesis were to designa practical, delayed

choice induction rule creation strategy, which improved onprevious research with bet-

ter search control for speculation steps and a wider range ofcoverage of induction

rules, and hence theorems.

We have demonstrated that our strategy is a practical approach to induction rule

creation by implementing it in theDynamissystem and evaluating it on a range of

test problems. Three of the contributions above improve thesearch control for the

crucial step case proof, and of these two have been implemented and evaluated. The

evaluation also supported the hypotheses that the strategycan construct a wider range
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of induction rules than previous work, which has been restricted to constructor style

[Kraan, 1994] or destructor style [Protzen, 1995] induction rules.

However, a few of our aims have not been met. The claim that ourinduction

strategy isstrictly better than lazy induction — i.e. it can proveany theorem lazy

induction can — has not been backed up withexperimentalevidence. This is partly

because of the lack of available data for lazy induction. We have shown in Chapter

13 that our strategy is theoretically superior to lazy induction, although experimental

evidence could not be gathered because no working implementation exists. We hope

further work will be able to gather this evidence. Furthermore, some parts of the

strategy still have to be implemented and evaluated experimentally: notably creating

induction rules with multiple induction hypotheses and multiple step cases, andπσ-

rewriting.

In conclusion, further implementation and evaluation workis required to provide

conclusive experimental evidence that our full induction strategy meetsall our aims,

but the majority of our original aims have been met. We have demonstrated experi-

mentally that even a partial version already exceeds the state of the art in automated

inductive theorem proving in several important respects.

Our work also has implications beyond inductive theorem proving. The induction

strategy presented in this thesis is perhaps one of the most complex yet implemented

using proof planning, both because it brings several complex proof strategies together

in order to construct an inductive proof, and because of its extensive use of delayed

commitment with meta-variables. This demonstrates that proof planning is a viable

framework for developing such complex automated proof strategies. We anticipate

that the techniques employed here can be used to improve automated theorem proving

in a variety of domains, and that a better understanding of proof planner design —
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such as improved support for critics and meta-variables — would be of great benefit to

automated reasoning.



Appendix A

Glossary

[n ] The finite set{1,2, . . . ,n}.

[n,m] The finite set{n,n+1, . . . ,m}.

Base Case An induction casewith no induction hypothesis.

Case Complete Covering all possible cases. For example, an complete set ofin-

duction cases, or completerecursive definition.

Case Conditions A hypothesis of aninduction casewhich isnot a variant of the

rule’s conclusion.

Case Formula A formula which expresses thecase completenessof a set of cases.

Constructor Style Of an induction rule: having induction termswhich are com-

pound in conclusions of each step case, and non-compound in the hypotheses.

Of a recursive definition: having a head with compound arguments and recursive

calls with non-compound arguments.

Context In rippling: parts of term which do not belong to the term’sskeleton.
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Creational Rippling An extension ofrippling which can handlewave frontsin

the induction hypothesisby having a commonskeletonfor two different terms.

See §3.4.

Destructor Style Induction Of an induction rule: having induction termswhich

are non-compound in conclusions of each step case, and compound in the hy-

potheses. Of arecursive definition: having a head with non-compound argu-

ments and recursive calls with compound arguments.

Domain Of a substitutionσ: the set of variables{x : x/t ∈ σ} replaced by the

substitution, written asDom(σ).

Dual Induction Of a recursive function: aninduction rulewith the same recursive

structure as the function: cases of the definition map toinduction cases; the

head of a defining equation maps to a case’s conclusion; recursive calls map to

induction hypotheses; function arguments map toinduction terms; conditions on

an equation map tocase conditions.

Embedding A mapping of a term tree into another term tree where functionsym-

bols and constants are mapped to copies of themselves and which preserves or-

dered ancestor-descendant relationships. Can be used inrippling to map askele-

ton into another term.

Estimation A proof technique used to prove inductions and definitionswellfounded.

Existential Case Split An equivalence preserving proof step which proves an ex-

istential statement by proving a disjunct of instantiations of the existential vari-

able. The set of instantiations must becase complete.
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Induction A proof which establishes a statement by using some variantsof a state-

ment to prove another variant. Seeinduction ruleand §2.2.

Induction Case The premise of aninduction rule.

Induction Hypothesis A hypothesis in aninduction casewhich is a variant of the

rule’s conclusion.

Induction Term A term substituted into aninduction positionin the premises of

an induction rule.

Induction Position A universally quantified variable in the conclusion of anin-

duction rule. Also the corresponding subterm in the variants of the conclusion

in the rule’s premises.

Induction Rule A rule of inference which represents aninductionargument. This

thesis deals withsimple induction rules.

Lazy Induction A technique for automatingdestructor style inductionby rewrit-

ing a conjecture to create and removecontext, usingProtzen’s heuristicto gen-

erateinduction hypotheses. See §2.8.2.

Multiset An unordered collection of objects, in which each object mayappear

more than once.

Neutralisation In creational rippling: the process of finding correspondingwave

fronts in two terms and making this syntax part of their commonskeleton.

Noetherian Induction The most general form ofinduction. All induction rules

are instances of the Noetherian induction rule. See §2.2.1.
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Protzen’s Heuristic In automatedinduction, generating aninduction hypothesiswhen

the goal can be rewritten with an instance of the original conjecture.

Recursive Function A function defined in terms of itself. The definition must be

wellfoundedto be valid.

Rippling A heuristic rewriting technique which removes the differences between a

term and itsskeleton. Used to automatestep caseproofs by removing the differ-

ences between the induction conclusion and one or more induction hypotheses.

See §2.5.

Simple Induction Rule A syntactic restriction oninduction ruleswhere the rule’s

conclusion is of the form∀x1. . . .∀xn.Φ. The rule’s premises are all sequents that

have a conclusion which is an instance ofΦ and a list of hypotheses which are

either:

• induction hypotheseswhich are instances ofΦ with optional universal quan-

tification, or

• case conditions.

See §3.3 for a formal definition. For a simple induction rule to be valid it is

sufficient that it iswellfoundedandcase complete.

Skeleton A term formed by removing some of the structure from another term.

Step Case An induction casewith at least oneinduction hypothesis.

Substitution A function from terms to terms, defined by a set of variable/term

pairsx/t. A substitutionσ replaces all occurences ofx with t for all x/t ∈ σ. See

domain.
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Var The free variables of a term.

Wave Front A syntactic difference between a term and itsskeletonin rippling.

Wellfounded Definition A recursive definitionwhere each recursive call is smaller

than the head of the definition, by somewellfounded relation.

Wellfounded Induction An inductionwhere the eachinduction hypothesisis smaller

than its corresponding conclusion by somewellfounded relation.

Wellfounded Relation A relation≻ with no infinite descending chainsx1 ≻ x2 ≻

x3 ≻ . . . .



Appendix B

Datatype & Function Definitions

This appendix collects together all of the definitions for the datatypes and functions

mentioned in this thesis. For simplicity all functions, including datatype destructors,

are total. If a function is defined under a alternative name inDynamisthis is given.

Datatype: bool

The boolean datatype simply has two base constructors:

true : bool

f alse : bool

We define the usual propositional functions¬,∧,∨,→,↔ of typebool→ bool→ bool.
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Datatype: nat

The Peano natural numbersnat has two constructors 0 (zero) ands (successor) and the

destructorp (predecessor):

0 : nat

s : nat→ nat

p : nat→ nat

p(0) = 0

p(s(X)) = X

Datatype: list(τ)

Thelist(τ) (olist in Dynamis) datatype has two constructorsnil (the empty list,onil )

and :: (ocons ) and one destructortail :

nil : list(τ)

:: : τ → list(τ) → list(τ)

tail : list(τ) → list(τ)

tail(nil) = nil

tail(H :: T) = T
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For each typeτ we define a second destructorheadτ:

headτ : list(τ) → τ

headτ(H :: T) = H

headbool(nil) = true

headnat(nil) = 0

headlist(α)(nil) = nil

headcard(nil) = red

...

We write omit the subscriptτ when this is obvious from the context. An alternative

would be to use partial functions and define a single generichead.

Datatype: card

The card datatype is defined for the Gilbreath Card Trick (see Chapter 11), and is

isomorphic tobool.

red : card

black : card

Function: <> (append)

oapp in Dynamis.

<> : list(τ) → list(τ) → list(τ)

nil <> M = M

H :: T <> M = H :: (T <> M) (C)

L 6= nil → L <> M = head(L) :: (tail(L) <> M) (D)
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Function: even

even : nat→ bool

even(0) = true

even(s(0)) = f alse

even(s(s(X))) = even(X) (C)

X 6= 0∧X 6= s(0) → even(X) = even(p(p(X))) (D)

Function: evenelems

evenelems : list(τ) → list(τ)

evenelems(nil) = nil

evenelems(X :: nil) = nil

evenelems(X :: Y :: L) = Y :: evenelems(L) (C)

L 6= nil ∧ tail(L) 6= nil → evenelems(L) = head(tail(L)) :: evenelems(tail(tail(L))) (D)

Function: f oldle f t

f oldle f t : (α → β → α) → α → list(β) → α

f oldle f t(F,A,nil) = A

f oldle f t(F,A,H :: T) = F( f oldle f t(F,A,T),H) (C)

L 6= nil → f oldle f t(F,A,L) = F( f oldle f t(F,A, tail(L)),head(L)) (D)

Function: f oldle f t tr

f oldle f t tr : (α → β → α) → α → list(β) → α

f oldle f t tr(F,A,nil) = A

f oldle f t tr(F,A,H :: T) = f oldle f t tr(F,F(A,H),T) (C)

L 6= nil → f oldle f t tr(F,A,L) = f oldle f t tr(F,F(A,head(L)), tail(L)) (D)
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Function: f oldright

f oldright : (β → α → α) → α → list(β) → α

f oldright(F,A,nil) = A

f oldright(F,A,H :: T) = F(H, f oldright(F,A,T)) (C)

L 6= nil → f oldright(F,A,L) = F(head(L), f oldright(F,A, tail(L))) (D)

Function: f oldright tr

f oldright tr : (β → α → α) → α → list(β) → α

f oldright tr(F,A,nil) = A

f oldright tr(F,A,H :: T) = f oldright tr(F,F(H,A),T) (C)

L 6= nil → f oldright tr(F,A,L) = f oldright tr(F,F(head(L),A), tail(L)) (D)

Function: hal f

hal f : nat→ nat

hal f(0) = 0

hal f(s(0)) = 0

hal f(s(s(X))) = s(hal f(X)) (C)

X 6= 0∧X 6= s(0) → hal f(X) = s(hal f(p(p(X)))) (D)

Function: len

olength in Dynamis.

len : list(τ) → nat

len(nil) = 0

len(H :: T) = s(len(T)) (C)

L 6= nil → len(L) = s(len(tail(L))) (D)
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Function: ≤

leq in Dynamis.

≤ : nat→ nat→ bool

0≤Y = true

s(X) ≤ 0 = f alse

s(X) ≤ s(Y) = X ≤Y (C)

X 6= 0∧Y 6= 0 X ≤Y = p(X) ≤ p(Y) (D)

Function: + (plus)

+ : nat→ nat→ nat

0+Y = Y

s(X)+Y = s(X +Y) (C)

X 6= 0→ X +Y = s(p(X)+Y) (D)

Function: odd

odd : nat→ bool

odd(0) = f alse

odd(s(0)) = true

odd(s(s(X))) = odd(X) (C)

X 6= 0∧X 6= s(0) → odd(X) = odd(p(p(X))) (D)
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Function: oddelems

oddelems : list(τ) → list(τ)

oddelems(nil) = nil

oddelems(X :: nil) = X :: nil

oddelems(X :: Y :: L) = X :: oddelems(L) (C)

L 6= nil ∧ tail(L) 6= nil → oddelems(L) = head(L) :: oddelems(tail(tail(L))) (D)

Function: quot

quot : nat→ nat→ nat

quot(X,0) = 0

Y 6= 0∧¬(Y ≤ X) → quot(X,Y) = 0

Y 6= 0→ quot(X +Y,Y) = s(quot(X,Y)) (C)

Y 6= 0∧ leq(Y,X) → quot(X,Y) = s(quot(X−Y,Y)) (D)

Function: rev

orev in Dynamis.

rev : list(τ) → list(τ)

rev(nil) = nil

rev(H :: T) = rev(T) <> (H :: nil) (C)

L 6= nil → rev(L) = rev(tail(L)) <> (head(L) :: nil) (D)
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Function: rotate

rotate : nat→ list(τ) → list(τ)

rotate(0,L) = L

rotate(X,nil) = nil

rotate(s(X),H :: T) = rotate(X,T <> (H :: nil)) (C)

X 6= 0∧L 6= nil → rotate(X,L) = rotate(p(X), tail(L) <> (head(L) :: nil)) (D)

Function: sum

sum : list(nat) → nat→ nat

sum(nil ,X) = X

sum(H :: T,X) = sum(T,X +H) (C)

L 6= nil → sum(L,X) = sum(tail(L),X +head(L)) (D)

Function: × (times)

× : nat→ nat→ nat

0×Y = 0

s(X)×Y = (X×Y)+Y (C)

X 6= 0→ X×Y = (p(X)×Y)+Y (D)
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Dynamis Documentation

This appendix documents several aspects of theDynamissystem: how to run it, the

lower level methods that were not fully covered in Chapter 10 and theλProlog pred-

icates used in method pre- and postconditions. We also detail the minor changes that

were made to the mainλClamsource code in order to integrateDynamis’s code.

C.1 Running Dynamis

There are two predicates that can be used at theDynamiscommand line to plan theo-

rems. Both are built on top ofλClam’s claudio plan (version 4.0).

plan and display: meth -> query -> o

Initiates planning of the given query with the given method,and displays the plan if

one is found.

dynamis plan: meth -> query -> int -> style -> o

Loads a predetermined configuration of rewrite and wave rules, then initiates planning
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of the given query with the given method. If successful it displays the plan.

The configuration is determined by thestyle , which is the function definition

style to be used (constructor or destructor ), and an integer indicating the lemma

set to be loaded. This information must be hard-coded beforehand. For example, the

command:

dynamis_plan dynamis_crit comp 1 constructor.

relies on the following two hard-coded facts:

defn_rules plus constructor [plus1, plus2] [plus2].

needs comp 1 constructor [plus_right1, plus_right2] [plus _right2].

C.2 Step Case Methods

Method: embed hypothesis

Theembed hypothesis method, shown in Figure C.1, takes an unannotated step case

goal with a single hypothesis and adds embeddings for hypothesis and conclusion.

The preconditions embed the skeletonSkel into both the hypothesisIndHyp and

conclusionConc, with embeddingsEH1 and EC1 respectively. The postconditions

merge and orient wave-fronts to give embeddingsEH2 andEC2, and then weigh them

using the number of wave-fronts (HW) and the wave measure (Out , In ) respectively.

The method’s subgoal has a single annotated induction hypothesisNewAnnHyp.

Method: redo embeddings

Shown in Figure C.1 is theredo embeddings , which recomputes the conclusion em-

bedding during the middle of the step case. It is required after the speculation critic
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Method: embed_hypothesis

Goal: (caseSchema Cond Hyps (preRippleHyps Skel [IndHyp]) Conc)

Pre:

(once (embedding Skel EH1 IndHyp,
embedding Skel EC1 Conc))

Post:

(tidy_hyp_context EH1 EH2 HW,
tidy_conc_context EC1 outward EC2 Out In,
AnnHyp = (annHyp IndHyp Skel EH2 HW EC2 Out In))

SubGoal: (caseSchema Cond Hyps (rippleHyps [AnnHyp]) Conc)

'

&

$

%

Method: redo_embeddings

Goal: (caseSchema Case Hyps (rippleHyps [AnnHyp]) Conc)

Pre:

(AnnHyp = (annHyp Hyp Skel EH HW _ _ _),
embedding Skel EC1 Conc)

Post:

(tidy_conc_context EC1 outward EC2 Out In,
NewAnnHyp = (annHyp Hyp Skel EH HW EC3 Out In))

SubGoal: (caseSchema Case Hyps (rippleHyps [NewAnnHyp]) Conc)

Figure C.1: The embedding methods: embed hypothesis and redo embeddings .
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Method: (definite_ripple Rule Ad)

Goal: (caseSchema Case Hs (rippleHyps [AnnHyp]) Conc)

Pre:

(AnnHyp = (annHyp Hyp Skel EH HW EC1 Out In),
wave_rule_list Rules,
rewrite_inner (rewr_list Rules rewr_match) Rule _ Conc New C Cond Ad,
not (rulestyle Rule destructor),
reverse Ad At,
subterm_embed undir Rule At [] EC1 EC2 Skel NewC bool,
tidy_conc_context EC2 anydir EC3 NewOut NewIn,
measure_less Out In NewOut NewIn)

Post:

(NewAnnHyp = (annHyp Hyp Skel EH HW EC3 NewOut NewIn),
Main = (caseSchema Case Hs (rippleHyps [NewAnnHyp]) NewC),
condition_goal Cond Case Hs

(c\ (caseSchema Case Hs sideCond c)) Main SubGoal)

Subgoal: SubGoal

Figure C.2: Clause 1 of the definite ripple method.

has instantiated a meta-variable, and the embedding in the main step case plan branch

needs updating to reflec this.

The method works in a similar way toembed hypothesis , but leaves the hypoth-

esis embedding untouched.

Method: definite ripple

The method has two clauses, shown in Figure C.2 and Figure C.3: the first for wave-

measure decreasing ripples, the second for creational ripples that remove hypothesis

wave-fronts. In both clauses, the conclusion is rewritten with the relationrewr match ,

which does not instantiate metavariables. The rewritten subterm is reembedded with
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Method: (definite_ripple Rule Ad)

Goal: (caseSchema Case Hs (rippleHyps [AnnHyp]) Conc)

Pre:

(AnnHyp = (annHyp Hyp Skel EH1 HW EC1 _ _),
wave_rule_list Rules,
rewrite_inner (rewr_list Rules rewr_match) Rule _ Conc New C Cond Ad,
not (rulestyle Rule constructor),
reverse Ad At,
subterm_embed undir Rule At [] EC1 EC2 Skel NewC bool,
cancel_context 0 At Skel NewSkel Hyp EH1 EH2 NewC EC2 EC3,
reembed NewSkel bool Hyp bool EH2 EH3,
tidy_hyp_context EH3 EH4 NewHW,
NewHW < HW)

Post:

(tidy_conc_context EC3 outward EC4 Out In,
NewAnnHyp = (annHyp Hyp NewSkel EH4 NewHW EC4 Out In),
Main = (caseSchema Case Hs (rippleHyps [NewAnnHyp]) NewC),
condition_goal Cond Case Hs

(c\ (caseSchema Case Hs sideCond c)) Main SubGoal)

SubGoal: SubGoal

Figure C.3: Clause 2 of the definite ripple method.

the corresponding subterm of the skeletonSkel.

In the first clause, the preconditions check the wave-measure is reduced. In the

second, neutralisation is performed to give an expanded skeleton NewSkel , and new

embeddings for the hypothesis (EH2) and the conclusion (EC3). The weight of the

hypothesisNewHW(the number of wave-fronts) is measured — it must be less thanthe

old weightHW.

Both clauses disallow certain rewrite rule styles in order toprevent unwanted ripple

steps. Destructor style rules are typically used in creational steps, and so the first
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Method: meta_ripple

Goal: (caseSchema Cond Hyps (rippleHyps [AnnHyp1]) Conc)

Pre:

(AnnHyp1 = (annHyp Hyp Skel EH HW EC1 Out In),
embedding Skel EC2 Conc,
tidy_conc_context EC2 anydir EC3 Newout In,
measure_less Out In NewOut In)

Post: (AnnHyp2 = (annHyp Hyp Skel EH HW EC3 NewOut In)

Goal: (caseSchema Cond Hyps (rippleHyps [AnnHyp2]) Conc)

Figure C.4: The meta ripple method.

clause excludes these rules. Constructor style rules are typically used in wave measure

reducing steps, and so the second clause excludes them. These restrictions only affect

definitional rewrites — lemmas are always allowed.

Method: meta ripple

Themeta ripple method is shown in Figure C.3. A meta-ripple step reduces the wave

measure of the embedding without rewriting the underlying term. The preconditions

simply reembed the step case skeleton in the conclusion. Thenew embeddingEC3

must be less than the original embeddingEC1.

Method: forwards ripple

The forwards ripple method is used after the speculation critic has been applied. It

ripples inwards the ‘missing’ wave fronts inserted by the critic, so that a suitable instan-

tiation that unblocks the main ripple proof can be found withthespeculate wavefronts
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Method: (forwards_ripple Rule Ad Ripples)

Goal: (caseSchema Case Hyps (blockedGoal Skel E1 In) Conc)

Pre:

(wave_rule_list Rules,
rewrite_inner (rewr_list Rules rev_rewr_match)

Rule _ Conc NewC trueP Ad,
reverse Ad At,
subterm_embed undir (backwards Rule) At [] E1 E2 Skel NewC bo ol,
tidy_conc_context E2 inward E3 nil NewIn,
measure_less nil In nil NewIn)

Post: (varadd (definite_ripple Rule Ad) Ripples)

SubGoal: (caseSchema Case Hyps (blockedGoal Skel E3 NewIn) NewC)

Figure C.5: The forwards ripple method.

method (see below). This strategy is implemented in theripple in and speculate

method (see Figure 10.12).

The forwards ripple method is shown in Figure C.5. Its preconditions are simi-

lar to the first clause of thedefinite ripple method (see Figure C.2). The conclusion

Conc is rewritten toNewC, and the embedding is updated fromE1 to E3. The key dif-

ference from standard rippling is that we are constructing the proof in reverse, as we

are looking for an instantiationearlier in the proofwhich would have unblocked the

current ripple goal. Confusingly, proof search inλClam is normally backwards (from

theorem to axioms) so by reversing the proof direction we arenow going forwards

(from axioms to theorems). Hence the name of the method.

Because its areverseripple method:

• the method ripples wave fronts inwards.



Appendix C. Dynamis Documentation 284

'

&

$

%

Method: (speculate_wavefronts Ripples RipplePlan)

Goal: (caseSchema _ _ (blockedGoal Goal E _) Conc)

Pre:

(fully_rippled_subs Conc E [] Subs,
speculate_subs Subs)

Post: (compose_plan_steps Ripples RipplePlan)

SubGoal: trueGoal

Figure C.6: The speculate wavefronts method.

• the rewrite relation is usedbackwards: rev rewr match instead ofrewr match .

• The wave measure mustincrease.

Method: speculate wavefronts

Thespeculate wavefronts method is applied when theripple in and speculate

method (see Figure 10.12) has exhaustively rippled in the ‘missing’ wave fronts so that

they surround meta-variables. It is shown in Figure C.6. The method tries to find an

instantiation of the goal’s meta-variables which would produce the fully rippled-in

wave fronts.

Its preconditions find the pairings of wave front/meta-variableSubs , and then com-

putes a set of instantiations if one exists. The postconditions instantiateRipplePlan

with the ripple steps that lead to the instantiation, so thatthey can be applied in reverse

in the main step case plan branch.
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Method: strong_fertilise

Goal: (caseSchema _ _ (rippleHyps [AnnHyp]) Conc)

Pre:

(AnnHyp = (annHyp Hyp _ _ 0 _ _ _),
rewrite_match_with_hyp equiv Hyp trueP Conc trueP [],
Conc = Hyp)

Post: true

Subgoal: trueGoal

Figure C.7: The strong fertilise method.

Method: strong fertilise

Strong fertilisation comes in two forms. Firstly, where thehypothesis and conclusion

are unified, via thestrong fertilise method. Secondly, where the hypothesis ap-

pears as a subterm of the conclusion (see thestrong fertilise prop method in the

next section). Thestrong fertilise method is shown in Figure C.7.

The preconditions first check that the induction hypothesisHyp contains no wave

fronts, i.e. the hypothesis measure equals zero. The conclusion is then rewritten to

trueP using the rewrite ruleHyp ⇒ trueP , without instantiating the conclusion’s

meta-variables. The method does this before it unifies the two propositions as a check

that they are unifiable. The check is made because higher order unification often di-

verges if hypothesis and conclusion are non-unifiable. If the rewrite succeeds then they

are unified.
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Method: strong_fertilise_prop

Goal: (caseSchema Case Hyps (rippleHyps AnnHyp) Conc)

Pre:

(not (Conc = (app F _), (F = eq; F = iff)),
AnnHyp = (annHyp Hyp _ _ 0 (econtext _ _ EC) _ _),
fully_rippled_in EC,
rewrite_match_with_hyp equiv Hyp trueP Conc NewConc _)

Post: true

Subgoal: (caseSchema Case Hyps postRippleHyps NewConc)

Figure C.8: The strong fertilise prop method.

Method: strong fertilise prop

Thestrong fertilise prop method is shown in Figure C.8. It performs the second

form of strong fertilisation, namely where the induction hypothesis matches a subterm

of the conclusion. The preconditions are similar tostrong fertilise , except that a

check is made that all wave fronts are fully rippled out or in.A residual conclusion

remains as a subgoal.

Method: weak fertilise

Theweak fertilise method, shown in Figure C.9, performs weak fertilisation, where

the induction hypothesis is used to rewrite one side of a binary predicate conclusion —

eithereq or ⁀iff. The method is parameterised by a flag indicating whetherthe induc-

tion hypothesis has been ‘flipped’ before being applied. A residual subgoal is left after

fertilisation.
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Method: (weak_fertilise Swap)

Goal: (caseSchema Case Hyps (rippleHyps [AnnHyp]) (app F (tuple [ A, B])))

Pre:

((F = eq; F = iff),
swap A B Swap A2 B2,
AnnHyp = (annHyp Hyp _ EH _ EC _ _),
Hyp = (app F (tuple [X, Y])),
EH = (eapp [] (ebase [1]) (etuple [2] [XH, YH])),
EC = (eapp [] (ebase [1]) (etuple [2] [XC, YC])),
swap X Y Swap X2 Y2,
swap XH YH Swap XH2 _,
swap XC YC Swap XC2 _,
hyp_weight XH2 0 0,
fully_rippled XC2,
rewrite_match_with_hyp equiv X2 Y2 A2 NewA2 _)

Post: (swap NewA2 B2 Swap A3 B3)

Subgoal: (caseSchema Case Hyps postRippleHyps (app F (tuple [A3, B3] )))
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Method: replace_metavariables

Goal: (caseSchema _ Hyps _ Conc)

Pre:

(metavars Conc [] MVs bool,
abstract_meta_vars Conc MVs [] NewConc)

Post: true

Subgoal: (seqGoal (Hyps >>> NewConc))

Figure C.9: The weak fertilise and replace metavariables methods.
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Method: (construct_wf_goals Consts)

Goal: (stepReduces Hyps KB)

Pre:

(dkb_cases KB Cases,
dkb_constraints KB Consts,
dkb_types KB Types,
length Types N,
setup_constraints N Consts,
list_to_goal Cases (wellfound_goals Hyps Consts) RedGoal s)

Post: true

Subgoal: RedGoals

Figure C.10: The construct wf goals method.

Method: replace metavariables

The replace metavariables method is shown in Figure C.9. It finds the meta-

variables in a schematic goal and replaces them with universally quantifed variables.

The quantifiers appear at the top of the conclusion.

C.3 Wellfoundedness Methods

The theory and implementation of the wellfoundedness strategy was discussed in §6.5

and §10.4. This section briefly describes the low-level methods that did not appear in

§10.4.
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Method: (ignore_position N)

Goal: (redGoal N Consts _ _ _ _ _)

Pre:

(varadd (ignore N) Consts,
check_satisfiable Consts)

Post: true

Subgoal: trueGoal

Figure C.11: The ignore position method.

Method: construct wf goals

Theconstruct wf goals method is shown in Figure C.10. It transforms the dummy

meta-levelstepReduces goal to a conjunction of wellfoundedness goals for a step

case. If this is the first step case then the method also postsmeasure constraints on

the step case, indicating the measure function used for eachinduction position. At this

point the unknown measures are represented by meta-variables.

Method: ignore position

The ignore position method is shown in Figure C.11. It can be applied to any

wellfoundedness goal, irrespective of its validity, providing this leaves at least one

wellfoundedness goal that has not been ignored. The method’s preconditions post an

ignore constraint for the corresponding induction position, and checks the current

constraints are still satisfiable, indicating a valid position remains.
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Method: (begin_estimation N)

Goal: (redGoal N Consts Hyps Cond A (induce M) B)

Pre:

(varmemb (const_disj MConsts) Consts,
varmemb (measure N M) MConsts,
not (varmemb (ignore N) Consts))

Post: (extract_condition Cond Cond2)

Subgoal:

((estGoal M A B Diff)
** (seqGoal (Hyps >>> (app imp (tuple [Cond2, Diff])))))

Figure C.12: The begin estimation method.

C.3.1 Estimation Methods

This section describes the low-level methods used to implement Walther’s estimation

method, employed by our strategy to discharge wellfoundedness goals. These methods

are organised into a strategy by theestimation strat method (see Figure 10.17).

Method: begin estimation

Thebegin estimation method is shown in Figure C.12. It takes a wellfoundedness

goal and sets up an estimation proof, consisting of two subgoals. Firstly, an estimation

goal, which claims i) that one term is equal to or smaller thananother under a measure

and ii) that it being strictly smaller is equivalent toDiff . Secondly, a goal stating that

the difference equivalentDiff is implied by the corresponding case conditions.
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Method: lower_estimate

Goal: (estGoal M L R (app or (tuple [DiffLit, DiffEquiv])))

Pre:

(not (headvar_osyn R),
R = (app F Args),
lower_arg_bound F N M DiffPred)

Post:

(nth_arg Args N Arg,
DiffPred Args DiffLit)

Subgoal: (estGoal M L Arg DiffEquiv)
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Method: upper_estimate

Goal: (estGoal M L R (app or (tuple [DiffLit, DiffEquiv])))

Pre:

(not (headvar_osyn L),
L = (app F Args),
upper_arg_bound F N M DiffPred)

Post:

(nth_arg Args N Arg,
DiffPred Args DiffLit)

Subgoal: (estGoal M Arg R DiffEquiv)

Figure C.13: The lower estimate and upper estimate methods.
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Method: trivial_estimate

Goal: (estGoal M X Y falseP)

Pre:

(not (headvar_osyn M),
(headvar_osyn X; (not (headvar_osyn X), obj_atom X)),
(headvar_osyn Y; (not (headvar_osyn Y), obj_atom Y)),
X = Y)

Post: true

Subgoal: trueGoal

Figure C.14: The trivial estimate method.

Method: lower estimate

The lower estimate method is shown in Figure C.13. It applies the lower estimation

rule (see §6.5.4), i.e. it takes an estimation goal where the‘smaller’ term has a top

functor f that is lower argument bounded, and removes this functor to form the sub-

goal. The difference equivalent is instantiated to a disjunction of the difference literal

for f and a fresh meta-variable.

Method: upper estimate

The upper estimate method, shown in Figure C.13, implements Walther’s original

form of estimation. It is analogous to thelower estimate method, except an upper

argument bounded function is stripped off the ‘larger’ termof the inequality.
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Method: abstract_metavars

Goal: Goal

Pre:

(Goal = (seqGoal (Hyps >>> Conc)),
fold_left (v1\ t\ v2\ (metavars t v1 v2 bool)) [] [Conc|Hyps] Vars,
abstract_goal Goal Vars [] AbsGoal)

Post: true

Subgoal: AbsGoal

Figure C.15: The abstract metavars method.

Method: trivial estimate

The trivial estimate method is shown in Figure C.14. The method discharges

trivial estimation goals. The preconditions check that each side of the inequality is

either a meta-variable or an atom, and unifies the two sides. The difference equivalent

is instantiated tofalseP , indicating that this inequality is not strict.

Method: abstract metavars

The abstract metavars method is shown in Figure C.15. The method collects to-

gether the meta-variables in a sequent goal and replaces them with variables. These

variables are univerally quantified in the subgoal.

The purpose of this method is two remove any meta-variables from the difference

equivalent goal before rewriting is applied.
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Method: set_conditions

Goal: (caseGoal C M Hs F)

Pre: (inst_var_literal F)

Post: true

Subgoal: (caseGoal C M Hs F)

Figure C.16: The set conditions method.

C.4 Case Synthesis Methods

The implementation of the wellfoundedness strategy was discussed in §10.4. This

section briefly describes the low-level methods that did notappear there.

Method: set conditions

Theset conditions method is shown in Figure C.16. It instantiates the meta-variable

representing any unknown case conditions, so that the subsequent case strategy does

not accidently instantiate it.

Method: case equiv

Figure C.17 shows thecase equiv method. This method simplifies the case formulae

during the case exhaustiveness proof using equivalence preserving steps, i.e. rewriting

with certain rules or removing ‘solved’ disjuncts. These steps do not need to be back-

tracked over, so several are applied together within theequiv case predicate, which

prevents this happening.
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Method: (case_equiv Rules)
Goal: Goal

Pre: (equiv_case Goal NewGoal Rules)

Post: true

Subgoal: NewGoal

Figure C.17: The case equiv method.

This is an unelegant way to represent these proof steps — individual method ap-

plications would have been better. However, without a cut methodical available in

λClam this is the only way to prevent needless backtracking through such sequences

of simplification (see also §10.3.4).

Method: exists casesplit

The exists casesplit method, shown in Figure C.18, applies the existential case

split method described in §5.4.2. Although its preconditions seem quite complex, they

implement the heuristics described in full in §5.6.

Method: case induction

Thecase induction method is shown in Figure C.19. It applies induction to the case

formula during the case exhaustiveness proof, following the heuristics described in

§5.6. The method consists of two clauses, corresponding to the two different contexts

in which it was determined induction could be applied.

After induction, rippling and fertilisation are applied tothe case formula, using the

case ripple andcase fertilisation methods shown in Figure C.20.
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Method: (exists_casesplit Scheme)

Goal: (aseGoal CasePair Missing Hyps Conc)

Pre:

(not (rewritable Conc),
metavars Conc [] Vars bool,
memb (otype_of Var Type) Vars,
not (headvar_osyn Type),
once (junctive or Disjunct Conc,

junctive and Conjunct Conc,
((Conjunct = (app eq (tuple [UTerm, (app F Args)])),

defined_function F (ATypes arrow _),
contains_metavar Args ATypes Var Type,
not (is_univ_var UTerm _));

(not (Conjunct = (app eq _)),
contains_metavar Conjunct bool Var Type))),
exhaustive Scheme Type ExCases,
for_each ExCases (some_case (c\

(sigma t\
(sigma r\ (not (not (case_term c Var, rewritable Conc)))))) ))

Post:

(map_junction or (split_exist Var ExCases) Conc NewConc,
mappred Hyps (reembed_casehyp NewConc) NewHyps)

Subgoal: (caseGoal CasePair Missing NewHyps NewConc)

Figure C.18: The exists casesplit method.
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Method: (case_induction Scheme)
Goal: Goal

Pre:

(Goal = (caseGoal _ _ _ Conc),
not (rewritable Conc),
junctive or Disjunct Conc,
universal_vars Disjunct [] UVars,
subset [] IndSet UVars,
mappred2 IndSet (x\ y\ z\ (x = (otype_of y z))) IndVars Types,
case_scheme Scheme Types IndVars Goal SubGoals,
for_each_goal SubGoals (g\ (sigma c\ (get_conc g c, rewrita ble c))))

Post: (map_goal SubGoals rename_and_embed NewSubGoals)

Subgoal: NewSubGoals

'

&

$

%

Method: (case_induction Scheme)

Goal: Goal

Pre:

(Goal = (caseGoal _ _ _ Conc),
not (rewritable Conc),
junctive or Disjunct Conc,
universal_vars Disjunct [] UVars,
subset [] IndSet UVars,
mappred2 IndSet (x\ y\ z\ (x = (otype_of y z))) IndVars Types,
case_scheme Scheme Types IndVars Goal SubGoals,
not (for_each_goal SubGoals (g\ (sigma c\

(get_conc g c, rewritable c)))),
once (memb (otype_of UVar Type) IndSet,

junctive and (app eq (tuple [UVar, (app F _)])) Disjunct,
not (headvar_osyn F),
defined_function F (_ arrow Type)))

Post: (map_goal SubGoals rename_and_embed NewSubGoals)

Subgoal: NewSubGoals

Figure C.19: The two clauses of the case induction method.
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Method: (case_ripple Rule)

Goal: (caseGoal Case Missing Hyps Conc)

Pre:

(wave_rule_list Rules,
rewrite_outer (rewr_list Rules rewr_match) Rule _ Conc New Conc trueP Ad,
nth Hyps N (caseHyp Hyp E1 Out1) Rest,
reverse Ad At,
subterm_embed undir Rule At [] E1 E2 Hyp NewConc bool,
tidy_conc_context E2 outward E3 Out3 nil,
measure_less Out1 nil Out3 nil)

Post: (nth NewHyps N (caseHyp Hyp E3 Out3) Rest)

SubGoal: (caseGoal Case Missing NewHyps NewConc)
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Method: case_fertilisation

Goal: (caseGoal Case Missing Hyps Conc)

Pre:

(memb (caseHyp Hyp _ _) Hyps,
junctive or Disj Hyp,
junctive and Conj Disj,
case_fert Conj Conc NewConc)

Post: true

SubGoal: (caseGoal Case Missing Hyps NewConc)

Figure C.20: The case ripple and case fertilisation methods.
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Method: remove_case_hyps

Goal: (caseGoal C M Hs F)

Pre: true

Post: (remove_casehyps Hs NewHs)

SubGoal: (caseGoal C M NewHs F)

Figure C.21: The remove case hyps method.

Method: remove case hyps

The remove case hyps method is shown in Figure C.21. It strips the case formula

of any inductive hypotheses, if rippling and/or fertilisation fail. This happens when

induction was used to achieve a case split, rather than a genuine inductive argument

(see §5.6).

Method: trivial case

The trivial case method is shown in Figure C.22. It discharges trivially case for-

mulae during the case exhaustiveness proof.

Method: missing case

Themissing case method is shown in Figure C.22. The method discharges trivially

false case formulae during the case exhaustiveness proof, and identifies the missing

proof case that corresponds to this failed subgoal. The caseis added to the list of

missing casesMissing .
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Method: trivial_case

Goal: (caseGoal _ _ _ trueP)

Pre: true

Post: true

Subgoal: trueGoal
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Method: (missing_case AbsCase)

Goal: (caseGoal (case Cond _ Term) Missing _ falseP)

Pre: true

Post:

(univ_vars Cond [] Vars,
univ_vars Term Vars Vars2,
abstract_case Vars2 [] (case Cond _ Term) AbsCase,
varadd AbsCase Missing)

Subgoal: trueGoal

Figure C.22: The trivial case and missing case methods.

C.5 Base Case Methods

The base case strategy was described in §10.6, and this section provides definitions for

the low-level methods which were not given there. These are:rewrite , rewrite equiv ,

rewrite nonequiv andnormalise (see Figure C.23 and Figure C.24).



Appendix C. Dynamis Documentation 301

'

&

$

%

Method: rewrite

(then_meth (normalise all_i_nf)
(then_meth (some_meth rewrite_equiv)

(try_meth
(repeat_meth

(then_meth (some_meth rewrite_nonequiv)
(some_meth rewrite_equiv))))))
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Method: (rewrite_equiv Rules)
Goal: Goal

Pre:

(equiv_simplification Goal SubGoal Rules)

Post: true

SubGoal: SubGoal
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Method: (rewrite_nonequiv Rule)
Goal: (seqGoal (H >>> C))

Pre:

(sym_eval_rewrites_list Rules,
rewrite_outer (rewr_list Rules rewr_unif) Rule Dir C NewC t rueP _,
not (Dir = equiv))

Post:

(condition_goal Cond trueP H (c\ (seqGoal (H >>> c)))
(seqGoal (H >>> NewC)) SubGoal)

SubGoal: SubGoal

Figure C.23: The rewrite , rewrite equiv and rewrite nonequiv methods.
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Method: (normalise NF)
Goal: G

Pre: (NF G G2)

Post: true

SubGoal: G2

Figure C.24: The normalise method.
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Dynamis Traces

This online appendix provides in the full trace files for the evaluation theorems of

Chapter 11. It can be found athttp://homepages.inf.ed.ac.uk/s9362054/thesis
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