-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by Edinburgh Research Archive

The Dynamic Creation of Induction Rules

Using Proof Planning

Jeremy Gow

& 4 N4
z A\ A
~ A <
o\"y =
AN 74

Q <

Doctor of Philosophy
Centre for Intelligent Systems and their Applications
School of Informatics
University of Edinburgh
2004

https://core.ac.uk/display/429711157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

A key problem in automating proof by mathematical inducti®ichoosing an induc-
tion rule suitable for a given conjecture. Since Boyer & MG®QTHM system the
standard approach has been basetkeoarsion analysiswhich uses a combination of
induction rules based on the relevant recursive functidimiiens. However, there are
practical examples on which such techniques are knownlto fai

Recent research has tried to improve automation by delagimghoice of induc-
tive rule until later in the proof, but these techniqueseaufiforn two serious problems.
Firstly, a lack of search control: specifically, in conthad the application of ‘specu-
lative’ proof steps that partially commit to a choice of imtion rule. Secondly, a lack
of generality: they place significant restrictions on therfef induction rule that can
be chosen.

In this thesis we describe a new delayed commitment strdtegpductive proof
that addresses these problems. The strategy dynamicaliyesr an appropriate in-
duction rule by proving schematic proof goals, where unkmowle structure is rep-
resented by meta-variables which become instantiateshgldine proof. This is ac-
companied by a proof that the generated rule is valid. Tlaegy achieves improved
control over speculative proof steps via a nospéculation critic It also generates
a wider range of useful induction rules than other delayedmament techniques,
partly because it removes unnecessary restrictions omtin@dual proof cases, and
partly because of a new technique for generating the rulesatl case structure.

The basic version of the strategy has been implemented tdsewyClam proof
planner. The system was extended with a novel proof criticlsiecture for this pur-
pose. An evaluation shows the strategy is a useful and peattichnique, and demon-

strates its advantages.

Acknowledgements

Thank you to my supervisors: to Alan Bundy for lending me a hagmunt of his
wisdom and support, to lan Green for helping me get startedl @ Jacques Fleuriot
for helping me stop.

Thanks to the members of the Edinburgh DReaM group for crgatich an engag-
ing and friendly research environment. And to Ben Curry, ferddvice and constant
distraction.

| am grateful to Christoph Walther and the members of the Rragring Method-
ology Group in Darmstadt, who helped me to develop this wanknd) my visit there.

This thesis would not have been completed without the sumdony colleagues
at UCL, especially Paul Cairns, whose encouragement wasiatvial.

Finally, thank you to Allison Mackenzie for her patience augbport.

Declaration

| declare that this thesis was composed by myself, that thi& wantained herein is
my own except where explicitly stated otherwise in the tart that this work has not

been submitted for any other degree or professional quetidic except as specified.

(Jeremy Gow

Publications

Part of Chapter 6 of this thesis has previously appeared irPtbeeedings of the
Sixth International Conference on Logic for Programming Antomated Reasoning

[Gow et al., 1999].

Table of Contents

1 Introduction 1
1.1 Motivation 2
1.2 AimsoftheThesis, 4
1.3 AnExample e 4
1.4 Contributions 6
1.5 Organisationofthe Thesis 7
2 Literature Survey 11
2.1 Introduction 11
2.2 ProofbylInduction 12
2.2.1 NoetherianiInduction 12
2.3 Inductive TheoremProving 13
2.3.1 Reasoning about Computer Systems 14
2.3.2 Formalised Mathematics 15
2.3.3 Interaction and Automation 15
2.3.4 Explicit vs Implicit Induction 16
2.3.5 Generalisation & Lemma Speculation 17
24 ProofPlanning 19

24.1 Clamt AdvancePlanning 20

2.4.2 AClam Methodicals and Higher Order Meta-Logic 21
2.4.3 QMEGA: Hierarchical Proof Planning 22
244 ProofCritics 23
25 Rippling 23
251 Wave Annotationo 25
252 TheC-Calculus 28
253 TermEmbeddings, 30
254 CreationalRippling 31
255 TheWaveCritics i i 33
2.6 Recursion Analysis 34
2.6.1 Subsumption 35
2.6.2 Subsumption Reconstructed 36
2.6.3 Containment 37
26.4 RippleAnalysis. 39
2.7 Delaying the Choice of InductionRule 04
2.7.1 Periwinkle Middle-Out Induction Selection 41
2.8 Creating Novel InductionRules 43
2.8.1 LabelledFragments. 43
2.8.2 LazylInduction 44
2.9 Termination Analysis a7
29.1 TheEstimationCalculus 48
2.9.2 Reducer/ConserverAnalysis 50
29.3 UsingTermOrders 51
2.10 Summary . .o e e e e e 52

vi

3

Induction Rule Structure 54

3.1 Introduction 54
3.2 SyntacticRestrictions oo 55
3.3 SimpleinductionRules 57
3.4 CreationalRippling 59
3.4.1 InitialEmbeddings 59
342 RippleSteps 60
3.4.3 Creational Ripple Steps 61
3.5 AComparisonofRuleStyles 63
3.5.1 Problem with FunctionStyle 63
3.5.2 Problem with the Useof Lemmas 64
3.6 Summary 65
Step Case Creation 67
4.1 Introduction 67
42 TheStepCaseSchema 68
4.3 Constructor Schema Refinement 70
431 Rippling 71
4.3.2 Post-Rippling 74
4.3.3 Multiple Induction Hypotheses 75
4.3.4 A Constructor Proof Strategy 76
4.4 Extensionto Non-ConstructorCases 7 7
441 CreationalRippling. 77
442 Rippling-In 78
4.4.3 Multiple Induction Hypotheses 78
44.4 TheExtendedStrategy 78

Vii

4.5 SUMMary e e e e e 79

Synthesis of Case Structure 81
5.1 |Introduction 81
52 CaseFormulae 82
5.3 Case Synthesis via Correcting Case Formulae 84
5.3.1 Corrective Techniques 85
5.3.2 Problems with Existential Quantifiers 86
5.4 A Corrective Strategy for Case Formulae 86
5.4.1 Extracting Corrective Disjuncts 87
5.4.2 Instantiating Free Variables. 7 8
55 Examples 90
5.6 Heuristics for the Corrective Strategy 96
57 Summary e e 98
Induction Rule Creation 99
6.1 Introduction 99
6.2 Validating InductionRules 010
6.3 ThelInduction Strategy 102
6.4 Component Specifications 105
6.4.1 ReEFINE-CASE Specification 105
6.4.2 EHAUST-CASESSpecification 106
6.4.3 WELLFOUND-HYPSSpecification 107
6.5 \Validating Hypotheses 107
6.5.1 ConstraintSor 108
6.5.2 TheEstimationStrategy 110

viii

6.5.3 UpperEstimation 112

6.5.4 LowerEstimation. 113
6.5.5 The Side Condition Critic 114
6.5.6 Choosing< 115
6.6 Summary e e 116
Controlling Speculation 117
7.1 Introduction 117
7.2 Divergent Speculation. oo 811
7.3 Ireland & Bundy’s Induction Critic 20
7.4 ASpeculationCritic 124
7.5 Summary ... e e e 128
Controlling Rewrite Search 129
8.1 Introduction 129
8.2 RedundancyinRewriting 130
8.2.1 ConfluentBranches 131
8.2.2 Identifying ConfluentBranches 132
8.3 Position Ordered Rewriting 513
83.1 Examples 136
8.3.2 Tmando-Rewriting L. 138
8.4 Completeness 139
8.4.1 TmRewritingisComplete 140
8.4.2 Towardsw-Completeness 143
8.5 Compatibility with Meta-variables 145
8.6 Summary e 146

9 A Proof Planner with Critics 148

9.1 Introduction 148
9.2 WhyAClam? 149
9.3 DefiningProofCritics 150
9.3.1 Critic DefinitioninA\Clam 151
9.4 Planning Instructions L 215
9.4.1 Postive Critiquesrit Znst 153
9.4.2 Contextual Method/Critic Associatiopatch _inst 153
95 Criticals 154
9.6 ACriticsPlanner 157
9.6.1 ExpandNode 158
9.6.2 ApplyCritic 158
9.7 DevelopmentidClam 159
9.8 Summary e e 159
10 The Dynamis System 161
10.1 Introduction 161
10.1.1 What's Not Implemented 162
10.2 The Top-Level Strategy 316
10.3 The StepCase Strategy i i i i i 170
10.3.1 Embeddings 172
10.3.2 Speculative Rippling L 173
10.3.3 DefiniteRipplingo 177
10.3.4 SideConditions 179
10.3.5 Fertilisation 180
10.4 The Wellfoundedness Strategy 181

11

12

10.4.1 Estimation 182

10.5 The Case Synthesis Strategy 3 18
10.6 TheBaseCase Strategy v v i i i .. 185
10.7 Summary e e e e 186
Experimental Evaluation 187
11.1 Introduction 187
11.2 Methodology 188
11.2.1 Configurindynamis. 191
11.3 Results. e 193
11.4 Analysis e 195
11.4.1 Non-wellfounded stepcases 201
11.4.2 Failureto generate missingcases. 201
11.4.3 Divergent speculationcritiques 202
11.44 Nocasesplitting 203
11.45 AProlog errors e 204
11.4.6 Multiple step cases/hypotheses required 205
11.5 Conclusions of the Evaluation 062
Case Studies 209
12.1 Presentin@ynamisOutput 210
12.2 Case Study T6C: Speculation 211
12.3 Case Study T9D: Destructor Style 22 2
12.4 Case Study T16C: Case Structure 233
125 Summary e e e e 243

Xi

13

14

Related & Further Work

13.1 Introduction
13.2 RecursionAnalysis
13.3 The Periwinkle System
13.4 Labelled Fragments
13.5 LazyInduction
13.6 Further Evaluation
13.7 Developing the Strategy
13.8 Exploringrmo-Rewriting
13.9 Researchon Proof Planning.

13.10Summary e

Conclusions

A Glossary

B

C

Datatype & Function Definitions

Dynamis Documentation

C.1 RunningDynamis.
C.2 StepCaseMethods
C.3 Wellfoundedness Methods
C.3.1 Estimation Methods
C.4 Case SynthesisMethods

Xii

C.5 Base Case Methods

D DynamisTraces

Bibliography

304

Xiii

2.1
2.2

3.1

6.1

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3

9.1
9.2
9.3
9.4

List of Figures

Threewaverules 27
Arippleproof 28
Aninductionrule 56
The dynamic induction strategy 104
Divergentspeculation, 911
Wave rules for speculationexamples 120
Convergentspeculation 121
Definition of the speculationcritic 125

An application of the speculationcritic 126
Case analysisof atermwithtworedexes. 133
Non-overlapping redexes form a confluentbranch. 134
The position ordered rewriting strategy. 136
TheClamv3 lemma speculationcritic 151
TheAClamlemma speculation critic 152
Rules for interpreting criticals 156
Main loop ofacriticsplanner 571

Xiv

10.1 Theschematic _inducton method 164

10.2 Goal ordering foschematic _induction 165
10.3 Thedynamis _main method 166
10.4 Configurations adynamis _main 167
10.5 Theconstruct _cases method 169
10.6 Thewellfounded method, 170
10.7 Themastep case method 171
10.8 Then_spec ripples method 173
10.9 Thespec critc _ripple method 174
10.10Thespeculative ~ ripple method 175
10.11Thespeculation _critic critic 176
10.12Theripple _in _and speculate method 178
10.13Theipple _patch method 178
10.14Thedefinite _rippling method 178
10.15Thema fertilise method 180
10.16Thewellfound _strat method 181
10.17Theestimation ~ _strat method 183
10.18Thecase _strat method. 184
10.19Thecase _indstrat method 185
10.20Thewaterfall method 186
12.1 ProofplanforT6C 221
12.2 ProofplanforTOD 232
12.3 ProofplanforT16C 242
C.1 Theembeddingmethods 279

XV

C.2 Clause 1 of thdefinite ripple method 280

C.3 Clause 2 of thdefinite ripple method 281
C.4 Themeta_ripple method 282
C.5 Theforwards _ripple method 283
C.6 Thespeculate _wavefronts method 284
C.7 Thestrong _fertilise method 285
C.8 Thestrong _fertilise prop method 286
C.9 Theweak fertilise andreplace _metavariables methods 287
C.10 Theconstruct _wf _goals method 288
C.11 Thegnore _positon method 289
C.12 Thebegin _estimaton method 290
C.13 Thelower _estimate andupper _estimate methods 291
C.14 Thetrivial _estimate method 292
C.15 Theabstract _metavars method 293
C.16 Theset _conditons method 294
C.17 Thecase equiv method 295
C.18 Theexists _casesplt method 296
C.19 Thecase _induction method 297
C.20 Thecase _ripple andcase _fertilisation methods 298
C.21 Theremove case _hyps method 299
C.22 Thetrivial _case andmissing _case methods 300
C.23 Therewrite ,rewrite _equiv andrewrite _nonequiv. methods . . . 301
C.24 Thenormalise method 302

XVi

List of Tables

2.1 Wave methodfailures 34
6.1 Components of the induction strategy 103
9.1 Types and descriptions of criticals 155
11.1 Developmenttheoremset L 9 18
11.2 Testtheorems 190
11.3 Resultssummary e 194
11.4 Developmentresults 195
11.5 Constructor styletestresults 196
11.6 Destructor styletestresults 197
11.7 Arithmeticlemmas 198
11.8 Listand foldinglemmas 199

XVii

Chapter 1

Introduction

The last thing one knows in constructing a work is what to put first

— BLAISE PASCAL, PENSEES

Mathematical induction is a technique used extensivelgéotem proving systems
for proving properties about objects that involve repetitiBecause of the ubiquity of
iteration and recursion in computer systems, it is espgcaieeful when applied to
software and hardware verification.

Given the arduous nature of formal proof development, aateththeorem proving
has been the subject of research since the inception of datifintelligence in the
1950s. Progress has been especially difficult in automaticigctive proof, because
of the particular search problems introduced by inducti®ayer and Moore, 1992].
Specifically, finding the appropriate induction rules, leasnand generalisations for a
given problem [Bundy, 2001].

This thesis describes a novel approach to automating thefitsese tasks: induc-
tion rule creation. Itis also concerned with showing howgbpdanning [Bundy, 1988]

can be used to effectively realise these ideas.

Chapter 1. Introduction 2

1.1 Motivation

Attempts to automate induction rule creation were, like mwork in inductive theo-
rem proving, dominated by the seminal work of Robert S. Boydrarstrother Moore
[Boyer and Moore, 1979] for many years after its publicatibhe Boyer-Moore The-
orem Prover introduced the what has been caltednduction heuristic: to prove a
property of a recursive function, try using an inductiorertiiat has the same recursive
structure as that function.

Boyer & Moore’s approach is surprisingly powerful, and thibieorem prover is
still in use over 20 years later, along with systems basedersame essential ideas
[Stevens, 1990]. However the late-1980s and 1990s saw gyesste of work in in-
duction theorem proving. Many recent developments hava based on the idea of
rippling [Bundy et al., 1993], a heuristic for guiding proaftthe step case subgoals
generated by applying an induction rule. Rippling has brougbre sophisticated
heuristic control to inductive theorem proving, and beeedut get a purchase on
some hard search problems, including the choice of inductite.

Tied up with rippling has been the development of proof plagrarchitectures
for automated theorem proving [Bundy, 1988]. Proof planiaeesideally suited to re-
alise sophisticated heuristic strategies, and inductigefpria rippling has been a long
running test-case, most notably with work on proof criticeland and Bundy, 1996].

The individual and collective success of the rippling anagbplanning paradigms
has been an important motivation behind this project.

Recent developments in automating induction rule creatawe tried to overcome
two disadvantages with the Boyer-Moore approach. Firdlgpsing an induction rule
at the beginning of the proof is often unreliable, as one oaeasily anticipate how

a given choice will work out. [Kraan, 1994] begins a prooftwé schematic goal, to

Chapter 1. Introduction 3

see how the proof develops before selecting a known indudtile. Secondly, it is not
always enough to use induction rules with the recursivegire taken from predefined
recursive functions. [Protzen, 1995] takes a lazy ger@ratpproach to delaying the
induction choice, dynamically creating a completely newe nwith the information
gleaned from the proof.

The main weaknesses of these ‘wait and see’ approachesuctiowl rule creation

are:

Lack of heuristic control Although both employ forms of rippling to bring some
measure of search control, they also both involve ‘speivelagteps which can

be applied freely and ad-infinitum, causing serious searchlgms.

Lack of generality The constraints placed on the form of induction rules thatlma
selected/created are overly restrictive, which limits itiductive problems that

can be solved. Specifically:

Restrictions on rule style In [Kraan, 1994] the rule must be constructor style,
and in [Protzen, 1995] it must be destructor style — neiteehhique al-

lows both, or a mixture of styles.

Restrictions on case structureThe cases of the rule are derived from the re-
cursive functions used in the proof. Solutions with novedecatructures

cannot be found.

The main motivation for this thesis is to address these wesdes.

Chapter 1. Introduction 4
1.2 Aims of the Thesis

Our aim was to design, implement and evaluate a strategydoictive proof with the

following properties:

e The choice of a step case is delayed until the middle of itefpend this choice
is used as a basis for constructing a new valid induction ridleis gives the
strategy those advantages over Boyer & Moore’s work that wwdersonstrated

in previous research.

e The search is more tightly controlled than previous work elaged-commitment
induction rule creation. This is especially important imbieg with ‘speculative’

steps.

e The strategy has the ability to create a wider range of useduiction rules, i.e.
rules that will allow more problems to be solved. This medfitind) constraints

on rule style and case structure.

e Itis a practical and useful approach to automating indegdroof.

As well as providing a theorem proving strategy ‘in the adstty we aim to show
that the proof planning approach provides an excellenti@atre in which to im-
plement the strategy. In particular, the techniques of teidait reasoning and proof
critics allow sophisticated search control techniquesaadalised in a clean and un-

derstandable way.

1.3 An Example

To give the reader a better intuition for the kind of proofstgy we intend to auto-

mate, and for some the problems with previous approachesowejive an illustrative

Chapter 1. Introduction 5
example. Consider the following theorem, taken from [Paul4991]:
vx:t.Vl:list(1).foldleft tr (o, x,1) = xo foldleft tr (o,id,)

The theorem holds given the following propertiescodind definition offoldleft tr, a
tail-recursive function that applies a two-argument fiorcover the elements of a list
(see Appendix B for a definition dbldleft tr and all other functions that appear in this

thesis):

Xo(YoZ) = (XoY)oZ
Xoid = X
foldlefttr(F,Anil) = A

foldlefttr(F,A/H :: T) = foldlefttr(F,F(A/H),T)

As we will see in Chapter 2, the standard techniques for inolncelection (derived
from the work of Boyer & Moore) would suggest using structdistlinduction onl,
based on the recursive structurdafileft tr. However, it turns out that such a proof is
unsuccessful, because the term substituted into the nigghtt-sidé cannot be removed
— there is no rewrite that movd :: T out of this position.

In [Paulson, 1991] a lemma is introduced in order to provethleerem:
foldlefttr (F,A,L <> (X ::nil)) = F(foldleft.tr (F,A,L), X)

where <> is the append function for list (again, see Appendix B for &nileon of
<>). The lemma motivates the invention of a new induction rulkich proves the

theorem:
= ®(nil)
P(x) F P(x<> (y:nil))
vl list(1). (1)

Chapter 1. Introduction 6

Interestingly, the induction rule cannot be generated fthengiven function def-
initions, which means standard techniques for automatsmot prove the theorem.
Instead, the rule is motivated entirely by the lemma.

More advanced induction selection techniques also hafiewdif with this exam-
ple. Middle-out induction [Kraan, 1994] can select the iciiton rule and complete
the proofif the rule is already knowr— this is unlikely as it was created specifically
for this proof. Lazy induction [Protzen, 1995] cannot sollie problem because the
required induction rule falls outside the class of rules alble to generate.

The induction strategy presented in this thesis is capdieimerating this novel
induction rule from the lemma, and proving that the rule isdvaBriefly, it does this

by:

1. Generating a step case using an improved version of thélesait reasoning
techniques described in [Kraan, 1994], where the lemmaesigbe step case

of the induction.
2. Proving the step casewsllfounded

3. Determining the form of the base case, which requires a&lnmase split to be

generated.

4. Proving the base case.

1.4 Contributions

This thesis makes a number of original contributions to théeustanding of automat-

ing induction rule creation:

e It provides a novel dynamic strategy fulfilling the aims set o §1.2.

Chapter 1. Introduction 7

e We give experimental evidence for the effectiveness of theegyy in proving

theorems that require novel induction rules.

e The significance of restrictions on induction rule style osed in previous work

is clarified.
We also contribute to automated theorem proving in general:

e We argue that when delaying choices during proof, a scheasaebapproach

has search advantages over a lazy-generation approach.

e State-of-the-art techniques of proof planning are tested we make some orig-

inal contributions to the design and use of proof critics.

e We describe a novel procedure for generating the missingsaafsa case anal-
ysis. By expressing the problem as one of correcting a fadtyecture, two

previously separate areas of automated deduction are litrtagether.

e We presentrio-rewriting, an original technique for controlling searchriehg
non-confluent rewriting — applicable to e.g. rippling. A pf@f the complete-

ness ofrerewriting, a useful restriction of the technique, is given

e The induction strategy provides a detailed case study of ¢treative steps in

proof can be delayed and these decisions driven by subsiegpaer.

1.5 Organisation of the Thesis

Looking from a distance, Chapters 1 to 3 lay out the groundvoitke main thesis,

Chapters 4 to 8 set forth a body of novel heuristic technigaegffectively creating

Chapter 1. Introduction 8

induction rules, and Chapters 9 to 15 discuss their impleatiemt, evaluation and
subsequent reflection on this work.

In greater detail, the thesis is structured as follows:

Foundations

e Chapter 1)ntroduction

The motivations, aims, contributions and structure of Hesis.

e Chapter 2L iterature Survey
A survey of the relevant research literature: some backgtaun inductive the-
orem proving, the main concepts of rippling and proof plagniand previous

work on induction rule creation and validation.

e Chapter 3Jnduction Rule Structure
We reflect on what previous research tells us about how inaguptoof is af-

fected by the structure of induction rules and variationgh@Tippling heuristic.

The Induction Strategy

e Chapter 4Step Case Creation
Describes the strategy for obtaining a step case proof ayo key choices

until the middle of the proof.

e Chapter 5Synthesis of Case Structure
Here a strategy for the proof that the rule contains all tlygired cases is de-

scribed. Failure of the proof can be exploited to generaentissing cases.

e Chapter 6)Jnduction Rule Creation

We describe how a candidate step case is used as a basis $tructing and

Chapter 1. Introduction 9

validating a new induction rule: an unsuccessful attemptraowe that the rule is

valid is analysed in order to complete the rule.

Search Control

e Chapter 7Controlling Speculation
Speculative ripple steps make decisions about the form efrttuction rule,
but are non-terminating. We describe a proof critic thatticma speculation by

using it only when it will fix a failed ripple proof.

e Chapter 8Controlling Rewrite Search
Rewriting is at the heart of our strategy. This chapter repbaw the rewrit-
ing search can be pruned by avoiding repetition of orthogoppling steps in

different orders.

Implementation

e Chapter 9A Proof Planner with Critics
We describe the extension of th€lamproof planner with a novel critics mech-
anism, in order to implement our induction strategy. Thenpé&a use<riticals

to combine critics into complex strategies.

e Chapter 10The Dynamis System
Describes thé®ynamissystem — the implementation of the induction strategy

as a set of methods and critics in th€lam proof planner.

Evaluation & Reflection

e Chapter 11Experimental Evaluation

The implementation of the induction strategy is tested oaréety of inductive

Chapter 1. Introduction 10

problems.

e Chapter 12Case Studies
We present some detailed case studies of proof attempits t&@Dynamissys-

tem, and reflect on their success or failure.

e Chapter 13Related & Further Work
This chapter discusses the induction strategy with regpdttaan’s middle-out
induction selection and Protzen’s lazy generation of itidacrules, along with

directions for future research.

e Chapter 14Conclusions
We assess the contributions made by the thesis, and conghetber our aims

have been met.

Appendices

e Appendix A,Glossary

An explanation of some techincal terms and notation.

e Appendix B,Datatype & Function Definitions

Definitions for all the functions and datatypes used in thests.

e Appendix C,Dynamis Documentation

Details of running th&ynamissystem, and the lower level methods.

e Appendix D,Dynamis Traces

Full traces from the evaluation, available in electronimfa

LFromhttp://homepages.inf.ed.ac.uk/s9362054/thesis

Chapter 2

Literature Survey

2.1 Introduction

This chapter reviews a range of background material thatiaded to this thesis. The
initial sections give an overview of mathematical indunt{§2.2) and its use in mech-
anised theorem proving (82.3). 8§82.4 describes proof prapra central topic of this
thesis.

The automation of inductive proof is surveyed in 82.5 onwadippling, a tech-
nique for guiding step case proofs in described in §2.5. Taerdard approach to
induction rule creation, recursion analysis, is examime8.6. The state-of-the-art in
automating the choice of induction rule works by delaying thoice of rule into the
middle of the proof (82.7) and creating induction rules fritms information (82.8).

§2.9 looks at automating proofs of the construction of eetlered relations satis-
fying a given set of constraints. This has mainly been deit kv the literature in the

context of proving program termination.

11

Chapter 2. Literature Survey 12
2.2 Proof by Induction

Mathematical induction can be roughly characterised asgguma@ent which proves a
proposition by appealing to some other instance of thatgsibipn, and where it can
be argued that this appeal process will eventually stop.

Such arguments have appeared throughout the history ofematits: from the
Pythagoreans of Ancient Greece [van der Waerden, 1961]thenti2th century Ara-
bic mathematician al-Karaji [Rashed, 1994], to later Euempenathematicians, no-
tably Pierre de Fermat, with his ‘method of infinite desc@®tirton, 1988], and Blaise
Pascal describing hifriangle ArithmetiqugPascal, 1665]. However, the firsxplicit
formulation of an induction principle (along with the nanvegs given by Augustus
DeMorgan in 1838 [Burton, 1988].

Today, induction is a common proof technique in many areasathematics. It
very often appears aBeano inductionoften called ‘the’ principle of mathematical
induction, or the more generabmplete inductionThese forms can be expressed as

the following inference rules:

Peano Induction
®(0)
VkeN. (k) — d(k+1)
vne N. ®(n)

Complete Induction

VXeN. (Ve N.y<x— ®(y)) — P(x)
Vx € N. d(x)

2.2.1 Noetherian Induction

Peano and complete induction are inductions over N, thefs@taral numbers. Al-

though less common, induction over other sets appears im#tieematical literature,

Chapter 2. Literature Survey 13

e.g. induction over the ordinals. Indeed, inductive argutsienay be made over any
set.

This generality is captured kyoetherian inductionalso known asvell-founded
induction a generalisation of complete induction to asaid relation<. The relation
< must bewell-foundedover the sef\, defined as there being no infinite descending
chainsx; = X2 = X3 > ... such that; € Afor all i. It can be expressed as the following

inference rule:

Noetherian Induction

VxeA (Ve Ay<x— D)) — D(X)

. overA
VX e A D(X) = WL over

All induction principles can be derived from this generahesme. For example, to

derive structural induction over the natural numbers:
1. LetA = natand<=<, this discharges the side condition.
2. Perform a case split on the premige= 0 orx = s(u).
3. Inthex = s(u) case, leyy = u.

4. Simplify w.r.t. the definition ok.

2.3 Inductive Theorem Proving

In this section we briefly survey the use of inductive prooftieorem provers —

computer systems that assist with or perform logical proof.

Chapter 2. Literature Survey 14

2.3.1 Reasoning about Computer Systems

Inductive reasoning is well-suited to proving propertié®bjects that contain repe-
tition, and so has found many applications in proving propsrabout both software
and hardware systems. In fact, the use of induction was gezpim one of the earliest
papers on this field [McCarthy, 1963]. This work has develapgmitheverification by
proof paradigm: the computer system is modelled as a set of mattvatdefinitions,
along with a specification of the expected behaviour as afstteorems. Proving
these theorems verifies the correctness of the systenvestatihe specification. Note
that there may still be a ‘gap’ between the specificatiothk@srem and the system
requirements.

Verification proofs can be carried out without machine suppehich suffices for
small systems e.g. [Burstall, 1969, Paulson, 1991]. Howekes technique becomes
impractical for anything but toy systems, as one cannot betbat the proof is correct
any more than the original system — although a failed handfpran still reveal er-
rors. Formalisation of the specification and proof in a jpatéir logic can increase con-
fidence in the correctness of individual steps, but mistakestill possible, and there
is an additional problem of a huge increase in the proof $\iszlgrpelt et al., 1994].

For these reasons, formal verification proofs of computstesys are often carried
out with the aid of a computeProof checkingprograms allow a human user to reliably
develop formal proofs, whilst also providing computer sopdor the huge ‘book
keeping’ tasks that such proofs require. Induction is oftecore proof technique
in theorem proving systems, for example HOL [Gordon and delh1993], ACL2
[Kaufmann and Moore, 1996], PVS [Owre et al., 1998ABELLE [Paulson, 1989],
CoQ[Huet et al., 1997] or NPRL [Allen et al., 2000].

Chapter 2. Literature Survey 15

2.3.2 Formalised Mathematics

Although research into theorem proving, especially incthedheorem proving, has fo-
cused heavily on computer system verification, these pragitzave been used to de-
velop formal logical proofs in many domains. Most notaledrem proving systems
such as Automath [Nederpelt et al., 1994] and Mizar [Trybaled Blair, 1985] have
been used to formalise large areas of mathematics. Giveubiljeity of induction in
mathematics, induction can play a large part in these preggldpments. For example,
Shankar’s development ofd@el’'s Incompleteness Theorems in the ™M system
[Shankar, 1994]. Shankar chose these results to demangtedt'serious’ mathemati-
cal results are amenable to mechanisation.

For a more detailed survey of formal mathematics and theq@@wing systems,

see [Harrison, 1996].

2.3.3 Interaction and Automation

Many formal proof tools provide some computer support fa thasoning process
itself, e.g. by incorporating decision procedures for canrmomains. This adds a new
dimension to theorem proving systems, with programs ranfyom completely user-
driven to the totally automatlcwith many varieties of theorem prover/user interaction
between.

Automation has considerabe advantages in reducing theaidesffort spent on
formal proof development, which can be exceptionally lond tedious [Shankar, 1994].
Automated reasoning has long been a goal of Atrtificial Iigefice, in particular au-

tomating mathematical reasoning [Newell et al., 1956].

LAlthough systems that ‘fully automate’ proof search oftequire significant input from their users
in the form of system configuration, e.g. Otter [McCune, 1990

Chapter 2. Literature Survey 16

2.3.4 Explicit vs Implicit Induction

Attempts to automate inductive proof have fallen into twstidict camps:

Explicit Induction Proof using inductive inference rules, i.e. special cadeth®

Noetherian induction rule (see 82.2.1).

Implicit Induction Proving a statement by showing that if assumed true thereis do
not create an inconsistency, which is equivalent to perniogran inductive proof

[Comon, 2001]. Also known agroof by consistencgr inductionless induction

This thesis deals with the automation of explicit inductiand below we survey only
work from this area. However, it is first worth noting a few asgs of the implicit
induction approach.

Implicit induction techniques differ in how they check thensistency of the spec-
ification after the addition of the conjecture. For examghe, technique presented in
[Jouannaud and Kounalis, 1989] orients an equational getoon into a convergent
rewrite system and uses Knuth-Bendix completion [Knuth anadBe 1970] to check
that no previously unequal constructor terms have been exquala.

Research inimplicit induction has been a process of gragliféithg the constraints
the technique places on the specification. Recently the @®aden generalised and
extended within a single framework [Comon and Nieuwenhw802, which requires
the specification to be drAxiomatisation These restrictions are a disadvantage when
compared to explicit induction. Another disadvantage ésreiative unintuitiveness of
the technique, making it unsuited to interactive systentsdifficult to design good
heuristics for automation.

Amongst its advantages are the fact that modern versiomedéthnique aresfu-

tationally completgBachmair, 1991] — they are guaranteed to reject non-thesrem

Chapter 2. Literature Survey 17

— and the ability to easily handle mutually recursive deflom$. Both are areas where
explicit induction work has traditionally been weak. Ingilinduction has been imple-
mented in systems such as UNICOM [Gramlich, 1990], SPIKE [Bald et al., 1992],
and RRL [Kapur and Zhang, 1995] (which is also capable of exphiduction).

The rest of this chapter looks at previous A.l. research daraating explicit in-

duction, which is more relevant to our thesis.

2.3.5 Generalisation & Lemma Speculation

In his survey of automated induction [Bundy, 2001], Bundy iifesd the three key
problems in automating inductive proof: constructing ictilon rules, introducing in-
termediate lemmas, and generalising conjectures. Thigrdariefly discusses work
on the second two problems, before looking at the first, wiidhe main subject of
this thesis.

In general, intermediate lemmas and generalisations quéresl in inductive proofs
because theut ruleis required for inductive theories [Kreisel, 1965]. The e uses

a ‘cut formula’Ato prove another formulA:

MLAFA Mr=A
Mr=A

As A could beany formula, this rule poses a considerable challenge for aatiowg
backwards proof, and special search heuristics are rebtarend suitable cut formu-
lae. The cut formul&@ may be a generalisation or a lemma — the distinction is vague,
and is based on whether showing thabllows from ", A s trivial, in thatA is some-
how a simpler form oA [Hesketh, 1991]. However, the distinction is reflected ia th
separate collections of heuristics that have been develimpeach case.

Techniques for finding a cut formula which generalises theeri goal date back

Chapter 2. Literature Survey 18

to [Aubin, 1976], and can be grouped into three main typdspfaivhich have been

shown to assist in automatic proof:

Generalising Apart This replaces a single universal variable with two or mone ne
ones. For exampl&/x.@(x, x) is generalised to'x.Vy.@(x,y). One way to do this
usesprimary recursion paths— variables nested only within recursive argument

positions — to find candidates for separation [Aubin, 1976].

Generalising Subterms One or more compound subterms are replaced by a fresh uni-
versal variable. This can be done by selecting suitableticiEnsubterms on

either side of an equality or implication [Boyer and Moore72p

Generalising Accumulators Here a constant is replaced with a variable in the accu-
mulator argument of a function. This often requires adddiderm structure to
be added elsewhere in the formula, to retain its validitylyBaork attempted to

guess the extra term structure through trial and error [AUDD76].

In [Castaing, 1985] the mismatch between induction hypagheasd conclusion is used
to perform the first two forms of generalisation. For a surwkyork on generalisation
up to 1990 see [Hummel, 1990].

These three forms of generalisation have been unified wélsmgle framework
that delays the choice of generalisation using meta-vimsapiesketh, 1991], using
proof planning (see 82.4 below). Building upon this workJdrel used failed proof
attempts to better focus the use of meta-variables wherrootiag generalisations of
accumulator [Ireland and Bundy, 1996], and a similar apgrdes also been used for
the other forms of generalisation [Maclean, 1999]. For nt&&il see our discussions
of proof critics in §2.4.4 and 82.5.5 below.

The discovery of intermediate lemmas has been less wallestu Ireland’s work

Chapter 2. Literature Survey 19

on proof critics addressed lemma speculation as well asrgksation, and used a
failed proof attempt to build a schematic lemma that wouldistswith the proof
[Ireland, 1992, Ireland and Bundy, 1996]. Walsh used paitedndivergence in in-
ductive proofs in the SPIKE system to speculate lemmas thatdrallow the proof to
proceed [Walsh, 1996]. Constraint-based approaches to despeculation and accu-
mulator generalisation have been developed in RRL [Kapur ahdaBaniam, 1996,

Kapur and Sakhanenko, 2003].

2.4 Proof Planning

Proof planning is an approach to automated theorem prouiggnelly designed to
reduce proof search by raising it to a meta-level [Bundy, 188&dy et al., 1991].
Classical theorem proving explores step-by-step a seasdtesyf inference rules ap-
plied ‘backwards’ to a goal formula. In proof planning theussh is conducted with
methodsA.l.-style planning operators which describe commongratt of reasoning
in the object logic via meta-logical pre- and post-conditio Methods can represent
proof steps larger than a single inference. They are apfiiatkta-level goalswhich
are meta-logical representations of (possibly multipteglg in the object logic.

Proof planning systems use methods to build an abstract fyesg orproof plan
which can then be used to find an object level proof, e.g. bgingtactics correspond-
ing to methods (see 82.4.1). There need not be a guaranteanthaorresponding
object level proofs can be found or even exist, although mesif planning literature
assumes that there is.

Meta-level goals and the meta-logical formulae in methaaddmons can express

both legal and heuristic statements about proof goals. [lstgeements are about the

Chapter 2. Literature Survey 20

form of the object goals, e.g. when a methmmlld be applied. Heuristic statements
help guide the proof search, e.g. saying when a mesihodildbe applied. Methods
and meta-level goals are usually designed by system autharsers, and typically
oriented towards a specific domain where a set of heurigikaaown, e.g. summing
series [Free, 1992]. In [Bundy, 1991] a methodology for goathud design is de-
scribed, proposing evaluation criteria such as generatity parsimony. There has
also been some recent work on automatically learning mesiedsl from examples
[Jamnik et al., 2002].

The intended advantage of proof planning is that the plans@arch space is sig-
nificantly smaller than the original object level searchcgpaConversely, the plan
space is likely to be incomplete. Both these things dependegnon the particular
method set.

Another aim of proof planning is to provide declarative, apased to procedu-
ral, specifications of methods which can be reasomeout mechanically, not just
executed. This facilitates the automatic learning [Jarehil., 2002] and adaptation

[Huang et al., 1995] of proof methods.

2.4.1 Clam: Advance Planning

The first proof planning system w&lam [Bundy et al., 1991, van Harmelen, 1996].

It built upon thetactic based approach to theorem proving, e.g. the HOL system
[Gordon and Melham, 1993], where common patterns of infeenles are captured

in tactics, a small program which automates the search fapaf fragment by ap-
plying rules according to the given pattern. @fam, a method is considered to be a
specification for a tactic, providing conditions for its éipgation and the effects it has

on the goal. A given tactic may have multiple methods, cgwasding to its use in

Chapter 2. Literature Survey 21

different situations.

The Clam system was designed to work in conjunction with a tacticedabeo-
rem prover, specifically th®ystersystem, an implementation of Martimt’s Type
Theory. It constructs a proof plan which is used to guiyesterto a proof, by replac-
ing methods with their corresponding tactics [Bundy et &90b]. Hence planning is
done in advance of proving.

The default method set i@lamis designed for inductive proof, and is described in
detail in 82.5.Clamhas also successfully been combined with HOL instea@ysiter,
with minimal adjustment to the default inductive method [@dulton et al., 1998].
Given that HOL's logic is classical higher-order logic ratithan Martin-lof Type
Theory, this illustrates the generality of proof methods.

Clammethod conditions are written in Prolog, a logic prograngianguage. This
allows both the specification in a declarative style, i.ana$a-logical statements, and
their evaluation as Prolog programs. However, in practiée possible to write pro-
cedural style conditions in Prolog, ai@am method designers often do this to e.g.

improve their efficiency or implement complex strategies.

2.4.2 AClam: Methodicals and Higher Order Meta-Logic

AClam[Richardson et al., 1998, Dennis and Brotherston, 2002] isticeessor to the
Clamsystem. LikeClam AClamis an planning system, producing plans to be con-
verted into tactics. Unlike&Clam which hasOyster there is no specific underlying
tactic-based theorem prover. There are plans to m&Kam more ‘logic indepen-
dent’, enabling the same proof plans to be used over a varfdogics.

Method conditions are now written kxProlog [Nadathur and Miller, 1998] a higher-

2Lucas Dixon, personal communication.

Chapter 2. Literature Survey 22

order version of Prolog. Having a higher-order meta-logis hllowed a much more
concise, natural and declarative expression of methods.

Another significant aspect gfClam is the use oimethodicalgo ‘join together’
methods to specify larger ones, in much the same way thatdaete formed using
tacticals. This is extremely useful when describing largd eomplex strategies —
a common problem ilClam It also allows a more declarative specification of such
strategies. A semantics for these method expressiong] bassontinuations, is given

in [Richardson and Smaill, 2001].

2.4.3 QMEGA: Hierarchical Proof Planning

The QMEGA system [Benzrller et al., 1997], [Kerber, 1998] is another proof plan-
ning implementation, but differs from theélam family in a number of important as-
pects. Most importantly, it does not differentiate betwesgthods, tactics and infer-
ence rules: everything is a method. When a method is appligthefr planning is
carried out to construct a proof that an object level proadtex This process bottoms
out with the application of methods corresponding to infieeerules. Hence the proof
plan is a hierarchy, both in the normal ‘proof tree’ sensé,iarthat some methods can
be expanded to another proof plan. The architecture alldarsnprg and proving to
be interleaved, rather than planning being done in advartus.letsQMEGA recover
after forming faulty plans which have no corresponding froo

Another important difference fror@lamis the system’s division of preconditions
into declarative and procedural aspects, as well methad &o posting constraints,

and the use of constraint reasoning [Melis et al., 2000].

Chapter 2. Literature Survey 23

2.4.4 Proof Critics

Failed proof attempts can often provide useful informatibout the form a successful
proof might take. Proof critics are an extension to the pplahning architecture that
embody this idea, and were first proposed in [Ireland, 1992jtics analyse failed
planning attempts and perform patches to the proof plantwhiight lead to success.
Just as methods describe the common structure of proofiesalescribe exceptions
to this structure and how they can be handled.

Ireland developed a set of fowave critics[Ireland and Bundy, 1996] which re-
spond to the failure of thegavemethod, from the induction method setGtam These
have been implemented in ti@&damv3 system. We will look at the wave critics in
more detail in §2.5.5.

Critics have also been used to suggest generalisations ¢&iacl 999] and fix di-
vergent proof attempts [Walsh, 1996] in inductive proofisg @0 guide co-induction
proofs [Dennis et al., 2000]. Their use in improving usdeiaction in inductive the-
orem proving is described in [Ireland et al., 1999] and [3ack 1999].

In the remaining sections of this chapter, we look at varieebniques used in the

automation of inductive proof.

2.5 Rippling

Rippling is a heuristic technique designed to guide rewgibhstep case goals during
inductive proof [Hutter, 1990, Bundy et al., 1993]. It expdoihe common structure in
these goals: that both the inductive hypotheses and cooclase derived from the
original goal, and so have a common syntactic structure.

Rippling makes two assumptions. Firstly, that the hypothasd conclusion differ

Chapter 2. Literature Survey 24

because of some additional term structure, and that thecgodle solved by removing
these differences. Although this is not necessarily3rités a feature of most inductive
theorem proving (ITP) systems, which makes rippling wicsgbplicable. The second
assumption is that the common syntactic structure is maedahroughout the proof
of the subgoal. Aubin was the first to remark that this holdg in many step case
proofs [Aubin, 1976].

The key idea is to restrict the manipulation of the conclasamd/or hypotheses
so that the proof fits these assumptions. Its aim is to remdferehces between
hypothesis and conclusion, allowing the hypothesis to led ts prove the conclusion,
known adertilisation, and hence prove the step case. A rewrite step is only alldwed

it meets the following criteria:

Skeleton Preservation The common syntactic structure between hypothesis and con-

clusion, known as thekeletonis preserved.

Difference Removal The step helps ‘remove the differences’, in that unwanted te

structure is either
1. Moved towards the top of the term, leaving a subterm whicless differ-
ent’ from the skeleton, or

2. Moved towards a position in the conclusion which corresisao a univer-

sal variable in the hypothesis, where it won’t prevent fisdtion, or

3. Removed completely.

Because it restricts the rewriting like this, rippling is auhstic strategy. Most work

on rippling has considered a straightforward rewritingiesmiment, although it has

3For example, consider the step casey, ®(x) - d(y).

Chapter 2. Literature Survey 25

been successfully integrated with other ATP techniquegs,reatrix theorem proving
[Pientka and Kreitz, 1999].

A number of formalisms have been developed for rippling, elgnvave annota-
tion, C-Equations and embeddings. These are described inetktethree sections,

along with the details of the rippling heuristic, and somgatéons on it.

2.5.1 Wave Annotation

The wave annotation approach to rippling [Bundy et al., 182&in and Walsh, 1996]
introduces new functions (eavave annotatiorjsinto a term to indicate the differences
between it and another target term. The special unary fometi is introduced above
term structure that does not appear in the target, and arfotihetionwh is introduced
above the term structure that does. For example, the diiterbetween the hypothesis
and conclusion of the step case (2.1) is indicated by thetatiao shown in (2.2). (The
uppercase variables indicate meta-variables that have sadestituted for universally

guantified variables in the hypothesis, a standard teclknmgurP.)

X+Y=Y+x F sX)+y=y+5(X) (2.1)

X+Y=Y+x F wf(s(wh(X)))+y=y+wf(s(wh(x))) (2.2)

The term structure that falls insidev# and outside avh is known as avave front
whereas the contents of the functwhis known as avave hole In (2.2) there are two
wave frontss(...), and two wave holes with contents

Another special functionnk is used to indicate aink— a position which cor-
responds to a variable in the target which can be instadtiaiéh any term, i.e. a

universal object or meta-variable. (2.3) shows an exampsené annotation, where

Chapter 2. Literature Survey 26
capital letters denote meta-variables.
X+Y=Y+x F wf(s(wh(x)))+snk(y) =snk(y) +wf(s(wh(x))) (2.3)

To make annotated terms more readable, the ‘box-and-hotation is usually uséd
wave fronts are enclosed by boxes, wave holes are undedingésinks are marked

with |...], e.g. (2.4) depicts (2.3) in box-and-hole notation.

X+Y=Y+x F |sx)| +]y] =y +|s(X) (2.4)

Terms can be annotated automatically by difference unidicgBasin and Walsh, 1993].
Certain constraints on the placing of annotations ensunestarewell-annotatedfor
instancewf (wf(x)) is disallowed. Nested wave fronts and multiple wave holea in
wave front are permitted.

The skeleton of a term can be computed by replacing terms franes with the
contents of their wave hole, and sinks with the correspandieta-variabl® A term
can be annotated with respect to several targets simuliafyeby having multiple
wave holes in a wave front — this gives a set of skeletons, eestlting from a
different choice of wave holes. This is useful when guiditepsases with more than
one induction hypothesis.

The criteria of skeleton preservation (see §2.5) is entbbgeallowing only rewrite
rules which can be annotated so that the skeletons of trendftight sides are identical
(or in the case of multiple wave holes, that the right sid&&sletons are a nonempty
subset of the left's). An annotated rewrite rule is calledeae rule— see Figure 2.5.1.
Rippling is carried out by rewriting with wave rules, ensgrithat the annotations

match, modulo equivalent wave annotations. I.e. duringcbeae must normalise the

4In fact this notation predates the/wh formalism.
SAlan Bundy, unpublished research note.

Chapter 2. Literature Survey 27

sX)] +Y = [sx+Y) (2.5)
x+[sv)] = [sxzv)] (2.6)
sx)| =[sv)] = x=v (2.7)

Figure 2.1: Three rewrite rules annotated as measure-decreasing wave rules. Only one
of the many possible annotations is shown for each rule. The upwards arrows denote
outwards wave fronts, which are moved to the top of the term during rippling. (2.5) and

(2.6) preserve skeleton X +Y, whereas (2.7) preserves X =Y.

annotation with respect tax.wh(wf(x)) = Ax.x. An example of a rippling proof using
wave annotation is shown in Figure 2.5.1.

Difference removal is achieved by marking wave fronts agelfimg outwardsto-
wards the top of the term onwardstowards a sink. All wave fronts initially travel
outwards, but can be redirected inwards, but not vice-veksaave measureaptures
the informal notion of progress described above, takingpactof the number and
depth of outwards and inwards wave fronts [Basin and Wals®6[L9Vave rules are
only permitted if they decrease this measure, and henceppléng strategy is termi-
nating. Various wave measures have been proposed in arpatieimetter model this
process.

Note that a rewrite rule can produce several wave rulespadh only a few will
be applicable at any one time. The process can be fully adeaina@his give rise to a
useful solution to the problem with traditional rewritirgchniques that need to orient
equations in one particular direction to ensure termimataften an equation needs to
be used in both directions. For example, associativityrasioWith rippling each use

can correspond to the application of a different wave rui¢h lolerived from the same

Chapter 2. Literature Survey 28

X+Y=Y+x + [s®] +[yl =yl +[s)

X+Y=Y+x s(x—i—LyJ)T:LyJ—i— s(x)

X+Y=Y+x F |sx+|y])| =|s(ly] +X)

X+Y=Y+x +F x+ly|=y+][X

true

Figure 2.2: A ripple proof of the step case from the proof of the commutativity of +.
The proof uses wave rules (2.5), (2.6) and (2.7) (see Figure 2.5.1) in that order. The
outwards wave fronts are moved outwards and are eventually removed, allowing fertili-

sation in the final step. The skeleton X+Y =Y + X s preserved throughout.

equation.

The rippling heuristic is implemented via wave annotatiothie Clam proof plan-
ner (see 82.4.1), where the meta-level representationrofuiae allows annotating
functions to be added without changing the underlying I¢Bendy et al., 1991]. It
has been successfully used as a basis for a inductive meth@@usdy et al., 1991].
[Bundy and Green, 1996] is an experimental comparison ofalagive performance of
rippling and standard rewriting i@lam For a more extensive explanation of rippling

see [Bundy et al., 1993]. A more formal account is given in [Basid Walsh, 1996].

2.5.2 The (C-Calculus

The C-calculus is another rippling formalism which is presentedHutter, 1990]
and [Hutter, 1997]. Its formulation of rippling is similao that of wave annotation.
The fundamental difference is that annotations are repteddycolouringindividual

symbols in a term, rather than by introducing special fuomgi

Chapter 2. Literature Survey 29

For instance the step case (2.4) can be represented {+¢adculus as (2.8), with
symbols in the skeleton colourestt and those in theontexf i.e. within wave fronts,

colouredcx.
X+Y=Y+x F scx(xs") +Sky5" :ySk sk scx(xSk) (2.8)

Wave rules are represented usogdour variablesthat can take any colour value, or a
value restricted by aolour sort hierarchy For example, the wave rule (2.5) is written

as the coloured rewrite rule (2.9), where the Greek lettergalour variables.
SX(XT) 45K YB = g (X 45k vy (2.9)

[Hutter, 1997] defines a unification procedure for colouremts, allowing coloured
rewriting to be defined, which is used to implement ripplifigrmination is achieved
by orienting the wave rules into a terminating rewrite systen a case-by-case basis,
rather than using a universal wave measure, although hp1895] gives an account
of how the wave measure approach of [Basin and Walsh, 1996bedarmalised in
the C-calculus.

The (C-calculus has a slightly wider coverage of skeleton prasgrproofs, as
there exist skeleton preserving rewrite proofs that it cgoture that wave annotation
cannot. Whether these are useful in practice is not known. rthdéu advantage is
the uniqueness of its representation, which avoids hawngtmalise the annotation
during search. The coloured annotation approach has beemnajsed to other forms
of search control [Hutter, 2000].

The calculus has been implemented in the INKA system, ancingutheorem

prover [Hutter and Sengler, 1996].

Chapter 2. Literature Survey 30

2.5.3 Term Embeddings

A major drawback of the annotation approaches to ripplirsgdbed above is transfer-
ring it to a higher-order setting. Und@freduction the skeleton of a term can become
broken, and wave or coloured annotations give rise to iledated terms, or terms in
which the skeleton is not preserved. To overcome thigHsalculus has been extended
to cope with higher-order syntax [Hutter and Kohlhase, 1981 alternative approach
to higher-order rippling usingmbeddingss described in [Smaill and Green, 1996],
and has been implemented in k@lamproof planner [Dennis and Brotherston, 2002].

A term embedding is a mapping from a term tree to another tezm the target
term. Those parts of the target term not in the range of thigpimg correspond to
wave fronts, and so embeddings can be used to formalisengppBecause of the
higher order setting, quantificatioh;abstraction and functions may all be optionally
mapped by the embedding.

The embeddings are represented@amby a tree labelled with term positions:
the embedding embeds ternt; into termty, written e : t; S tp, iff for a position p
in e with label g the symbol atp in t; andq in to are identical. Wave fronts are
implicit in this representation: they are the term addredkat do not appear on the
embedding tree. However, key features of wave annotatiea §2.5.1) can be sitill
replicated in this representation: a wave front can be gavdimection by marking the
embedding tree node that maps to immediately ‘beneath’ tihéntarget term. As a
result, embeddings can only represent blocks of wave fribvasall have the same
direction. Sinks can also be represented by marking theogppate leaf nodes of the
embedding tree. A wave measure has been developed for embsdaat is similar to
the one used for wave annotation [Dennis and Brotherstor2]200

When applied to a step case proof, each induction hypothesisibedded into the

Chapter 2. Literature Survey 31

induction conclusion. A rewrite step is allowed if the hylpeges can be re-embedded
into the conclusion, with the possibility of dropping an orteeddable hypothesis from
the embedded set as long as this does not make the set empty.

The advantage of the embedding formalism is that the rig@imnotation is sepa-
rate from the term structure, so thatreduction cannot produce ill-formed annotation
(although the embedding will have to be recomputed), andititerlying logic does
not need to be modified, e.g. unification does not need to atfouwave annotation.

Furthermore, in the case of multiple rippling targets théeddings approach does
not suffer from the problem of ‘mixed skeletons’. This pretol arises in other rippling
approach because the interdependancies between diffeeset holes are ignored,
leading to bogus skeletons that can misguide the searchidégproposeaoloured
rippling [Yoshida et al., 1994] to prevent skeleton mixing in the wawmaotation ap-
proach.

In a naive embeddings implementation the separation of tim@tation and the
term means that the entire embedding does have to be recednpith each step.

However, more efficient implementations are posSible

2.5.4 Creational Rippling

Standard rippling can be used to guiclenstructor stylestep-cases, where induction
terms, and hence wave fronts, only appear in the inductioelasion. Indestructor
style step casesmduction terms are substituted into the hypotheses, fihrerevave
fronts also appear in the hypotheses. For example, (2. bWssh destructor style step

case from the proof of the commutativity @f with an annotated induction hypothesis.

pX)| +(Y+2)=(pX)| +Y)+Z F x+(y+2) =((X+y)+z (2.10)

6Jonathan Whittle, personal communication.

Chapter 2. Literature Survey 32

Creational ripplingis an extension to rippling that can be used to guide step case
proofs with annotated hypotheses [Bundy et al., 1993, Hut897]. This is done by
rippling the conclusion so that a wave front is created themeeh matches the wave
front in the hypothesis. Such a step can lead to non-termmmander wave measures,
as the number of wave fronts is increased, so additionas steyst be taken to ensure
termination.

In [Hutter, 1997] creational rippling is called the ‘blowgrup of terms’, using
context-creating”-equations to introduce the new wave fronts. In [Bundy etl&l93]
creational wave rules are defined, which congiti-wave frontghat can match with
wave fronts in the hypotheses — after a creational ripplenth&ching wave fronts are
erased, leaving an ‘expanded’ skeleton. Although skelpteservation is violated, the
step is acceptable because both hypothesis and conclusitiage a common skele-
ton. In both formalisms the creational ripple can produaditaahal wave fronts in the
conclusion that need to be rippled away — hence it is also knasvippling across
as the hypothesis wave front appears to have been moved aoribe conclusion.

The literature on rippling does not describe creationadlim in the same depth as
the standard technique, and it has not been formalised teatine extent. Essentially
the same approach is outlined in both the wave annotatioacalculus formalisms:
before standard rippling is applied a phase of creatiomgiling takes place, where
a creational step is taken providing some wave front in th@othesis is matched by
the new wave fronts. In the case of multiple induction hyps#s, a creational ripple
can introduce wave fronts which match wave fronts in only s@mhthe hypotheses.
In this case theinviablehypotheses are discarded from the rippling process, eg. th
corresponding wave holes are erased.

Creational rippling has been implemented experimentallthenAClam system

Chapter 2. Literature Survey 33

[Gow and Bundy, 2000]. Protzen criticises the technigque &8ang ‘complex and un-
intuitive’ [Protzen, 1995] — probably due to its poor thetoral development and de-

scription compared to standard rippling.

2.5.5 The Wave Critics

Proof critics are used to describe common exceptions tof plaaning methods, re-
sponding to a pattern of failed preconditions that suggegtarticular amendment to
the proof plan (see 82.4.4). Proof critics was first examindtie context of rippling,
with the introduction of thevave critics[lreland, 1992, Ireland and Bundy, 1996].
These four critics respond to the failure of twavemethod, which implements a
single ripple rewrite in th€lam proof planner. Each critic corresponds to a particular

pattern of failure in the wave method’s preconditions. Ehpgeconditions are:

Wave Front The goal contains a wave front.
Wave Rule A wave rule can ripple this wave front.
Condition Any condition on the wave rule can be discharged.

Sinkable Any inwards wave fronts are above for sinks or outwards wewmet$. Recall
that wave fronts can be rippled inwards to a sink positionn@hikey match a
universal variable in a hypothesis (see §2.5.1). Altevedtj they may meet an

outward wave front and ‘cancel each other out'.

Table 2.1 shows how the failure of the wave preconditiorggerts the various wave
critics. Partial success in applying a wave rule means tihding some term structure
(say,s(s(x)) instead ofs(x)) would allow the rule to be applied.

The critics respond to rippling failure by generalising treginal conjecture, in-

troducing a case analysis into the step case proof, revaingduction term in the

Chapter 2. Literature Survey 34

Generalisation Case Induction Lemma
Precondition Analysis Revision Discovery
Wave Front Yes Yes Yes Yes
Wave Rule Yes Yes Partial No
Condition Yes No
Sinkable No

Table 2.1: Association between wave method failure and the wave critics. Yes, Partial
and No indicate the precondition succeeds, partially succeeds (see main text) or fails

respectively. Taken from [Ireland and Bundy, 1996].

induction rule, or by attempting to find a lemma that will &leippling to continue.
With the exception of the case analysis critic, the waveosrpperform these tasks us-
ing middle-out reasoning, i.e. introducing a solution wotie or more meta-variables
that are appropriately instantiated later in the proofcdear

[Ireland and Bundy, 1996] reports success in using the watiescto find auto-
matic proofs to many theorems previously unsolvable usipgling, and other in-
ductive techniques. Further development of the genetalisa&ritic is reported in

[Ireland and Bundy, 1999].

2.6 Recursion Analysis

We now look at previous work on automating the selection dugtion rules. The
standard approach to rule selectiongsursion analysisbased upon techniques devel-
oped by Boyer and Moore [Boyer and Moore, 1979]. This usesltizinductions of

terminating recursive functions that appear in the goaé disal induction rulés of a

Chapter 2. Literature Survey 35

recursive functionf corresponds to a relation identical to the computation roofle .
The termination off guarantees the well-foundedness of this relation, andehte
validity of the rule.

To prove a particular conjecture a heuristic is used to ssiggeset of induction
rules: if the functionf appears in the conjecture with recursive argumeqits ., x
then use the dual induction rule with induction variabless, ..., X, (providing x;
are all universal variables). This is known as thelity heuristi¢. The set ofraw
suggestiongiven by the heuristic undergoes two more stages of praugsdrirst
the system attempts to i) disregard some rules as inheneéiior to others and ii)
combine rules together, to form rules superior to their tarents. The notion of
superiority of induction rules can vary between systemsyeashall see below.

Finally an induction is selected by considering the indutterms substituted into
the conjecture by each rule and the effects this will haveherstibsequent proof. An
occurrence of an induction term in the conjecturfiasvedif it prevents the symbolic
evaluation of the surrounding term using the recursive defirs, otherwise it isun-
flawed A rule is selected based on the number of flawed and unflavaeatiion terms

it will produce (see [Stevens, 1988] for details).

2.6.1 Subsumption

The first system to incorporate recursion analysis was'it, also known as the
Boyer-Moore Theorem Prover [Boyer and Moore, 1979, Boyer andrigldl988]. The
system considers an induction rule superior to anotherséiissumeshe other rule.

Subsumption can be defined as:

e RuleAis subsumed by rulB iff there is arepeated fornof A such that each step

"It is also known asheinduction heuristic e.g. [Walther, 1992].

Chapter 2. Literature Survey 36

case of this rule iglirectly subsumedy a step case of ruB.

e The N-repeated form of a rule is constructed by applying the switisins of
each step case to each step case ofithe1)-repeated form (see [Stevens, 1990]

for details).

e Step cas&, is directly subsumed by step caSgiff the conditions ofSg imply
the conditions o8, and each hypothesis/conclusion substitutioS« 0 a subset

of a hypothesis/conclusion substitutionSg.

Informally, subsumption can be seen as considering rulgiBrsor if it is an extension
of N applications of rule A, for somd. NQTHM combines induction rules byerging

Merging two valid rules produces a third valid rule which suimes the original two.

2.6.2 Subsumption Reconstructed

Although NQTHM was very successful at selecting appropriate inducticesrahd the
system was well documented in [Boyer and Moore, 1979], thm@axrh lacked any
real theoretical foundation explaininghyit worked. Because of this Stevens carried
out a rational reconstruction of Boyer and Moore’s recursinalysis [Stevens, 1988,
Stevens, 1990]. He provided theoretical explanations of thiese techniques often
chose appropriate inductions, which lead him to identifgt eorrect a number of flaws
in the original process.

The reconstruction was based upon an informal meta-thefornydactive proofs
— explanations about how and why inductive proofs succeef@ibr The key idea
of this theory is that appropriate induction rules introglireduction terms that allow
hypothesis and conclusion to be rewritten to match eachr.oiliese induction terms

need to belealt with— we need rewrite rules that involve these terms in the cotiiey

Chapter 2. Literature Survey 37

have been substituted into. If we use inductipwlual to functionf in the conjecture,
then we can use the recursive definitionfdb deal with some of the terms introduced
by ;. The danger is that a rule might introdusiele-effects.e. terms that cannot be
dealt with using the recursive definitions available. RulesBhierefore superior if it
subsumes rule A, as it will substitute ‘dealable’ terms itite same places as A, and
will possibly allow A's side-effects to be dealt with as well

Among the advantages of Stevens’s recursion analysis isgbeof the merging
algorithm to perform the subsumption test — if rule A subssinuge B then merging A
and B simply returns A. His improved merging algorithm alfovas, in some cases,
repeated forms of rules to merged, findingeanmon subsuming induction rute two

rules.

2.6.3 Containment

Subsumption is not the only method of measuring the relatingeriority of induction
rules. Walther has proposedntainments an alternative method [Walther, 1993], and
from this he developed an alternative set of techniquesmgraving, disregarding
and combining destructor style induction rflesiggested during recursion analysis
[Walther, 1993, Walther, 1994a]. These have been impleadenta version of the the
INKA inductive theorem prover [Hutter and Sengler, 1996].

Containment is defined as: rukeis contained by ruld iff <aC<pg, where< is
the well-founded relation corresponding to valid industralel. Hence the rule with
the larger relation is considered superior, which is edeivato preferring the rule
with the logically stronger induction hypotheses. This barseen as a meta-theory of

inductive proofs that differs from, but does not necesgafpose, Stevens’s theory.

8A destructor style induction rule only substitutes indastterms into induction hypotheses of step
cases.

Chapter 2. Literature Survey 38

[Walther, 1993] describes @ontainment testvhich is sufficient to show contain-
ment between two induction rules: rudeis contained byB if for each hypothesisia
in a step cas&y of A the following formula is true (taking all free variables te b
universally quantified):

condS) — \/ (cond(SB)/\ \/ [A HB(X):HA(X)]>

SBeS(B) Hge#H (Ss) xedom(Hg)
where $(B) are the step cases of ruB #(S) andcondS) are the hypotheses and

conditions of step casg§, domH) is the domain of hypothesid’s substitution and
H(x) the effect of that substitution on variabte The test is carried out by passing a
set of theseontainment formulat an inductive theorem prover.

If neither <aC<pg or <gC<a can be shown using this test, then the rules are com-
bined by taking theseparated uniomf A andB [Walther, 1993]. This is an induction
rule corresponding to the relationy U <pg constructed so that the conditions of the
step-cases are mutually exclusive. Although this unioragénexists, it is not guar-
anteed well-founded. The rule can be shown valid if it passggsasi-commutation
test As with the containment test this involves dischargingaiarformulae using the
inductive theorem prover, but they tend to be harder to prduethe last resort the
system can attempt a direct well-foundedness proof of tharaged union.

[Walther, 1993] also definemngeanddomain generalisationsoperations which
modify an individual induction ruléA to produce a ruled’ that containsA. Both
these operations correspond to procedures for extractingpduction rule from a
terminating recursive function definition discussed in [Bogind Moore, 1979] and
[Stevens, 1990]. As with separated union, the generaligdattion rule is not guaran-
teed well-founded.

Walther claims that his recursion analysis is superior toeB@nd Moore’s ap-

proach (see [Walther, 1994a] for his comparison). His teghes are capable, in

Chapter 2. Literature Survey 39

some cases, of constructing induction rules that requiveffsupporting lemmata than
Stevens’s approach. However unlike Stevens, he does na¢ssdepeated forms and
non-destructor style induction rules. The relative sttea@f the two approaches has
not yet been properly investigated, and it is unclear ifegitls superior, or perhaps if

some combination of the two would be optimal.

2.6.4 Ripple Analysis

One of the major advantages of rippling is that it provides@g normative model of
how inductive proofs should proceed, and this model can bd tessuggest solutions
to other problems in automated induction. For example, wdaacting an induction
rule we can choose the rule that is most likely to allow subsegrippling to succeed.
Ripple analysigBundy et al., 1989] is an induction selection technique thkés this
approach.

Induction terms appearing in the step-case will be anndtatevave fronts. Given
a set of induction rules and a set of wave rules, ripple arsadygygests those rules that
introduce wave fronts that can be rippled in the first stefhefgroof. This provides
a set of raw suggestions which can be combined and disredjasiieg the techniques
of recursion analysis. Indeed, ripple analysis can be sgam &xtension of recursion
analysis, as both consider the effect the induction willhaw the first step of the step-
case proofs. The former considers a rippling proof, thetaymbolic evaluation with
the recursive definitions.

This comparison indicates the advantages this technigsi®Vex recursion anal-
ysis. Firstly, it may use any lemmata known to the systemaf/tban be annotated
as wave rules. They may suggest appropriate inductionsrdift from any dual to

functions in the conjecture. Secondly, the restrictionsippling can disallow an in-

Chapter 2. Literature Survey 40

appropriate induction even though recursion analysis estggt [Bundy, 2001]. If an
induction term may only be dealt with by rippling in using @uesive definition, but
there is no sink position in which to put the wave front (seébg8hen the proof is
likely to fail. Recursion analysis would suggest this indoet ripple analysis would

not, given that there is no applicable wave rule.

2.7 Delaying the Choice of Induction Rule

Recursion analysis and ripple analysis are the standaredagpes to induction rule
selection, but have two significant disadvantages [Bundy1RFirstly, they can only
select an induction rule from a predetermined space, ansuiteble choices may not
be in that set [Protzen, 1995]. For recursion analysis thial space’ of induction rules
is determined by the recursive functions in the conjectackthe operators for induc-
tion rule combination. Ripple analysis can select inductides not in the conjecture’s
dual space, but these must be suppéqttiori, e.g. by the user.

Their second disadvantage is they must guess the effecke afduction choice
using only the structure of the conjecture and a one-stefaloead for each induction
term. This can obviously go wrong, as events later in the fonoay determine why
this a bad choice, and more importantly, what a good choiaddnoe.

In this section we look at an approach to induction rule seleavhich overcome
the second problem by delaying the choice of induction ruil the middle of the

proof. In 82.8 two techniques which tackle the first problemexamined.

Chapter 2. Literature Survey 41

2.7.1 Periwinkle: Middle-Out Induction Selection

In her Periwinkle system Ina Kraan useadiddle-out reasoningo select an induction
rule from a prestored set [Kraan, 1994, Kraan et al., 1996¢ Jystem performs bet-
ter than recursion analysis because it looks ahead intartiod py delaying the choice
of induction rule, via middle-out reasoning [Bundy et al.908]. This represents un-
known terms in a proof with meta-variables, variables thay e instantiated to first
or higher-order objects in the object level language. Aspitoef proceeds, the meta-
variables are instantiated to allow proof steps to happérhel proof is completed
then the meta-variables should be instantiated to the nredjgérms. The main dif-
ficulty with this technique is controlling instantiations aithout proper control the
proof could easily diverge. A model of the structure of ssstel proofs is required to
provide this control [Hesketh, 1991].

In the case of middle-out induction, second-order metéatas are used to repre-
sent the induction terms of the as yet unknown induction chlgice. This gives us a

schematic step cage be rippled, e.g?

HAX) -+ (BY) i+ C(2)) = (AX)+iB(y))+: C(2):! (2.11)

[- [] [E) —_ Y -

A proof of this step-case is searched for, instantiatingrié-variables as it proceeds.
If successful, this yields a set of induction terms and ulsesd to select an induction
rule from a prestored set. The proofs of the base cases arednepleted.

The dashed wave fronts in (2.11) indicatgentialwave fronts, which can be made
definiteto allow a wave rule to match during the proof. Steps in thplimg proof are

either definite or speculative depending on whether or not any definite wave fronts

9Here the meta-variables are writtenass, C, ...

Chapter 2. Literature Survey 42

are rippled. An example of a speculative ripple is the ajppilon of rule (2.5) to the

schematic step-case (2.11) to give the conclusion:

I I

(DX i+ (B +C@21))| =(s(DX)| +BY))+C® (212

[G] ! [[| ! —_r -

In this exampleA has been instantiated da. s(D(u)) and a definite wave front has
been created around these terms. On the LHS this wave frappied outwards and
there is now the possibility of a definite ripple on the RHS.

Rippling provides much of the control necessary for this lohohiddle-out reason-
ing, as it provides a strong model of step-case proofs aneha&yely restricts the appli-
cable rewrite rules. However, it is non-terminating in thegence of meta-variables,
and so Kraan imposed further restrictions on the step-casa.pFirstly, a definite
ripple or the application of the induction hypothesis is@aw preferred to a specula-
tive ripple. Secondly, only a single speculative ripplellsvaed during a proof. This
second limitation is somewhat over-restrictive, and Kraaggests alternative methods
need to be developed, such as a middle-out induction prdfer

Another potential problem with middle-out induction is theed for higher-order
unification when instantiating meta-variables, as thisnly gemi-decidable and does
not guaranteed a unique most general unifier. Theréersvinkleis restricted to uni-
fying higher-order patternsa subset of higher-order terms with decidable unification
and a unique most general unifier. This subset appears tdfi@esu for representing
induction terms. In contrast, other approaches to middie-@asoning have accepted
the undecidability of full unification [Hesketh, 1991, laeld and Bundy, 1996].

Note thatPeriwinklecannot find a step cases which are destructor style (i.e. with
compound induction terms in the hypotheses) or which havigipteuinductive hy-

potheses.

10This problem is addressed in Chapter 7.

Chapter 2. Literature Survey 43

2.8 Creating Novel Induction Rules

Recall that apart from lack of foresight into the proof, theestmajor disadvantage
of recursion and ripple analysis was their dependence oraeespf induction rules

predetermined by available recursive functions, and pbssiie user. In this section
we look at techniques which lift this restriction, in thaéyhcan create induction rules

‘from scratch’.

2.8.1 Labelled Fragments

The need for novel induction orderings is especially imaatrin proofs of existence
theorems. Here an assertion can be made about a recursotsfuwithout its recur-
sive structure being known. For example, the following tleeo asserts the existence

of a quotienig and remainder for pairs of Peano natural numbers:
Vx,y:nat. Ju,v:inat.y # 0 — (X= (g X y)+r AT <Yy)

Proving the theorem involves finding witnesses for the umkmexy andr and showing
they satisfy the theorem. This can be done by synthesisegitimess during the proof
of the theorem. Therefore the form of induction used willedetine the recursive
structure of each witness. In many cases the appropriate édrinduction is not
dual to any recursive function given in the problem spedifice]Bundy, 2001]. Also,
although the conjecture may be provable using known indaogtiles, another witness
with a simpler proof may be found with other forms of induafi This is the case
for the quotient-remainder example above [Hutter, 1994Judghdy speaking, we may

not even have the appropriate dual induction to hand, as weé ylet know what form

UThis is especially important when synthesising a programmfits specification — an existence
theorem — as a more desirable program may correspond to ithisss.

Chapter 2. Literature Survey 44

the witness will be. Hence approaches such as recursiogsasialvhich rely on a
predetermined space of induction rules, perform badly astexce proofs.

[Hutter, 1994] describes a dynamic approach for constigain induction order-
ing appropriate to a given existence conjecture. First afsetduction variables are
selected by using abstractedequations (see 8§2.5) calléabelled fragmentsA set of
variables is found such that context, or wave fronts in rigpterminology, introduced
at these positions could be rippled out. The analysis ignibreform these wave fronts
might take and only checks if there afeequations that could mow®mewave front
in the right direction.

A destructor style induction rule is then synthesised bpwihg up’ some part
of the conjecture using a context creatifigequation (equivalent to a creational wave
rule) and then propagating these wave fronts to the induetoiables to give a set of
induction terms. The resulting induction rule can lie odesihe dual induction space,
so the technique may create a ‘novel’ induction rule. Walshmethods (see §2.9.1)
are used to establish this induction as well-founded. Huiees various heuristic

strategies for creating and moving wave fronts in existeheerems.

2.8.2 Lazy Induction

Lazy induction is another approach designed to generataciimh rules not con-
structed from known function definitions [Protzen, 1994¢tPen, 1995]. It is re-
stricted to destructor-style induction rules, where irtcucterms are only substituted
into the hypotheses.

The technigue constructs a destructor style inductionduleng the proof search
for the rule’s base and step cases. It assumes the conchfstach case is equivalent

to the conjecture, then creates and removes wave frontg tipple-like rewriting, and

Chapter 2. Literature Survey 45

generates suitable induction hypotheses on demand. Rnages Hutter's C-Calculus,
adapted to have wave annotation’s directed wave fronts dimbles the usual general
termination argument (see 82.5).

This lazy generation of induction hypotheses leaves datssabout the form of
induction to fertilisation steps. Before fertilisation thas no explicit representation
of the unknown induction. This can be constrasted with Kea@ghematic step case’
approach (see 82.7.1), where these decisions are madephygisteps and meta-
variables store this information explicitly before fedétion occurs. These different
approaches to delayed commitment are contrasted furtfei3rb.

To prove a conjecturgxy, ..., X,. Y, lazy induction begins with the conclusign

and an empty hypothesis list, and transforms it using tHeviehg operations:

Wave Front Introduction: Rewriting the conclusion with a measure increasing wave

rule in order to create wave fronts. This is always the firsp tf the proof.
Rippling: Wave fronts are rippled outwards, or into sinks.

Case Split: Rewriting motivates a case-split. Each case becomes a sepase of

the induction rule.

Hypothesis Generation: If an instance of the conjecture can be used to rewrite the

conclusion, then it is added as a hypothesis and used fdisitibn.

Equate Induction Variables: If Hypothesis Generationcan’t be applied because
two occurrences of an induction variable have to be instadi to different

terms, then attempt to prove that these terms are equal.

Note thatWave Front Introduction is always applicable to the conclusion, so further
controls are required to prevent divergence. Protzensighjrotzen, 1995] does not

deal with this issue.

Chapter 2. Literature Survey 46

The well-foundedness of the resulting rule is guaranteeddnyg Walther’s esti-

mation calculus (see §82.9.1) at the end of the proof, or byrams

a) that only defining equations of terminating functions ased byWave Front

Introduction,

b) that onlyp-bounded functions are moved towards induction variabié®re p

is the argument containing the variable and

c) that a subset of variables always appear in their indn¢éoms, and at least one
of these is instantiated to a non-variable term in each gs$ (this condition

Is not made explicit by Protzen, but it seems to me to be nacgss

As the case-structure of the induction rule has been caristilby case-splits during
the proof, it is guaranteed to be case complete, and henoe sou

[Protzen, 1995] reports that lazy induction was implemeéate an extension to the
INKA inductive theorem prover [Hutter and Sengler, 1996{haugh this implemen-

tation is no longer available.

An Example of Lazy Induction

To illustrate lazy induction, we now present a proof of thedtemevenpfrom the
Clam library [van Harmelen, 1996] using destructor style deifom$ of evenand +

(see Appendix B). We assume the lemevar{s(s(x))) = everx) is available.

- ever{x) A everfy) — ever{x+y)

Chapter 2. Literature Survey 47

Case Splitand Wave Front Introduction using the definition okvengives three

cases.

- everf0) Aeverly) — everfO+Y) (2.13)
- ever{s(0)) Aeverty) — ever{s(0) +Y) (2.14)

X#0,x#s(0) F everf p(p(x)) T)/\ever(y) — ever{x+y) (2.15)

The cases (2.13) and (2.14) are trivial, and case (2.15)zeeg with twoWave Front

Introduction s with the definition of+:

x£0,x£50) + everp(p(x))|) Aeverfy) — ever(s(s(p(p®) | +y))|)

Rippling with the lemma gives us:

x#£0.x£s0) I+ everp(p(x))|) neverty) — everi] p(p(x))| +)

Now Hypothesis Generationcan produce a suitable induction hypothesis, use it to

fertilise:

x# 0, x# 5(0), ever{p(p(x))) A everty) — ever{p(p(x)) +y) F true

The proof satisfies the well-foundedness conditions (a)gi@n above, so the induc-

tion is sound and the proof is complete.

2.9 Termination Analysis

The problem of proving a given induction rule well-foundsdsimilar to proving the
termination of a recursive function — both require a wellhided relation to be pro-

vided under which the recursive cases decrease. It is icdimtext that the significant

Chapter 2. Literature Survey 48

research into automating well-foundedness proofs hasdaes Termination of a re-
cursive functiod? is usually established by proving that for some subsettthe func-
tion argument positions, there igermination functiorwhich is always less by some
known well-founded order for the values in the recursivésclan the initial values.
More formally, for am-ary functionf there is some fixeB = {i4, ..., ix} C{1,...,n},

a termination functioom and a well-founded relatior, such that for each recursive

call in a defining equation:

(I)—> f(al,...,an) = f(bl,,bn)

the followingtermination hypothesis true:
¢ — m(bi,, ..., b)) <m(a,, ..., &) (2.16)

In this section we look at three approaches which allow theggss to be automated.

2.9.1 The Estimation Calculus

In the Boyer-Moore theorem prover (see §2.6), proving teatmm of recursive func-
tions was given a degree of automation. However, the sysggartied entirely on the
presence of suitableduction lemmaso prove termination. It was up to the user to
formulate these lemmas, and this constituted the mostuliffi@rt of the process.
Walther’s estimation calculugWalther, 1988, Walther, 1994b] attempts to auto-
matically prove termination in a way similar to the Boyer-Medheorem prover, but
has the ability to synthesise suitable induction lemmabaut user assistance. It can
prove termination of destructor style functions defined dreely generated data types.

It uses a single kind of measure function, giee order# : T +— N, which counts the

2n0t including mutual or nested recursive functions.

Chapter 2. Literature Survey 49

number ofreflexive constructorg a constructor ground term of typei.e. the con-
structors of typa" — 1 for anyn. For example, the number of occurrences af a
nat, or consin alist(nat).

The method depends upon the notioracfument bounded functioné function

f is p-bounded iff for all termgy, .. . ,t, of the correct typ¥:

f(tl; "'atl’l) <#tp

Such properties of functions can be found automaticallye@iap-bounded function
f, adifference functiod\P f is synthesised — a predicate that recognises when the bound

<% can be made strict. Hence:

This will play the ©Ble of an induction lemma. The actual estimation calculus
used to deduce that for some tetnaontaining variable, t <z x. It decomposes$
to a series of subterms by replacing the ppounded function by theth argument,
eventually reaching. Thedifference equivaler(t, x) is simultaneously constructed
by the calculus as the disjunction of the correspondinghffice functions applied to

each subterm. From this and the induction lemmata, it fciltvat:
Alt,X) =t <gX

Showing the termination of single argument destructorestgcursive functiorf in-

volves:
1. Finding each recursive cail— f(x) =... f(t)...

2. Deducing <# xin the estimation calculus.

Bwherex <4y denotes #x) <y #(y)

Chapter 2. Literature Survey 50

3. Proving thaermination hypothesi¢ — A(t,X).

The technigue extends to functions with several arguménteas been implemented
in the INKA inductive theorem prover [Hutter and Sengler9&Pand shown to be
successful in practice. Walther’s methods have also bemaed for use with arbi-
trary polynomial-norm measure functions [Giesl, 1995&] ascursive functions de-

fined over non-freely generated data types [Sengler, 1996].

2.9.2 Reducer/Conserver Analysis

[McAllester and Arkoudas, 1996] describes a simplificatbthe estimation calculus,
which is guaranteed terminating for the class of ‘Waltheursive’ functions. Walther
recursion is defined by set of simple syntactic requiremfmtiinction and type defi-
nitions.

Functions can be classified esnserversor reducersof their pth arguments, cor-
responding to a non-strict or strict bound on the functiorth®yargument. These are
expressed in conserver and reducer lemmas using threlation — a reducef can be

asserted by a reducer lemma of the form:

f(X1,..., %) <ad(Xp)

whered is a destructor functiot. The simplified calculus uses reducer and conserver
lemmas in two capacities: as a termination checker or as aoivalgtaining new lem-
mas from known terminating functions. Unlike the estimatalculus it does not
produce termination hypotheses that require an indudtigerem prover to discharge,
but purely by manipulating reducer and conserver lemmasaceld is less power-

ful than Walther’s original methods, but has the advantdgaways terminating for

Walther recursive functions.

Yi.e.d(c(x,...,%)) = X for some constructar andi € [n].

Chapter 2. Literature Survey 51

2.9.3 Using Term Orders

There exists large bodies of research on the terminatioog€ Iprograms and term
rewriting systems (see [Dershowitz, 1987] and [Schreyelexbrte, 1994] respec-
tively). This suggests an alternative route to automatangination proofs of recur-
sive functions, and equivalently well-foundedness prodiaduction rules, than those
outlined above: adapt automated techniques from thess &veadeal with recursive
functions.

Giesl has considered this approach and concluded thatl[G835c]:

e Techniques for logic program analysis are currently uasilét, as these are only
semi-automatic, i.e. like Boyer and Moore’s system they ireqghe user to per-

form the significant tasks.

e Although there are several automated procedures for tewritirey systems,

these are not directly applicable to recursive functions.

The problem with the latter techniques is that they proveteation hypotheses (2.16)
usingterm orders— well-founded orders on the terms of the data typges..,a,. In
general, this approach is not sound for recursive functioesause different terms may
evaluate to the same constructor term, but will not be edgmiainder the term order.
For examplenil anddelet€0,0 :: nil) are equivalent, but will not be treated as such
by a term order. Term orders do not always respect the sersaftiunctions.

[Giesl, 1995c] describes three possible solutions to tfoblpm:
1. Use term orders which respect the semantics of the reeutsictions.
2. Consider recursive functions as term rewriting systems.

3. Eliminate defined functions from the termination hypste

Chapter 2. Literature Survey 52

The former two are rejected on the grounds that they impasegtequirements on
the termination proofs, which would significantly reduce ftower of the approach.
Giesl develops the third solution, introducing new undefifinctions which bound
the defined functions that are to be eliminated. He descalpescedure for transform-
ing a set of termination hypotheses into a set of constrawhere defined functions
symbols are replaced by the new undefined function symbaig.well-founded term
order satisfying the constraints will also satisfy the oréd termination hypotheses.
Automatic techniques for the synthesis of wellfounded temaers can now be
used to prove the termination of the recursive function,thagse in [Steinbach, 1995],

[Giesl, 1995b] or [Dershowitz and Hoot, 1993].

2.10 Summary

This chapter has surveyed the literature on proof plannimyautomating inductive

proof. We draw attention to the following features:

e Proof planning provides a theorem proving architecturedhaws a declarative
specification of proof strategies. Far greater search cbcdn be exercised than

with object-level search.

¢ Rippling is a heuristic technique for controlling searchnductive step cases.
The expectations it provides for the form of the step casefpnave allowed
researchers to make progress with other problems in awohnaduction: gen-

eralisation, lemma speculation and rule selection.

e The standard technique for induction rule selection is n&on analysis. It is

limited to selecting from an incomplete space of inductioles determined by

Chapter 2. Literature Survey 53

the recursive functions known to the system. Its one-stegdbead into the

proof can also be inadequate.

e Improvements on recursion analysis have delayed the clodizeluction rule
until later in the proof. Some approaches also attempts nergée a novel ap-
propriate rule during the proof [Protzen, 1995]. The maiobbems with these
techniques are poor search control and the restrictionyslaee on the form of

induction rules.

Chapter 3

Induction Rule Structure

When dealing with such a schematic axiom, how can a proveildgns
guess which instances of (the schema) to consider? Withaally good
way to answer such questions, one meets with the futility of thisH
Museum Algorithrh

— ROBERTS. BOYER & J STROTHERMOORE, ON THE DIFFICULTY
OF AUTOMATING INDUCTIVE REASONING

3.1 Introduction

The literature on automated induction, described in Chahteontains a variety of
logical and heuristic theories of inductive proof. The tielaships between these the-
ories is not always clear: for example, R-descriptions [Walt1992] and rippling
[Bundy et al., 1993] are described in quite different ternee(§2.5 and §2.6).

This raises important questions for anyone consideringathiemation of mathe-

matical induction, namely:

1. What definition of an induction rule should be used? For gptapsome authors

lwhich “enumerates... all Hilbert style proofs, until it fsxd proof of the given theorem, as though
visiting the British Museum, where one gets to see at leastexample of everything.”

54

Chapter 3. Induction Rule Structure 55

restrict their theories tdestructor styleules, e.g. [Protzen, 1995], while others

also useconstructor stylee.g. [Bundy et al., 1993].

2. Once an induction rule has been applied, how should thef pfahe resulting
subgoals be guided? Rippling is a successful approach. Howthere are a

number of possible variants (see §2.5).

These questions are particularly relevant to this thasispnsidering (i) what kind
of induction rules should a system attempt to create andav(igt constitutes a good
choice with respect to the proof search heuristics being.u3éis chapter provides
answers to both these questiéngroviding a theory for the automation of inductive
proof. Our theory will be taken as a basis for the remainde¢hethesis.

The concept osimple induction ruless proposed as a definition of induction rules
that is suitable for automated proof, because it is comfeaiith rippling heuristics.
We show that current rippling techniques are easily extéride use with this class
of rule, by giving a fresh account afeational rippling[Bundy et al., 1993] via term
embeddings. Simple induction rules generalise the coaadphduction rule used in
much previous work on automated induction, and we argudltisatmproves automa-
tion.

Figure 3.1 shows an example of the kind of induction rule veewks in this chap-

ter, and illustrates some useful pieces of terminology.

3.2 Syntactic Restrictions

As explained in 82.2.1, all induction rules are derivabterfrthe Noetherian Induction

rule. However, the full rule is rarely used in automated tkeoprovers, because it is

2Any answers to these questions depend, in part, on the Iagtting in which the inductive rea-
soning takes place. However, only a sequent-based typeehayder logic is considered in this thesis.

Chapter 3. Induction Rule Structure 56

Case Qondition Inductlon Terms

I— @(0

} Base Cases

) . (3(0))
T 74 0, @(p(ik ((z)) } Step Case
= Yz : nat.®(x)
Induction Hypothesis Induction‘ConcIusion

Figure 3.1: An example induction rule, with the common names for various parts.

an axiom with several higher order variables [Boyer and Mpb®92]. This means it
may not be expressible in a system’s logic, and when it ispthsence of higher order
variables present search and unification problems, unégs$yaontrolled.

A system can get round this problem of expressiveness by gtngahe necessary
instantiation ‘behind the scenes’ and using the resultiexyvdd rule, e.g. NQTHM'’s
induction rules are expressed in unquantified first-ordgicloBut still, such systems
do not consider the full range of possible instantiationstdad they typically employ
some syntactically restricted class of induction rules.

Examples of such classes arenstructor styleinduction rules, which are used
by the Clam [van Harmelen, 1996] andClam [Richardson et al., 2000] proof plan-
ners and the RRL system [Kapur and Zhang, 1995], destructor styleinduction
rules, which are used by NQTHM [Boyer and Moore, 1979] and tHKA system
[Walther, 1992, Protzen, 1995]. Destructor style induttiales may be formalised
using R-Descriptions [Walther, 1992].

The disadvantage with using a restricted class of inductitas is that there may be

problems that can only be solved, or can be more easily solgay an induction rule

Chapter 3. Induction Rule Structure 57

outside of this class. (We look at the problems of restrgcéirsystem to constructor and
destructor style in 83.5.) For instand@lam cannot typically solve simple problems
about destructor style functions, as the appropriate subdten destructor style. There
is a tension here between generality needed to solve a rapgaxtems, and the search

control issues of using an unrestricted definition of indarctule.

3.3 Simple Induction Rules

We now describesimple induction rulesa class of induction rules designed to gen-
eralise constructor and destructor style rules, whildtlsting suitable for automated

proof.

Definition 1 (Simple Induction Rule) A simple induction rule is an inference rule

with a conclusion of the form V.X. ®, and premises of the form
Ci, ...,C, 01(V91.9),0h(YHP) F O(P)
for h,k > 0 and substitution$1,...,8,,0 such that

1. Forallie [h]
9% uDom(6;) = Dom(o) = X

2. For alli € [K], eachcase conditionC; is a literal not of the form®' (V9”.®) for

any substitutior®’ and set of variableg”.

Informally, the definition gives a schematic descriptioragiremise consisting of
case conditiongF), induction hypothese®j(v9;.®)) and induction conclusioa(®).
Clause (1) insists that in each premise the universally dfiechvariables in the rule’s

consequentX) are substituted for in the conclusioDdm(o)) and either substituted

Chapter 3. Induction Rule Structure 58

for, or universally quantified, in each hypothesis(Dom(6;)). Clause (2) ensures
that case conditions are not induction hypotheses.

As an example, consider the induction rule from 81.3:

= ®(nil)
D(x) F P(x<>(y:nil))
VI :list(1).(1)

This is a simple induction rule. Following Definition 1 it has= {l}. The base case
has the parameteis= 0, h =0 ando = {nil/I}. The step case has the parameters
k=0,h=1,91=0,01={x/I} ando = {(x <> (y::nil))/I}.

On the other hand, the Noetherian induction rule (see 8gignbta simple induc-

tion rule:
VXeA (Ve Ay=<x— D)) — d(X)
Vx e A ®d(x)

It is not a simple rule because its premise has the wrong synistructure to match
Definition 1.

Simple induction rules are more general than the constraetd destructor style
of induction rules found in the literature. We can obtainstaunctor (resp. destructor)
induction rules by restricting the substituti® (resp. o) to only introduce atomic
terms — variables or constant symbols.

Simple induction rules are suitable for automation becausean use rippling-
like heuristics to guide the proof of the resulting subgodite induction conclusion
o(®) and the induction hypothesB8gV9;.®) are both instances of the same formula,
modulo universal quantification. However, before we cansirsgle rules and rippling
together, there are some technical problems to consider.

Firstly, wave-fronts may appear in both the conclusion appotheses of step

cases. As discussed in 82.5.4, creational rippling has pemposed as a technique

Chapter 3. Induction Rule Structure 59

for rippling hypothesis wave-fronts, but it is relativelN-defined. It was presented
in the wave-annotation formalism [Bundy et al., 1993], but hat yet been extended
to the more general embeddings approach [Smaill and Gr&86).1This problem is
dealt with in the next section.

Secondly, it is possible that hypothesis and conclusiorstdubions for a given
variable do not share any common subterms, making the agilmalof a common
skeleton impossible, and so preventing standard ripplMg do not deal with this
problem in this thesis, but simply note that there are preg@xtensions to rippling to
deal with lack of common subterms, etmle-less wave-fronts Consquently, below

we will assume that such a common subteloesexist.

3.4 Creational Rippling

To define creational rippling in an embeddings frameworksider a step case with
conclusiorC. Each induction hypothesi4$ is associated with a set of tripléSk e;, e;),
such thate; : SKS H andey : Sk C. Skis a common skeleton that embeds in both
this induction hypothesis and the conclusion.

Below we describe how the initial embeddings are computedhamdcreational
rippling takes place. Our account differs significantlynfrthe original wave-annotation

presentation [Bundy et al., 1993], although the underlydens are the same.

3.4.1 Initial Embeddings

Initially we can assumel = 6(V9)".®) andC = o(®) for substitution® ando and set

of variables)” (see Definition 1). To compute the initial triples fdrwe consider each

3Alan Bundy, unpublished research note.

Chapter 3. Induction Rule Structure 60

x € Dom(o) — 9 and compute the s& of common subterms d(x) ando(x) — as

discussed above, we are assuming sughia non-empty. Define a substitutigrby
1. Forx € Dom(o) — 9 substitute a term frorf.
2. Forx e 9 substituteo(Xx).

It is easily shown that a common skeleton FbrandC is given byp(®): For case (1)
S«is embeds int®(x) in the hypothesis and(x) in the conclusion, as it is a subterm of
both. For case (2)(x) embeds into a variable bound By in the hypothesis — recall
that any term embeds into a universal variable of the same-tymndo(x) trivially
embeds into itself in the conclusion. By Definition 1 thesetheeonly two cases that
need to be considered.

Note there may be multiple possilppe, and so multiple common skeletons. Each

skeleton has a corresponding triple, with the embeddinggated in the usual way.

3.4.2 Ripple Steps

We assume that some wave measuneover embeddings is available, such as the one
in [Smaill and Green, 1996]. The usual definition of ripplwvig embeddings is used
(see 82.5), extended to cover multiple skeletons/hypethelformally, a successful
ripple step requires us to reduce the measure in at leastfdhe embeddings of the
skeleton into the conclusion, and to remain constant inethloat are not reduced. If
the measure increases for an embedding then we can allobetdscarded, providing
that at least one viable embedding remains.

A ripple step is formally defined as follows:

1. Rewrite the conclusion.

Chapter 3. Induction Rule Structure 61

2. Attempt to embed each skeleton into the new conclusionleddt one must

embed.

3. Check the step has reduced seguent wave measure

Definition 2 (Sequent Wave Measure)Thesequent wave measur@/mseqis defined
for a sequent S as a multiset, containingpjypH) for each induction hypothesis H in
S.

Thehypothesis wave measurevm,y, is defined for an induction hypothesis H as

a multiset, containing wiey) for each triple(Sk e, e;) associated with H.

As the measure is reduced with each step, rippling is tertmiga

The sequent wave measure characterises valid rippling,sbesp it is not a good
way of comparing two valid rippling steps, because neebjlegbsowing away hy-
potheses/skeletons reduces the measure. Instead, one@tefered over another if it

preserves more hypotheses, else if it preserves more @kslet

3.4.3 Creational Ripple Steps

A creational step is one which introduces extra context theoconclusion to match
context already in the hypotheses, and hence is inherem@tgimneasure increasing.
The matching context can be made part of the skeleton, aslitaieed by hypothesis
and conclusion — a process calledutralisation because the corresponding wave-
fronts ‘cancel each other out’, leaving the underlying testnucture behind. Hence
neutralisation expands the skeleton.

A creational ripple step is defined as:

1. Rewrite the conclusion.

Chapter 3. Induction Rule Structure 62

2. Attempt to embed each skeleton into the new conclusionleddt one must

embed.
3. Check the wave measure has increased.
4. Apply neutralisation exhaustively. It must apply at leasce.

After neutralisation the wave measure may have been inededscreased or remained

constant. We now define neutralisation:

Definition 3 (Neutralisation) A triple of formulae Sk, H and C such that SKH and
SkS C, undergoneutralisation iff another formulae Skthe expanded skeletdrtan

be found such that

1. e: Sk& SK for some e# eq

3. SkSC

Note that the above definition does not give an algorithm &utralisation.
The termination of creational rippling is guaranteed, desthe fact that it in-

creases the wave measure, by the following measure.

Definition 4 (Difference Measure) Thesequent difference measurémseqis defined
for a sequent S as a multiset, containit#igd) — #(SK for each triple(Skej,e;) as-

sociated with an inductive hypothesis H in S, wh#mneasures the size of a term.

A creational ripple step removes zero or more triples from sequent, so the dif-

ference measure is not increased by the step. Each stepowdd| by at least one

Chapter 3. Induction Rule Structure 63

neutralisation, so at least one triple has its skeletonrig@a As #H) remains con-
stant for each triple, the value of#) — #(SK is reduced for at least one triple. Hence
the difference measure is reduced by neutralisation.

Furthermore, the combination of standard and creatioppleisteps is terminating,
as standard rippling preserves skeleton, and so cannetisethe difference measure.
Hence a lexographic measure of the difference measurewd by the sequent wave

measure, ensures termination.

3.5 A Comparison of Rule Styles

Having defined simple induction rules and the rippling h&tiss compatible with
them, this section compares their use with that of consirwetd destructor style rules.
Recall that simple induction rule is a more general definiti@n both these styles. We

argue that there are two significant advantages to usingesimguction rules:

1. The approach is not restricted to problems concernirgetonstructor or de-

structor style functions.

2. Even if one restricts function definitions to one or theeothtyle, using only
the corresponding style of induction rule is inadequateabse of the role that

lemmas can play in proofs.

3.5.1 Problem with Function Style

Restricting a system to constructor or destructor stylestidn makes proofs involv-
ing other styles of function definition difficult. This is ceistent with Stevens ac-

count of inductive proof [Stevens, 1990], which, put simp$/that a dual rule of a

Chapter 3. Induction Rule Structure 64

relevant functionf should be used, and the term structure this introduces neusg-b
moved/matched using the definition bf If f is constructor (resp. destructor) style,
the suitable dual rule is constructor (resp. destructgiestA ‘destructor style only’
system will have difficulty dealing with, because a suitable destructor style rule will
introduce term structure into the step case hypotheseswhitnot be removed by the
constructor style definition of. A similar argument holds against ‘constructor style
only’ systems.

Of course, this is an over simplification: lemmas could beduseremove/match
the problematic term structure, so it may be possible forsdrdetor style system to
work with constructor style functions, and vice versa. Hegrethere is no guarantee
that suitable lemmas will be provided, or that they can bédyegsnerated, or even that

such lemmas will exist.

3.5.2 Problem with the Use of Lemmas

The problem with function style is not necessarily significas many authors choose
to work with one particular function style. However, theseaimore compelling argu-
ment to use simple induction rules, given that Stevens@rihéoes not account for all
inductive proofs. There are theorems that require non4ddaktions for their solution
(see [Protzen, 1995] or 81). One possible scenario is thahalnal rule can be used
because it introduces term structure that can be removedjlvea lemma — extend-
ing Stevens'’s theory, we could say the induction rule wasah die to the lemma. By
analogy with the functional case, lemmas could be classedresgtructor or destructor
style, depending on the style of their dual rules.

The problem arises because there is no guarantee that theftlye given lemma

will be the same as the chosen function style. For examplestauttor style system

Chapter 3. Induction Rule Structure 65

may have access to a constructor style lemma about its destatyle functions which

suggests a suitable dual rule for a particular problem. @usystem could not find the
straightforward solution of using this lemma to suggestibstructor style dual rule.
Of course, it may find a solution if it has a suitable destrustyle lemma, but as
is often the case in inductive theorem proving (or theorenvipg in general) this

may not be available. Thus the destructor style systemtiaitake advantage of the
lemma resources made available to it. A similar argumerdshabainst constructor
style systems. Hence restricting the rule style can redue@ower of a system even

if one sticks to the corresponding function style.

3.6 Summary

In this chapter we have:

e Discussed the problem of choosing a suitable definition dbation rule that
we have argued is specific enough to avoid the search contyblgms of the
full higher order schema, yet also general enough to haveda woverage of

inductive problems.

e Proposed simple induction rules as a class of inductiorsrsigtable for the

automation of inductive proof, due to their compatibilititwippling heuristics.

e Presented creational rippling [Bundy et al., 1993] via a héeemulation that
uses term embeddings [Smaill and Green, 1996] instead obrigamal wave-
annotation. This enables the term embeddings formulafiopgling to be used

with simple induction rules.

e Argued that restricting a system to constructor or destingtyle induction rules

Chapter 3. Induction Rule Structure 66

has significant disadvantages compared to using simpleiioturules. Prob-

lems arise even if the system only works with the correspantlinction style.

Chapter 4

Step Case Creation

4.1 Introduction

Having outlined our induction proof strategy in Chapter 1,veev describe in detail
the techniques used to try to create a successful step qabeefmductive proof of a
given goal. The central idea is that certain choices abautdim of the case are left
undecided until the middle of its proof — a technique knowmeaddle-out reasoning
[Hesketh, 1991]. The effect of such decisions is not knowfotedand, but in the
middle of the proof attempt more information may be avagabtaking a better choice
possible.

We take a ‘least commitment’ approach of delaying theseoesoas long as possi-
ble — only when the proof attempt cannot progress any fulithtére strategy forced

to commit. The rippling heuristic is used to control rewrgi

67

Chapter 4. Step Case Creation 68

Overview

First, in 84.2 we present tretep case schemwhich is used to represent an unknown
step case. Considering only constructor style step cas€d,3we describe how the
schema may be refined during proof search to give a successfutase formula.

We then consider non-constructor style step cases in 84iaglthe new formula-
tion of the creational rippling heuristic given in ChapteaB,extended proof strategy
for generating non-constructor style step cases is destrib

Some of the ideas presented here build on previous reseaiodwactive proof de-
scribed in [Kraan, 1994] and [Protzen, 1995]. We commenh@®) tvhere appropriate,

but defer a fuller comparison to Chapter 13.

4.2 The Step Case Schema

At the beginning of the inductive proof, the unknown stepecasrepresented by a
step case schemahich uses meta-level variables to represent parts oftijezblevel
formulae which are yet to be determined. Instantiation eséhmeta-variables (e.qg.
by unification) will take place during the proof search, gliab an concrete case of an
inductive proof.

In [Kraan, 1994], step case schemas were used in a similar Wayse schemas
could represent step cases of simple constructor stylectimturules with single hy-
potheses and no non-inductive hypotheses. Simple induadties were selected in
Chapter 3 as a suitable class for automatic proof, and hereemerglise the schema
approach accordingly.

Because the strategy will generate induction hypotheseandigally, simple in-

duction rules can be simplified further: induction hypoteesf the fornB(vV¢9".®) can

Chapter 4. Step Case Creation 69

be replaced with several of the for@h(®) — one for each set of value¥ needs to
take during the proof. These can be added during the proeicasred, rather than the
more general universally quantified version being used @ast We refer to these
simple induction rules without universal quantificationsitsk-freesimple induction
rules, following rippling terminology [Bundy et al., 1993].

Recall from Definition 1 that a simple induction rule with thenclusionv.x. ®.
We can write this as:

VX1:Tq. .. . VX Tn. @(X)

has premises that are sequents with the following parts:

e A single conclusioro(®), which we can write this ag(t) for termst. We can

represent it schematically géT1(X),...,Ta(X)).

e One or more induction hypotheses of the foyiff.®, which we can write as
vV .¢(t) for termst. As argued above, these can each be simplifiep(tp, so
represented schematically as the first induction hypathg§, (X), ..., S(X))
and a (possibly empty) list of additional induction hypateslH (X) — each

will have the same schematic form.

e Zero or more non-induction hypotheses, knowrtase conditionsrepresented

schematically a€C(X), which may be trivial i.eCC = Au.true.

Hence the step case can be represented by the following achem

PS1(%); - Sn(X)),
IH (X)
F @TaX),.... Tn(X))

(4.1)

Chapter 4. Step Case Creation 70

The schema can be instantiated to give any step case fronk-&reesimple in-
duction rule.

Note that our step case schema (4.1) appears to assumeetivatubtion constants
in the induction hypothesis and conclusion will be of the sdype as the universally
guantified variables in the original conjecture, as wexusexy, . .., X, to denote them
both. This cannot be the case, as induction often requires mguction constants than
there are universal variables. For example, structuraldtidn on typdist(t) would
use an induction constants of typeandlist(t). Given a conjecturél:list(t).¢(l), the

‘best approximation’ schema (4.1) can make to the requitejal sase is:

ox) F @Ta(x)x)

However, we can easily overcome this limitation by ensutivag when the object-level
induction rule is constructed from the proof plan, we replany remaining meta-

variables, such ag(x), with induction constants of the appropriate type.

Example 1

The goalvx,y:nat. x+Yy = y+ X has the step case schema:
CC(x,y),
Si(xY) +S((xy) = S(xy) +Si1(x,y),
IH (x.y)
F T y) +Ta(xy) = Ta(xy) + Ta(xy)

(4.2)

4.3 Constructor Schema Refinement

Given the initial step case schema for a goal, an attempt dert@generate a proof
of the schema. The schema is refined by instantiating (pggséstially) the meta-

variables during certain proof steps.

Chapter 4. Step Case Creation 71

In the following sections, we describe the various progbstehich are employed
by the strategy for creating constructor style step casem-ddnstructor cases are
considered in 84.4.

The constructor style schema is:
CC(X), @X), IH(x), Foo@(T(X),..., Ta(X)) (4.3)

Note that we may have multiple hypotheses in a construcite step case and that an
induction variable may be instantiated to a different cansin two different hypothe-

Ses.

4.3.1 Rippling

The step case proof is controlled by the ripple heuristidlolong [Kraan, 1994], rip-
pling may partially instantiate meta-variables as a sifieceof rewriting: the left-hand
side of the rule is unified with the redex via higher-ordefigation [Huet, 1975]. Flex-
ible redexes are forbidden, i.e. rewrite rules are nevelieppust to meta-variables.
This condition prevents a situation wheegeryrewrite rule is applicable t@very
schematic term.

Rippling-sideways and -in is not useful if we are using a catsor style schema.
If a wave front were rippled in it could not be dealt with, basa the induction hypoth-
esis would contain no universal variables or induction teriio deal with such proofs
that use rippling-in a more general non-constructor schismequired — we describe

such a schemain §4.4.

Wave Annotation via Embeddings

The embeddings representation of rippling’s wave anraiatis used, to allow com-

pability with higher-order syntax [Smaill and Green, 1998Ye use the definition of

Chapter 4. Step Case Creation 72

embedding given in 82.5, with the minor adaptation that emtembeds into a meta-
variable if and only if their object-level types are compédi This prevents redundant
embeddings, e.g. a listembedding into the non-list first argument of the schematic
termcongA(l),H(l)).

Following Kraan, we denote the wave annotation around maitizbles with a dot-
ted box, calleda potential wave-frontHence the initial annotated version of schema

(4.3)is:

CCx), @Xx), HX, F @TuX)}....i (X)) (4.4)

Note, however, that unlike Kraan’s, our potential waveatsohave no wave-holes —
this is becausanyterm may be embedded into a meta-variable, modulo typeusbt |
the elements af.

The embeddings formulation also allows a simple treatméranootation with
respect to multiple hypotheses, compared to [Yoshida €1294], for example. See

Chapter 3 for detalils.

Rippling Side Conditions

In addition, the rewrite step may have a side condition. Emkhis evaluates tioue
under symbolic evaluation, or it already appears in the casditions, it is added to
the case conditions. This is done by forcing partial inssioin of the meta-variable
representing the unknown case conditions, allowing thatine of step cases with
case conditions.

For example, consider the following schematic goal:

**

CC(X]_,Xz), ... F Ien(delete{i T1(X1,X2) ',' Tz(X]_,Xz) ')) < Ien(i Tz(X]_,Xz) ')

__

Chapter 4. Step Case Creation 73

We can apply the following wave rule by assuming the side itmmd

X£H — deIete{X,T) = |H:deletdX,T)

The resulting schematic goal is:

—

Tl(Xl,Xz) 7é T2/(X1,X2) /\CC’(Xl,Xz), -

F o len(| Ty(xg, %) = delete Ty (X1, X2) i Ty (X1,X%2) 1) |)

,,,,,,,,,,,,,,,

< len(| Ty(x1,%2) Tz”(Xl,Xz))

T, andT,’ are the meta-variables remaining after the partial ingtoh of T,, where
To(X1,%2) = T'(X1,%2) 11 T" (X1, %2)

The new meta-variabl€C' may be instantiated by further side conditions.
In general, if the unknown case conditions are representetidoschematic hy-

pothesisCC(X), adding the conditioeondX) gives the following instantiation:
CC = Ax. condx) ACC/(X)

whereCC is the remaining unknown condition.

Speculative and Definite Ripples

As explained in 82.7.1, Kraan distinguished betwspaculativeipple steps, which
partially instantiate meta-variables via rewriting, ashefiniteripple steps, which do
not. Speculative steps may increase the wave-measure ubedrgees the termina-
tion of rippling [Basin and Walsh, 1996]. Hence if unboundeeauilative steps are
permitted, rippling may not terminate.

Kraan’s solution of placing a bound on the number of suchsseysures termi-
nation, but there may be proofs that require more specealatieps than this bound

permits. This is illustrated by examining Example 1 further

Chapter 4. Step Case Creation 74

Example 1 (revisited)

The step case schema (4.2) may be rewritten using a wavéaikda from the defini-

tion of +:

SU)[+V = [su+V)

--

5
X
<
+
9
Po
<
i
.
X
<
+
Q
Po
<

,,

--

L
Q
—
X
=
+
O
X
=
I
O
—~
X
=
|
L
Q
—~
X
=
N

,,

This is a speculative ripple, & is partially instantiated tau.Av.C'(u,v) as a by-

product. If unbounded, speculative ripples can be apglaeohfinitum

(S +B0y))| = (B3 ST
U
ss(Cy) D0y)| = Bk st S|
Y
sG] + D00y)| = 1B+ ss(€y |
U

This problem is revisited in Chapter 7 — for now we assume satnigary bound.

4.3.2 Post-Rippling

Strong and weak fertilisation are identical to the non-stdiic case, except that, as

during rippling, meta-variables may be instantiated. A dtesis may be used in

Chapter 4. Step Case Creation 75

weak fertilisation several times, so it is oriented as a itewnule after its first use,
to prevent looping. A similar technique was employed in @am 2 proof planner
[van Harmelen, 1996].

At the end of a successful rippling proof, tidying-up may éguiredpostfertilisation,
as some meta-variables may be not fully instantiated. Taiolat non-schematic step
case and proof, each meta-variable representing a termlecesl by a fresh object-

level variable and those representing propositionscttrue.

4.3.3 Multiple Induction Hypotheses

The initial step case schema has a single induction hypetteg some proofs involve
multiple hypotheses. To generate additional inductionotiygsedrotzen’s Heuristic
is employed [Protzen, 1995]: if an instance of the originadigcan be used to rewrite
the conclusion, add it as an induction hypothesis and appThis rewrite step should
not instantiate meta-variables in the conclusion. The thgsis is added to the step
case by partially instantiating the meta-variable reprgsg the unknown induction
hypotheses.

The main problem with this heuristic is its over-applicéhil It can be applied to
most goals in several ways, significantly increasing thectespace. To control its
use in the step case proof, it must be applied after rippknigjocked, and whenever

possible, fertilisation is prefered instead.

Example 2

The schematic step case for the goal:

Vt:btregnat). sumt) = sun{ flip(t))

Chapter 4. Step Case Creation 76

may be fully rippled to:

- lsum(L{t)) +sun(R({t))| = |sun(flip(R(t)))+sum(flip(L(t)))

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

using the following wave rules from the definitionssafmand flip:

sun[nodex.,Y)|") = [sun(X)+sumY)|

flip(|nod€X,Y)|) = |nodd€flip(Y), flip(X))

Weak fertilisation instantiatdsto Au. u, giving:

F |sumt) +sum(R(t))| = |sun(flip(R(t)}))+sunit)

B S e e L S Sy | _—

Repeating weak fertilisation with the same hypothesis cetsplthe proof. The result-
ing step case is:
®(t) F d(noddt,t))

Our induction strategy will fail to build a complete induwmti rule using this step case.

Backtracking over the second fertilisation, Protzen’s ligiarcan be applied: an
instancesum(t’) = sun(flip(t’)) of the original goal is added as an induction hypoth-
esis. Applying it instantiateR to Au. t" and completes the proof. The resulting step
case is:

o), dt') F d(nodet,t))

This can be used to construct a complete proof.

4.3.4 A Constructor Proof Strategy

The proof strategy for creating constructor style step sgs@&ameterised by a bound

N > 0, can be summarised as follows,

Chapter 4. Step Case Creation 77

1. Construct annotated schema for goal.
2. Ripple-out, with no more thaN > 0 speculative ripples.
3. Either:

¢ Fertilise with known hypothesis.

e Create hypothesis and fertilise.

4. If goal is open, goto step 2, else collapse remaining mat@bles.

4.4 Extension to Non-Constructor Cases

This section describes extending the techniques for agetsir step cases to the full
step case schema (4.1). The major differences are thatvagtdles in the induction
hypotheses can be instantiated by creational ripplingrtitiéation, and that rippling-

in is permitted.

4.4.1 Creational Rippling

The extra term structure that may appear in the hypothesasnrconstructor step
cases has to be removed using creational rippling (see.83.4)

The initial step case schema is annotated as:

CCX), @AS(X)}--iS(X)), HE F @oTX);...i (X)) (4.5

Rippling takes place in the conclusion as before, with theensmwnotation in the
hypotheses being removed by creational rippling. Metsatdes in the hypothesis

may be instantiated during a creational ripple by extentheglefinition of neutralisa-

tion (see 3.4): a wave-fronf (...

O
o
=
=
D
(9]
©
o
>
o
(9]
—
(@)
Q
©
o
—
(1)
>
=,
(=
5
<
D
=
2
Na
5
jab)
>

,,,,,,,,

Chapter 4. Step Case Creation 78

induction hypothesis iff they are in the same position ingkeleton. The latter term
is instantiated by matching against the tef(b)), i.e. Ais instantiated tawu. f (A'(u))
for freshA'.

A distinction betweespeculativeanddefinitecreational ripples is made in an anal-
ogous way to ripple steps. A speculative creational ripptaintiates a meta-variable,
either by unification with the redex or matching during nalisation. As such ripples
introduce non-termination, they are included in the boumthe number of speculative

steps.

4.4.2 Rippling-In

With wave-fronts in the induction hypotheses, ripplingsgcomes a worthwhile strat-
egy, as a wave-front can be rippled into a position where utnaéises a hypothesis
wave-front. Sinks can be used to distinguish term positinrthe conclusion which

correspond to meta-variables in the induction hypotheBaady et al., 1993], where

rippling-in must always move a wave-front towards a sink.

4.4.3 Multiple Induction Hypotheses

As in the constructor case, additional hypotheses are gedviby Protzen’s heuristic
(see 84.3.3 above). Because meta-variables are now allowe ihnypotheses, we
can achieve this by simply adding and fertilising with a frexchematic induction

hypothesis, i.e. one with fresh meta-variables.

4.4.4 The Extended Strategy

The full strategy to create sink-free simple step casesfisliasvs:

Chapter 4. Step Case Creation 79

1. Construct annotated schema for goal.
2. Creational ripple, or ripple-out, or ripple-in and -out.
3. Either:

¢ Fertilise with known hypothesis.

e Create schematic hypothesis and fertilise.

4. If goal is open, goto step 2, else collapse remaining matables.

4.5 Summary

In this chapter a strategy for step case creation have beseniloled in two parts. The
first part deals with constructor style step cases. The skgart generalised this strat-
egy to include non-constructor style step cases as well. bBptén 6 such step cases
are used to construct a valid induction rule.

The main points of this chapter were:

e The step case schema is more general than [Kraan, 1994], langea class of

step cases can be generated.

e The step case strategy is more general than the one deskrilfrdtzen, 1995],
although we take a related approach to generating multiphedtion hypotheses

usingProtzen’s heuristic

e The induction conclusion and case conditions are createal @sproduct of

rippling.

¢ Induction hypotheses are created by creational ripplind,Rrotzen’s heuristic.

Chapter 4. Step Case Creation 80

e The number of speculative steps must be bounded to preyiing diverg-
ing. This can eliminate solutions from the search and causampleteness, a

problem which is discussed further in Chapter 7.

Chapter 5

Synthesis of Case Structure

‘Enumeration of cases’ ...is one of the duller forms of matagcal ar-
gument.

— G. H. HARDY, A MATHEMATICIAN 'S APOLOGY

5.1 Introduction

Having used the techniques of Chapter 4 to generate a sugtdgease, we are now
faced with the problem of creating a valid induction rulettbantains this step case.
As part of this process, our strategy will need to create therdmissing’ cases of the
induction rule. This chapter describes a suitable strateggenerating missing cases
from a partial case analysis. It forms the second comporfemiranduction strategy,
which will be presented in full in Chapter 6.
In 85.2 we formalise the concept of missing cases in terntasé formulagand

in 85.3, restate the problem of finding such missing casesrmg of correcting faulty
case formulae. 85.4 describes a strategy for patching caseifae based on known

corrective techniques [Protzen, 1995, Monroy, 2000]. We gome examples of this

81

Chapter 5. Synthesis of Case Structure 82

proof strategy in 85.5, and describe some simple heuristicaprove its performance

in 85.6.

5.2 Case Formulae

This section formalises the problem of generating missasgs of a partial case anal-
ysis. In the context of this thesis, this means generatirggimg cases of a partial

induction rule. The following (partial) rules illustratiee problem:

®(x) = D(s(s(x)))

- YXnat- P(X) (1)

x#0,y#0, d(x), (y) F ®(x+y)

- YXnat- P(X) (5.2)

Both rules are incomplete because they do not have premiaeprtbve®(u) for
u= 0 andu = s(0).
The case structure of an induction rule is complete iff irderan exhaustive case

analysis. We can characterise this usingpae formula

Definition 5 (Case Formula) Given a simple induction rulé of the form

Ci,Hi F o(ti,....t})

C,Hk F CD(t]If, ... ,trlf)
FVXL T, X0t T P(Xe, ..o, Xn)

where G is a set of non-inductive hypotheses andaldet of inductive hypotheses, the

correspondingcase formulaC(I) is of the form

FYu:(tyx - xTp).(D1V---VDg) (5.3)

Chapter 5. Synthesis of Case Structure 83
where each disjunct Ds of the form

IY(CAu=(t,... 1) (5.4)
and 1 is the set of free variables inj@nd ¢,...,t\. If n = 1 then the tuple of terms

ti,...,t} can be written as a single terrj tAlso, G may be optionally omitted.

Informally, the case formula says that anyf the given type is ‘covered’ by at
least one of the cases of the induction rule, where the ditgud correspond to the
cases. Each disjunct says thas covered by the corresponding case, in thiatatches
the patterr(t},...,t\) under the condition€i.

For example, the partial induction rule (5.1) has the casalita
Yu: nat. 3x: nat.u = s(s(x))
A ‘complete version’ of rule (5.1) has the case formula
Vu:nat (u=0V u=s(0) vV 3x: nat.u=s(s(x)))
The partial induction rule (5.2) has the case formula
Yu:nat.3x,y:natx#O0Ay#0AU=X+Y (5.5)
Whereas a ‘complete version’ of rule (5.2) has the case famul
Vu:nat (u=0V u=s(0) vV 3x,y:nat.x#0AYy#OAU=X+Y) (5.6)

For these examples the truth of the complete case formukiisalent a correspond-
ing induction rule having exhaustive case analysis. In ggnee define case exhaus-

tiveness for simple induction rules as follows:

Chapter 5. Synthesis of Case Structure 84

Definition 6 (Case Exhaustive)A simple induction rule isase exhaustivéf for any
n-tuple sof typeT there is a case of the rule with case conditiorig)#and conclusion

B such that
1. A(S) holds.
2. 0(B) = ®(s) for some substitution.

3. The rule has conclusiorX:T.®(X)

It follows that case formulae are equivalent to case exhaamsdss:

Theorem 1 A simple induction ruld is case exhaustive iff the case formylal) is

true.

Proof Letsbe somen-tuple of typet. The case exhaustivenessiois equivalent to
one of the premises of Definition 5 satisfying requiremehjsa(d (2) from Definition
6, and the conclusion from Definition 5 satisfying (3). Eglantly, for this case the
case condition€; hold and there is a substitutiansuch thaio((t},...,t\)) ='s. This
Is equivalent to one of the disjuncts in (5.4) being true, smdo the truth of the case

formulaC(1).

Q.E.D.

5.3 Case Synthesis via Correcting Case Formulae

Theorem 1 lets us show that the cases of an induction rulexaustive, by proving
its case formula. Conversely, we can establish it has missisgs by disproving the

case formula.

Chapter 5. Synthesis of Case Structure 85

This suggests a method for synthesizing the missing casesiotomplete induc-

tion rule. Assume that its case formula
Vu:t.(D1V---VDy) (5.7)
is a faulty conjecture, and try to find a correct version offtiren
Vu:t.(D1V:--VDyVDyy1V:---VDyyj) (5.8)

Provided the additional disjuncBy.1,...,Dk are of the form given by (5.4), a set

of additional cases can be extracted to form an exhaustse aaalysis.

5.3.1 Corrective Techniques

The correction of faulty conjectures has been investigatede context of inductive
theorem proving [Protzen, 1995, Monroy, 2000]. Given a tlweremvx.g(X), these
methods attempt to build@orrective predicate ghat specifies conditions under which
the theorem is true, i.@ such thatvx.p(x) — g(X). A relationship between our pro-

posed approach and this work can be seen by rewriting (5.8) as
VUZT.(ﬁ(Dk+1V--~\/DkH)—>(D1\/~-~\/Dk)) (5.9)

Hence a possible approach to synthesizing cases would Iseta known corrective
technique on faulty conjecture (5.7), and to transform #seilting corrective predicate
termp(u) to the form—(Dy,1V---V Dk). However, we will take the alternative route
of adapting the corrective techniques so that they corstinecdisjunctd;, as this is
the more direct approach. The process for constructingddthis the same in both
approaches.

The basic idea behind these corrective techniques is tmptt® prove the faulty

Chapter 5. Synthesis of Case Structure 86

conjecture, and to extract a definition for a corrective jmatet p from the failed proof.
Each successful and failed proof branch gives rise to a ch#gaefinition of p.
Briefly, if a proof branch resulting from a case analysis sadsghenp is defined as
true under these case conditions, but if it fails thems defined asfalse Success-
ful inductive proof branches which use an induction hypsihgive rise to recursive
cases ofp. We will not go into more detail here, but refer the interdsteader to

[Protzen, 1995] and [Monroy, 2000].

5.3.2 Problems with Existential Quantifiers

However, these corrective techniques were designed tofdedo conjectures con-
taining only universal quantification, whereas case foaaulontain existential quan-
tification. In particular, they use standard induction pngvtechniques which do not
deal with existential quantification (see Chapter 2) to qoesta failed proof.

For example, consider an inductive proof of the faulty conjee (5.5). Unless the
existential quantifiers can be dealt with, the only opticisduct onu. Both the base
and step cases are immediately blocked.

Clearly, if we are to successfully apply corrective techegjto case formulae, they
need to be integrated with techniques for dealing with erisal quantification. We

deal with this problem in 85.4.2 below.

5.4 A Corrective Strategy for Case Formulae

This section describes a corrective strategy for case flanthnat is based the cor-

rective technigues discussed above, combined with the fudaa skolemisatiorio

1An advantage of this approach is that it can also be applietidorems, where the proof can
succeed.

Chapter 5. Synthesis of Case Structure 87

handle existential variables (i.e. replacing them in a goi#h first-order free vari-
ables), a standard technique in automated theorem pro¥isguggested above, we
will directly extract the missing disjuncts of the case fotenfrom the failed proof,
rather than construct a corrective predicate.

The proof attempt proceeds by a standard induction stravety corrective dis-
juncts extracted from failed proof branches. Subgoals of the formt.x =Y are

trivially true, and are closed.

5.4.1 Extracting Corrective Disjuncts

For each proof branch, we record tbase conditionsa pair C,T) whereC are any
conditions introduced by case splits (including the casaaductions) andT is the
instantiation of the universally quantified variable of thrgginal case formulauin
(5)).

For each failed branch of the proof we take its case conditi@GnT), and extract

a corrective disjunct of the form
AV.CAu=T

where? are the free variables i@ andT.
This technique of tagging each proof branch with its casermétion is used in

both [Protzen, 1995] and [Monroy, 2000].

5.4.2 Instantiating Free Variables

Recall that dual skolemisation transforms the case formwdaistential variables to
free variables. This is permitted whilst proving the casenaa, as any value substi-

tuted into a free variable can become a witness in the finaifptdow does one treat

Chapter 5. Synthesis of Case Structure 88

these free variables during the proof? The standard apprisao let them become
instantiated during rewriting. Unfortunately, this is moimpatible with correcting the
case formula.

For instance, consider the following correct dual skolemisase formula:
Vu:nat. (u=0V (X#0AUu=X+Y) (5.10)

X andY are the free variables that have replaced existentialblaga \We can rewrite
the case formula using the base case of the definition, astantiatingX to 0 in the

process:
Vu:nat. (u=0V (0#0AU=Y) (5.11)

The goal, which was previously true, can now be reduceflaise Following the
corrective approach, we should analyse this failure to peeda corrective predicate.
However, the original case formula does not need correcting

What's going on here? Recall that the corrective approacimatteto identify
those proof branches which are false. Reducing a goglseis interpreted as indi-
cating the original goal is false under the current case itiond. This assumes that
the current goal i®quivalentto the original goal plus the case conditions. But this
assumption is incorrect if we us®mn-equivalence preserving stepgere a true goal
like (5.10) may have a false subgoal (5.11). If we combine-eguivalence preserv-
ing steps and corrective techniques then unnecessarytongcan be made, because
true cases are identified as false.

Hence corrective techniques need to ensure that non-égpioeapreserving steps
are either excluded, or only permitted in successful braadi failed proofs, i.e. if a
branch containing such steps fails, one should backtrabkrthan correct the original

conjecture. Unfortunately, whenever a free variable itaimsated to a term as a side

Chapter 5. Synthesis of Case Structure 89

effect of rewriting, e.g.
— (5.12)

the step is non-equivalence preserving, so our failed gm@ofches wilalwayscontain
such steps.

So we must instantiate free variables via an equivalenceepring step. For in-
stance, an equivalence preserving version of (5.12) is:

®(0) v d(s(X))

%) (5.13)

We can generalise this to a new proof step,dRistential case splitGiven an exhaus-

tive case analysis represented by the following skolentssd formula
U T ((aa(Y) Au=Ba(Y)) V-V (ag(Y) Au=By(Y)) (5.14)

Then an existential case split is represented by the fatigyroof step

c(By(Y) Aaa(Y) Ad(U) =t(Ba(Y))
(VA

c(Bq(Y)) Aag(Y) Ad(T) =t(Bqg(Y))

c(X) Ad(T) = t(X) (5.15)

whereX has typer.
The proof step (5.15) is applied backwards to a particulgjudct in a goal, with
the case analysis (5.14) suggested by rewriting. For instahwe can rewrite with
a defining equation of functiom, then we use the case analysis associated with the
definition of f.
As an example of an existential case split, consider agaicdinrect case formula

(5.10);

Vu:nat. (u=0V (X#0AUu=X+Y) (5.16)

Chapter 5. Synthesis of Case Structure 90
The definition of+ has the following dual skolemised case formula
Yu:nat.(u=0V u=sV)) (5.17)

This suggests an existential case split according to (5:th) case analysis (5.17),

which gives the subgoal
Vu:nat. (u=0V (0#0Au=0+Y) VvV (s(X) Z0Au=sX")+Y)) (5.18)
Further rewriting gives
vu:nat. (u=0V u=sX +Y)) (5.19)

A case split oru completes the proof, confirming that the case formula (5d6ue.

5.5 Examples

This section gives some examples of our corrective strafimggase formulae being
used to synthesize missing cases of induction rules. Theaagditions of each goal
are shown (i.e. the pair next to each goal).

For each of the proofs, only the correct derivation is shoamg any alternative
steps at each point are ignored. These decisions are jddiifia set of heuristics for

the corrective strategy described in 85.6.

Example 1
Consider again the rule (5.1)

P(x) F D(s(s(x)))
F YXnat- P(X)

Chapter 5. Synthesis of Case Structure 91
This has the faulty skolemised case formula

F VYu:natu=s(s(X)) (true,u)
Attempting a proof, we try a structural case splitwn

F 0=s(s(X)) (true,0)

F Yv:nats(v) =s(s(X')) (true,s(v))
This simpiflies to

+ false (trueO)

F Wwinatv=s(X') (trues(v))

As the first case fails, we extract the corrective disjumet 0. Continuing with the

second case, we apply another structural case split to

F 0=s(X) (true,s(0))

= vw: nat. s(w) = s(X") (true, s(s(w))
Simplifying again gives

+ false (truess(0))

F Yw:natw= X" (true, s(s(w)))

The first case fails, and we extract the corrective disjunets(0). The second case is
trivially true.

Adding the corrective disjuncts to the case formula, weiabta

F Vu:nat. (u=0V u=s(0) V u=s(s(X)))

Chapter 5. Synthesis of Case Structure 92

From this the missing cases of the induction rule can be nacted

- ®(0)
= @(s(0))

P(x) = D(s(s(x)))
F YXnat- P(X)

Example 2

Consider again the partial induction rule (5.2)

x#0,y#0,®(x), P(y) + P(x+y)
F VXnat- P(X)

It has the skolemised case formula
F VYu:nat X #0AY #0Au=X+Y (true,u)

We attempt to prove this faulty case formula. We proceed biyatsiral case analysis

onu:

F X#OAY #0A0=X+Y (true,0)

F ovvinat X' #£O0AY #£O0As(V) =X +Y' (trues(v))
The definition of+ motivates a existential case split in both cases:

F 0#O0AY #0A0=0+Y
VS(Z) AOAY A#0A0=5(Z)+Y (true, 0)
F VY:nat0#OAY #0As(v) =0+Y

VS(Z')#£OAY £0AS(V) =s(Z))+Y (trues(V))

Chapter 5. Synthesis of Case Structure 93

Some simplification gives us the subgoals:

- falsev false (true,0)
F Wv:nat falsevVY #0Av=Z'+Y (trues(v))
Hence the first case is false, and we extract the correctserditu = O from it. Con-
tinuing with the second case we now perform a structural speonv:
F Y#0A0=Z+Y (true,s(0))
F vwinatY' #0Asw)=Z'+Y' (trues(s(w)))
We could apply another existential case split in both casesivated by the definition
of +, as we did above. This would lead to a non-terminating prdofavoid this, we
prefer a split motivated by any definition or lemma providee $plit variable appears
in the ‘conditions’ (i.eC; in (5.4)) and not just the ‘main literal’ (i.e1= (t, ... t\)).
The definition-motivated split variab® only appears in the ‘main literals’ in both
cases. But there is an alternative existential split, mtd/&y the following lemma:
U+sV) < sU+V) (5.20)
In both cases the variable in the split motivated by (5.2@eap in the ‘conditions’ as
well as the ‘main literal’, so we prefer this existentialispl
F 0£0A0=Z+0
Vs(Q) #0A0=2Z"+5(Q) (true,s(0))
F vw:nat0#OAsw)=2Z+0
Vs(Q)#£0AswW) =Z'+s(Q) (true s(s(w)))
Simplification gives:
F falsev false (true,s(0))

- vw:nat falsevw=2Z'"+Q (trues(s(w)))

Chapter 5. Synthesis of Case Structure 94

Again, the first case is false, and we extract the correcisjamttu = s(0). The proof
of the second case succeeds via a structural inductienamd existential case split in
both base and step case, motivated by the definition. ale omit the details here.

Correcting the original case formula gives
Vu:nat. (u=0V u=s(0) vV X#OAY #0Au=X+Y)

Using this to construct the missing cases of the originalatidn rule, we obtain the

following complete rule

- ®(0)
= ®(s(0)

X#£0,y#0,®(x), d(y) F D(x+Y)
F YXnat. P(X)

Example 3
Consider the following rule

®() + d(appl,x::nil))

vl :list(a). (1) (5.21)

It has the case formula
= VYu:list(t).u=app(X,Y :nil) (true,u)
To attempt a proof, a structural induction ois applied

Foonil =app(X,Y :nil) (true,nil)

w=appA,B:nil) T =appX’, Y :nil) (true,v::w)

Chapter 5. Synthesis of Case Structure 95

In both goals, the definition afppsuggests an existential case-split

F nil =app(nil,Y ::nil)

Vv nil =app(H :: T,Y nil) (true,nil)

w=appAB:nil) + |[[viw] =appnil,Y :nil)

% T =app(|H’ ::T_’T,Y/ 2 nil) (true,v:i:w)

Rewriting in the base case, and rippling in the step casesgive

Fonil =Y il Vil =H:appT,Y :nil) (true,nil)

w=appAB:nil) F [w=Y":nil vw=appT,Y :nil) ' (true,v::w)

Further rewriting and fertilisation gives

- false (true, nil)

w=app(A,B:nil) F w=nil Vv true (true,v::w)

Hence the base case fails and the step case succeeds. dativedisjuncu = nil is

extracted from the base case’s conditigimse, nil). The corrected case formula is
F Vu:list(t).(u=nil v u=app(X,Y :nil))

Using this to construct the missing cases of the original@tion rule gives the com-

plete rule
= @(nil)
®() F d(appl,x::nil))
vl :list(a). ®(l)

Chapter 5. Synthesis of Case Structure 96
5.6 Heuristics for the Corrective Strategy

In 85.5 we saw that the corrective strategy for case formplaeeeded by an inductive

proof strategy made up of the following proof steps:

e Structural induction

e Case analyses on universal variables, over the constrdotdise datatype
e Case analyses on existential variables, over case strugtartinction

e Simplification and rippling (forms of rewriting)

e Fertilisation

Examining the examples in 85.5, it is clear that a simple ésfatl’ of these proof steps
is not being used. In fact, applying the steps in a fixed ordereasily lead to non-
termination. This section describes a set of simple hecsighat can help avoid this.
It is important to note that these heuristicsruut guarantee termination, although we
have not encountered any problems with non-terminatiomduhe work described
here.

Simplification, rippling and fertilisation should be apgli eagerly, so that every
goal is kept in the simplest form possible. This avoids ueseary case-splits/inductions.

Structural induction and universal case-splits are affelst performing the same
task — producing proof branches with different case cooddi If a universal case-
split works, then an induction with the same case structulieaiways work, as the
inductive hypotheses need not be used. Hence universabpliseare subsumed by
induction, so we always use induction.

Induction (including case splits) is applied to a univergaiiableu in a disjunct

u=t1 so that rewriting can be applied. We have observed two sitmin example

Chapter 5. Synthesis of Case Structure 97

proofs. Firstly, the root functor inis a constructor function and rewriting immediately
follows. Secondly, the roof functor ins a defined function, and an existential casesplit
follows, then rewriting. We can restrict induction on casefulae to these situations.
The Ble of existential case splits in these proofs is to instdata free variablX
so that rewriting can take place. Again, we have identified $ituations where this
happens. FirstlyX appears in thé of a disjunctu =t, whereu is a compound term
containing no free variables, ahtlas a defined root functor. Secondycan appear in
a disjunct not of the fornu = t. Again, we can restrict the application of an existential
casesplit to these situations.
Deciding between alternative existential case splits iseday looking where the

variable to be split, sa}{, appears. Each disjunct will be of the form given by (5.4):
JV.(CAU=T)

for universalu. We prefer a split wherX appears irC and possiblyl over one where
it only appears iif. The advantage of this was illustrated in 85.5. In genepditting
a variable inC will promote rewriting inC and hence its possible removal. This is
desirable, as we would like to end up with a single disjunet T, because if we can
makeT variable the proof branch can be closed.

Another helpful addition to the strategy would be the useaditicase formulae as

lemmas. Work could be saved by either recognising that:
e a goal matched a valid case formula, and was hence true.

e a goal partially matched a valid case formula, and so coulddrescted by

adding the disjuncts that were not matched against.

Chapter 5. Synthesis of Case Structure 98
5.7 Summary

In this chapter the problem of automatically finding the nmgsases of an induction
rule has been addressed. It was shown that the concept ofcrasda characterises
the case exhaustiveness of an induction rule. Hence thdepnodsf finding missing
cases can be restated as one of correcting the associa¢eibicaslae.

Applying known techniques on correcting faulty conjecturequired some ex-
tensions to deal with existential variables. We used thedstal technique of dual
skolemisation, but found that instantiating the resulfneg variables is a non-equivalence
preserving step that interferes with the corrective meshddstead, we proposed in-
stantiating the free variables using an existential caabyais, an equivalence preserv-
ing step.

A strategy for correcting case formulae was given, basedtamdard inductive
methods extended with existential case analyses and sopkegieuristics. Following
[Protzen, 1995] the case conditions of a failed proof brasm@hused to correct the
faulty conjecture — in this context, to add extra disjundtshe case formula, which

correspond to the missing cases of the original inductide ru

Chapter 6

Induction Rule Creation

6.1 Introduction

So far this thesis has identified two major subtasks reqdimethe dynamic construc-
tion of induction rules, and proposed a detailed solutionefach. In Chapter 4 a
middle-out strategy that generates candidate base andasep was described. Chap-
ter 5 provided a strategy for generating a full case anabesed on a given case, along
with a proof that the cases are exhaustive. This chaptegbtirese parts together in a
novel strategy for inductive proof. The strategy createsduaction rule dynamically
during the proof, and provides a companion proof that tHis isivalid.

86.2 proposes that the validity of the rule is establishedolwing it is well-
foundedandcase exhaustiveThis allows us to give an induction strategy in 86.3 in
terms of three component strategie€HRNE-CASE, EXHAUST-CASESand WELLFOUND-
HyPs. The strategy is modular with respect to these componext§@d gives spec-
ifications which must be met by candidate components.

Candidates for the RFINE-CASE and ExXHAUST-CASES components have been

99

Chapter 6. Induction Rule Creation 100

proposed in previous chapters. We end the chapter by dexgdlsuitable VELLFOUND-

Hyps strategy in 86.5.

6.2 Validating Induction Rules

This section looks at how our strategy can establish thagéinerated induction rule is
valid, regardless dfiowit is generated. Recall that we only considenple induction
rules— it was argued in Chapter 3 that this is suitable class of indncules for au-
tomated proof. This places some syntactic restrictionsenrtduction rule, although
such rules are general enough to cover most, if not all, pusvivork on automated
induction. So we may assume that the generated rule is obthediven in Definition
1 (see Chapter 3, p57).

It follows from the definition of simple induction rule thdtg generated rule will

be of the following form:

Ce, ..., G, Gl(vgflm), ...,eh(v%ﬁb) + 0'((1))

(6.1)

FVX.®
where all the premises are of the given fotmk > 0, X and?9; are sets of variables,
and®; ando are substitutions.

Showing that the induction rule (6.1) is valid can be appheacin a number of
ways, e.g. by demonstrating that it is derivable from thetNegan induction rule (see
§2.2.1), or by directly proving that the consequent folldvesn the premises.

However, a more straightforward method of proof is to shoat the rule iswell-
foundedandcase exhaustiveFor the rule to be well-founded there must exist a well-

founded relation< under which the tuple of induction terms in every inductign h

Chapter 6. Induction Rule Creation 101

pothesis is smaller than the tuple of induction terms in ¢lage’s conclusion. The rule
is case exhaustive if its conclusion is proved for all valilies the universal quantifiers
could take. Equivalently, for all such values, there is a&dhlat proves the conclusion
for the values.

Following this proof method, our induction strategy expljcconstructs a validity

proof, by stating and proving three types of goal:

Exhaustive CasesThis goal is thecase formuladescribed in Chapter 5. (Details of
how to construct and prove this goal are given there.) Pgoiastablishes that

the rule’s case analysis is exhaustive.

Well-Founded Hypothesis For each induction hypothesis, we must show that it is
less than its conclusion under the relatian Following the notation rule (6.1),

we have free variablefxy, ..., X, } in formula®, and a step case of the form:
C,....0(Vy.®),... - o(®) (6.2)

For this induction hypothesis the well-founded goal is:
VY(C— (B(B(XL)),....B(B(Xn))) < (0(x),....O(Xn))) (6.3)

where substitutes fresh variables for arye 9, and ¥’ are the free variables

in the goal.

Well-Founded Relation States that the relatior is well-founded:

well found <)

The approach adopted here of explicitly stating and provadglity requirements
can be contrasted with [Protzen, 1995], which implicitifanes these through re-
strictions on the generation of the induction rule. Thisiscdssed further in Chapter

13.

Chapter 6. Induction Rule Creation 102

Example

Consider the induction rule

= ®(0,0)
- ®(0,5(2))
y# 0,Ywnatd(x,w) F P(X+VY,2)

Yu,v:nat.®(u, V)

(6.4)
The validity goals for this rule are as follows:

Exhaustive casesConstructed using the case formula method from Chapter 5, the

exhaustive cases goal:

vu,vinat. (- (u,v) =(0,0) V
Jznat. (u,v) = (0,(2)) V
Ix,y,znat.y # 0A (U,V) = (X+Y,2))
Well-Founded HypothesesThe step case matches (6.2) with the following values:

X1=U, X2 =V, 9 ={w}, 8={u/x}, o ={u/(x+Yy),v/z}. Hence the well-

founded hypothesis goal is:

VX y,z,n:nat.y #0— (x,n) < (X+VY,2) (6.5)

6.3 The Induction Strategy

We can now describe the components of our induction strasdgywvn in Table 6.1.
REFINE-CASE generates a case of the inductive proof by proving a scheroase,
refining the schema as a side effect, as described in Chapié¢redother two compo-

nents — XHAUST-CASESand WELLFOUND-HYPS— construct the validity proof of

Chapter 6. Induction Rule Creation 103

Strategy Proves Goal Side Effect Described In
REFINE-CASE Schematic case | Instantiates schemaChapter 4
EXHAUST-CASES Exhaustive case$ New cases Chapter 5
WELLFOUND-HYPS | Well-Found Hyp.| Constraints on< 86.5

Table 6.1: Components of the induction strategy.

the induction rule. EHAUST-CASESproves the ‘exhaustive cases’ goal, and generates

any missing cases, as described in Chapter 5.

The WELLFOUND-HYPscomponent, which has not been described yet, proves the

well-foundedness of the hypotheses and of the relatioaspectively. For each induc-
tion hypothesis VELLFOUND-HYPS generates a set of constraints on the relatign
such that the hypothesis is well-founded if these condaire satisfied. The compo-
nent also provides a constraint solver, which at the endefriiuctive proof is used
to pick a< which satisfies these constraints.

Our induction strategy is given in Figure 6.1, describecenmis of the component
strategies. This strategy constructs a complete induptivef of a conjecture, along
with a validity proof for the induction rufe Note that this thesis will only describe the
implementation of a restricted version of this strategy;hapter 10.

The strategy searches for a step case first, rather than admeseThe justification
for this is that step cases are nearly always harder to phavethe base cases. Tackling
the ‘hard part’ first can avoid wasted effort on finding bassesaonly to be unable to
prove the step cases. Tk#amsystem [van Harmelen, 1996] uses the same heuristic,
attempting to prove step cases first.

Establishing the well-foundedness of the rule takes intmant two competing

requirements:

Whether this is expressible in the object logic is anothetenadiscussed in §13.

Chapter 6. Induction Rule Creation 104

mD-STRAT(GOAL): \

1. Construct an initial schematic step case S fanG, with case structure C.
2. Construct a global constraint storecske
3. Apply CASE-STRAT t0 S.
4. Apply NEw-CAsESsto C.
5. Instantiate< with the result of solving $ORE.
NEW-CASES(CASES)
1. Prove @QsEsexhautive via KHAUST-CASES, possibly generating new cases NC.
2. Foreach Xin NC

(@) Apply CASE-STRAT to X.
(b) If X has been further refined then apphEWN-CASESto this sub-case.

CASE-STRAT(CASE):
1. Construct a proof of £sE using REFINE-CASE.

2. If CASE now contains any induction hypotheses then useLV#OUND-HYPS to
produce a proof &sk is well-founded given constraints T ehare satisfied.

k 3. Add T to STORE /

Figure 6.1: The dynamic induction strategy

e We want to eagerly apply WLLFOUND-HYPsin order to have some guarantee
that every hypothesis is well-founded before we proceed e proof. This

means VELLFOUND-HYPsoccurs early on in the proof.

e We want to delay choosing until after all the induction hypotheses have been
generated, so that our choice is not incompatible with ampotheses that help

us to complete the proof. Heneeis chosen at the end of the proof.

These requirements are reconciled by representimgth a meta-variable and having

Chapter 6. Induction Rule Creation 105

WELLFOUND-HYPsproduce a proof of well-foundedness for each induction kiypo
sis that depends on a generated set of constraintsh@ng satisfied, i.e. \BLLFOUND-
HyPs proves that a certain set of constraints implies the welhttedness of each hy-
pothesis. At the end of the entire proof the constraint sqivevide by WELLFOUND-

Hypsinstantiates< with a well-founded relation that satisfies these constsain

6.4 Component Specifications

As mentioned above, an advantage of our strategy masularitywith respect to its
component strategies (see Table 6.1). This allows indalidomponents to be replaced
with alternatives, to yield a variety of inductive strategi— although in this thesis we
only suggest a single candidate for each component. Formgathis could be done
in order to tailor the strategy to a particular domain. Iisection we provide detailed
specifications for the three components that must be meg igtitategy is to work.

The strategy begins with anitial goal:

VX1T1, e XniThe P(X1, ..., Xn) (6.6)

From this we can generatase schemaslescribed in Chapter 4, where meta-variables

represent unknown parts of the goal.

6.4.1 REFINE-CASE Specification

The REFINE-CASE component must provide a proof ofcase schemgoal, refining

the schema as a side-effect. Its specification is as follows:

Chapter 6. Induction Rule Creation 106
Input Case Schema

CX), HX) F ®P(Ai(X),...,A(X) (6.7)

Output A partial instantiation of

e C with a conjunction of case conditions (non-inductive hy@ses)
¢ H with a list of simple induction hypotheses (see Definition 1)

e A,...,Aywith induction terms

and a proof of the instantiated case.

6.4.2 EXHAUST-CASES Specification

The ExHAUST-CASEScomponent must take a set of known proof cases and generate
a set of additional cases, such that the union of the two eatssfan exhaustive case

analysis. Its specification is as follows:

Input Known proof cases

Ci(%), Hi(X) F ®(AL(R),...,AL(X))

Cm(X), Hn(X) F ®(AT(X),...,AJ(X))
Output Additional proof cases

Cm—i—l(x)a Hm—i-l(x) F (‘D(Alm—i_l(x)v e 7ArT+1<X)>

Ck(X), Hk(X) F ®(A{(X)..... Af(X))

Chapter 6. Induction Rule Creation 107

and a proof that these form an exhaustive case structurethatinput cases,
with partial instantiation of alC; andAiJ- (with the same restrictions as given in

REFINE-CASE). Hny1,. .., Hk are uninstantiated meta-variables.

6.4.3 WELLFOUND-HYPS Specification

The WELLFOUND-HYPSscomponent must takesingleinduction hypothesis and prove
thatit is less with respect ta than the corresponding step case conclusion, under given

conditions. Its specification is as follows:

Input A step case conclusion

an inductive hypothesis

H(B1(X),...,Bn(X))

and a conjunction of case conditioG§x).

Output A setSof constraints o, and a proof that
SAC(KX) = (Bi(X),..,Bn(X)) < (Au(X),....,An(R)) (6.8)

Also, a constraint solver which generates a wellfoundeatical from a set of

constraints, along with a proof that such a relation will blfeunded.

6.5 Validating Hypotheses

The WELLFOUND-HYPS strategy is required to prove well-founded hypothesis goal

(see (6.3) or (6.8)) of the form:

c— (bg,....by) < (az,...,an) (6.9)

Chapter 6. Induction Rule Creation 108

where< is the unknown well-founded relation. We have decided toausategy that
chooses< by finding asingletuple argument positiok and a measure functiod

such that for every goal (6.9):
c— M(bx) <M(a)

There do exist induction rules which cannot be proved walikled by considering
only a single tuple argumentWhether there is a need for a stronger well-foundedness
strategy, and what that strategy would be, is an interesjuggtion, which we leave
for further research.

In 86.5.1 we explain how each application of theEM/FOUND-HYPS strategy
generates constraints et The basis of the strategy is a simple adaptation of esti-
mation [Walther, 1994b] to unary measure functions, dbescrin §6.5.2 and 86.5.3.

A further extension to estimation, required for non-destsuinduction rules, is given
in 86.5.4. We enhance the basicEW.FOUND-HYPS with an optionalside condi-
tion critic (86.5.5) that responds to the failure of estimation by agl@ixtra step case

conditions.

6.5.1 Constraintson <

Recall that after each step case proof, the M WFOUND-HYPS strategy must prove
that given some constraints on the resulting well-founded hypothesis goals (6.9)
are satisfied (see 86.3), hence avoiding an early committoext Our strategy does
this by delaying commitment to the particular tuple argutpersition that will justify
well-foundedness, although for each tuple argument it castima particular measure
function from the very first induction hypothesis.

As the induction proof progresses, some tuple positionsb&tome unusable, as

for some induction hypothesis they did not reduce under bosen measure. The

Chapter 6. Induction Rule Creation 109

ith tuple position is identified as unusable by the constigimbre(i) posted to the<
constraint store.

For each well-founded hypothesis goal (6.9) the MW oUND-HYPS strategy pro-
duces a set of subgoals, such that for each tuple posisioch that the constraint store

does notontainignore(i), we have a subgoal:
c— M) < Ma) (6.10)

for some measure functidvi; (see below).

The behaviour of the strategy depends on whether this is tsiewell-founded
hypothesis goal or not. As each successful application af WWOUND-HYPS adds
constraints to the store, the strategy detects whetheinghise first application by

testing whether the constraint store is empty or not.

First Induction Hypothesis

For the first hypothesis, the measure functidnn the goal (6.10) is represented by a
fresh meta-variable. The goal is passed to the estimatiategly (see 86.5.2) below),
which instantiates it to a measure function during the proof

If the proof succeeds for the subgoals (6.10) corresponiinige tuple argument

positionspy, ..., Pq then the following constraint is posted:
measurepy,Mp,) V - - - V measurepg, Mp,) (6.11)

For any tuple argument positiom for which the corresponding subgoal (6.10) fails,
the constraintgnore(p) is posted. The proof fails if all the tuple positions are give

ignore constraints.

Chapter 6. Induction Rule Creation 110

Subsequent Induction Hypotheses

For subsequent induction hypotheses, the measure furidtiontheith goal (6.10) is
instantiated with the measuh from the disjunctmeasuréi,M) from the constraint
(6.11). The goal is passed to the estimation strategy (sé&e28below). Again, for
failed positionp the constrainignore(p) is posted, and some positions must always

remainignore-free (or the proof fails).

Example (contd)

Consider again the well-founded hypothesis goal (6.5) frloafirst (and only) induc-

tion hypothesis in rule (6.4):
y#0— (xn) =< (x+y,2)
Given this the WELLFOUND-HYPS strategy will produce two subgoals:
y#0— Mi(X) < Mi(x+y) (6.12)
y#0— Mz(n) < Ma(2) (6.13)
These are passed to the estimation strategy. As we will siegvbsubgoal (6.12)
succeeds witM; instantiated to the size measukg# The subgoal (6.13) fails.

Hence the VELLFOUND-HYPS strategy succeeds with the following constraints

posted:

measurél, #n4t)

ignore(2)
6.5.2 The Estimation Strategy

Our WELLFOUND-HYPsstrategy is based on Walther’s estimation calculus [Wa|tt@94Db]

(see 82.9.1). Itwas chosen because it provides an automatédd for well-foundedness

Chapter 6. Induction Rule Creation 111

proofs, and yet is simple enough to be recast into our framewe. as a strategy to
guide the construction of an explicit proof, and as part af‘oanstraint based’ well-
foundedness strategy.

Walther’s original calculus proves well-foundedness gaading a well-founded
relation based on th&ize measure functior- so there is effectively only one possible
choice of< per datatype [Walther, 1994b]. In [Giesl, 1995a] the calsuk adapted
to work with polynomial norm measure functions, provideé theasure is chosen
beforehand. It may be possible to develop @ MFOUND-HYPS strategy based on
polynomial norms. However, we have chosen instead to useategy based on a
different extension of the estimation method to arbitamary measure functions,
which is given in 86.5.2 below.

The estimation calculus manipulates formulae of the féarxiy b, A), which are

interpreted as follows:
(a<mb,A) = a<ubA (A—a<ub) (6.14)

The calculus is used to prove such goals, which establidhstivaea is less than or
equal to somé under a given measuid, and that there is some formufathat is
equivalent to this bound being strict. Demonstrating wafidedness is now a matter
of showingA holds under the current conditions.

Thedifference equivalem is unknown at the beginning of the proof. To prove a
strict inequalityc — a < b we apply the calculus to the go@ <y b, A), whereA is
the unknowndifference equivalerthat will ensure the inequality is strict. We can use
a meta-variable foA, which becomes instantiated to a formula during the estomat

proof. If the proof succeeds, the strict inequality is esailed by provingc — A.

Chapter 6. Induction Rule Creation 112

6.5.3 Upper Estimation

The basic operation of our estimation strategy is the agfptin of the following rule:

Upper Estimation Rule For variablex

(@<mb &) (f(x) <mx, & f(x)
(f(a) <m b, AV A}, f(a))

(6.15)

The rule is applied backwards — the first premise becominghéve subgoal, whilst
the second premise matches a kn@asgument bound lemridor f. Argument bounded
properties of functions are automatically generated frhgirtdefinitions before the
proof, using the procedure from [Walther, 1994b]. The ordcalculus includes other
rules to perform various trivial reasoning tasks — we simpdgs these to a simple
rewriting strategy.

This approach is much the same as Walther’s original cadcxcept an arbitary
unaryM is used, rather than the size measure. Our generalisedredsily shown to

be sound:
Theorem 2 (Soundness of Upper EstimationRule is (6.15) is sound.

Proof From the premises we know that

3. f(a <ma

4. N, f(@) « f(@) <w g

°These are Boyer & Moore’nduction lemmata[Boyer and Moore, 1979], the inspiration for
Walther’s calculus.

Chapter 6. Induction Rule Creation 113

It follows that f (a) <m b, by (1) and (3). Also:

AVA,f@) < a<wbvf(@) <wa By(2) and(4)
o f(@)<mb By (1) and (3)

Hence(f(a) <m b, AV A}, f(a)).

Q.E.D.

6.5.4 Lower Estimation

A problem with using upper estimation is that it only worksifeequalities of the form
F(X) <m X, i.e. the ‘lesser’ term is broken up until a copy of the ‘gezaterm is found.
This is useful for showing destructor style induction ruées well-founded, as term
structure only appears in the ‘lesser’ term. However, nestaictor inductions will

generate well-foundedness goals with term structure irgtteater’ term, such as
X#0— X <m X+Vy

The solution is to add a complementary form of estimatiortfierright-hand side of

the equality [Gow et al., 1999]. We call this thewver estimatiorrule:

Lower Estimation Rule For all variablex

@a<mbi,8) (x<m f(x), A, (X))
(a<wm f(b), AV AL, f(b))

The soundness proof is similar to Theorem 2. Similarly, loasgument bound
lemmas (which match the second premise of our rule) can bergtd automatically

before the proof. See [Gow et al., 1999] for further detaillwer estimation.

Chapter 6. Induction Rule Creation 114

Example (contd)

Consider the goal (6.12) from above:
y#0— Mi(x) < Mi(x+y)
This is passed to the estimation strategy as:
(X <m; X4V, B)

whereA is a fresh meta-variable. The proof depends on the follokéngma, auto-

matically generated from the definition efbeforehand:
(U<g u+V, Vv#£0)

The lemma allows us to apply lower estimation, which insgdesM to #,5 andA to

(y#0) V4, giving:

<X Sta % Al)

The goal is trivially discharged with’ = false
The estimation proof is completed by showing that the insited difference equiv-

alentA follows from the side condition in (6.12):

y#0 — y=#0V false

6.5.5 The Side Condition Critic

One way in which the estimation strategy can fail is when tbe-strict inequality
proof succeeds, but the strict inequality proof fails. Thgure occurs because we
cannot show that the difference equivalehtiff (6.14)) follows from the step case’s

side conditions.

Chapter 6. Induction Rule Creation 115

To try and recover from this kind of failed proof, we use aicrib the estimation
strategy which responds to the failure of the differencewvedent proof. It patches the
proof by adopting the difference equivaléhas a side condition of the corresponding
step case. Some simplification Afmay be possible before we adopt it as a side

condition.

Example
Consider the following step case, generated by our industi@tegy:
P(x) - D(x+y) (6.16)

Applying the WELLFOUND-HYPS strategy we soon end up with the estimation sub-

goal:
<X SMl X+y= A>

As in the previous example, this is discharged wWith= #,5; andA = (y # 0V false).

To complete the proof we need to show:
true—y=#0V false

The proof fails, and the side condition critic responds byifying A toy ## 0 and
adding this as a side condition to the step case (6.16). Thevwedl-founded step case

is:

y#0, d(x) F P(x+y) (6.17)

6.5.6 Choosing <

After the proof of an exhaustive set of base and step casebdas completed, a

constraint solver supplied by ®LFOUND-HYPsis invoked. For the wellfoundedness

Chapter 6. Induction Rule Creation 116

strategy described above, the solver has a simple taskhdégproof to have got this

far, there must be at least one tuple argument positsuch that:
e measuréi, M;) appears as a disjunct in the constraint (6.11).
e The constrainignore(i) does not appear.

The solver need only pick one sughand instantiate< to Ax.Ay.(M;(x) < Mi(y)). It
follows from the WELLFOUND-HYPS strategy that every induction hypothesis must
be less than its conclusion under this relation.

The instantiatedk is also guaranteed to be well-founded, as any relation d&fine
in terms of a measure function in this way is well-founded.hgTproof of this is

straightforward, and we omit it here.)

6.6 Summary

This chapter has described the induction rule creatiotesfyan terms of a number of
distinct components. The strategy delays the choice offwalded relation until the
end of the proof, reducing the need for unnecessary search.

The strategy is modular with respect to the components,ahahy strategy that
satisfies the component’s specification could be used — ghrayithey are consistent

in the constraints or. We have suggested candidate strategies for all the comfmne

e The middle-out strategy of Chapter 4 can be used fBFIRE-CASE.
e The case synthesis strategy of Chapter 5 can be usekfosEST-CASES.

e The estimation strategy of 86.5 can be used f@\\FOUND-HYPS.

Chapter 7

Controlling Speculation

7.1 Introduction

Speculative ripple steps, discussed in 84.3.1, are thomdvistantiate a meta-variable
in the goal as a side-effect. Kraan noted in her work on middieinduction selec-
tion that speculation caused rippling to be non-termigasee [Kraan, 1994], also
example in 82.7.1). Worse still, non-termination occursany simple examples, for
both theorems and non-theorems. This chapter propose®aquitic for controlling
speculative ripple steps.

To ensure termination, KraarPeriwinklesystem places a fixed bound on the num-
ber of speculative steps. Unfortunately, a given theoremmaguire an arbitrary num-
ber of such steps for a middle-out strategy to find a proof, @sannot put aa priori
bound on the amount of ‘induction term structure’ requiregtove a theorem, i.e. if
we set a bound at 4 steps, there may be a solution only for 5 m.rifence the bound
excludes solutions from the search space.

In this section we propose speculation criticthat employs speculative rippling

117

Chapter 7. Controlling Speculation 118

as a patch to overcome the failure of definite (i.e. non-dpéea) rippling. This
allows speculative rippling to be applied in a controlledywand significantly re-
duces the risk of non-termination. The critic is based onitideiction revision critic

[Ireland and Bundy, 1996].

7.2 Divergent Speculation

The key to controlling speculation is identifying which sptative steps will progress
the rippling proof. After the (compulsory) initial spectilee step, which introduces a
set of initial wave fronts, further speculative steps caly be useful if they help move

the existing wave fronts.

Divergent Example

An example of useless speculation causing non-terminggiginen in Figure 7.1, from
the example introduced in Chapter 1. (We abbrevialéleft tr to fld here.) Wave
rule (7.4) is used repeatedly to speculate new wave fromiich/cannot be removed by
further rippling. Each speculation contributes anotheckéd wave front to either side
of the conclusion. However, the process will not stop beeayeculation is always
possible, no matter how many blocked wave fronts accumulahés speculation is
useless, as it does not help unblock these wave fronts, acahsmt help the proof.
Such non-termination will occur iany schematic step case proof where blocked

wave fronts arise that cannot be removed. This often hapghanirsg proof attempts of

theorems because of a missing lemma, or during the proofretim@orems.

Chapter 7. Controlling Speculation

119

-

e X0 L) = ye fldte.0, LX)
b (%
e [o0 [U) = o faeie [= U0)
I
Ao, [X00 oVt [000) = ye oo [BoL00] [L70)
(%)
fae, [(X0 U)oL | [0) = ye e [o] L7007
N[
fld(o, (EOL'(X))OL"'@) UTR)) = yofld(s, (ﬂoL’(Y))oL"’(?)’l,i_i”i”:(iii)i})
I
etc

.

Figure 7.1: Divergent speculation in the schematic step case proof for theorem VX, y:

T.vllist(1). fld (o, x,1) =yo fld(o,id,), using the wave rules from Figure 7.2. Only the
induction conclusion is shown. The speculative ripples steps (marked with asterisks)

are motivated by wave rule (7.4).

Convergent Example

Now consider Figure 7.3, an example where further specuas actually useful.
The initial goal undergoes one speculative ripple with waue (7.1), followed by a
definite ripple with (7.2). Both wave fronts are now blockedt & further speculative
ripple with (7.1) provides the extra wave front requiredgmove the wave fronts with

(7.3) and fertilise, finishing the proof. This second spatiut step unblocks the wave

Chapter 7. Controlling Speculation 120

4 N

sX)| +Y = [sx+Y) (7.1)

x+[sv)] = [sxzv)| (7.2)
ever[ssX))|) = everX) (7.3)
9 fAdFA[AET]) = fdFE[F@AH)].T) (7'4)/

Figure 7.2: Wave rules used in the speculation examples.

fronts created by the first.

7.3 Ireland & Bundy’s Induction Critic

To summarise the last section, after an initial speculatiep, the resulting wave fronts
may become blocked. Further speculative steps are onlyluséiey help ripple the
existing wave fronts. We can view this in terms of fixing a drfzlure (see §2.4.4):
when definite rippling fails we can patch it with speculatnigpling, which provides
the missing wave fronts that allow rippling to continue.

This analysis shows that the problem of speculation is vienjlar to the situation
described in [Ireland and Bundy, 1996], where rippling failth a wave rulepartially
matchinga goal — the wave rule requires some extra wave fronts thabtlappear in
the goal (see 82.5.5). Ireland and Bundy propose a proot eviiich overcomes this
failure by revising the induction rule. This is done by cregtthe necessary missing
wave fronts and ‘rewinding the proof’ to see what inductiolercould introduce them.

We can rationally reconstruct the patch from [Ireland anddBy2996] as a four

step process:

Chapter 7. Controlling Speculation

121

iiiiiiiiiiiii

everf|s(C'(x,y) +iD(x,y)})|)

,,,,,,,,,,

,,,,,,,,,,

ever(| s(C'(x,y)(+: D(xy)) |)

,,,,,,,,,,

,,,,,,,,,,

ever(| s(s(C"(x,y) +:D(x,y))|)

,,,,,,,,,,,

,,,,,,,,,,

everf| s(s(C"(x,y) i+ D(x,y) 1) |)

K ________

P

,,,,,,,,,,

,,,,,,,,,,

,,,,,,,,,,

,,,,,,,,,

,,,,,,,,,

,,,,,,,,,,,

,,,,,,,,,

1

,,,,,,,,,,,,

--1

/

Figure 7.3: Convergent speculation leads to a successful step case proof for the theo-

rem VX, y:nat. everix+y) < evernfy+X), using the wave rules from Figure 7.2. Only the

induction conclusion is shown. The speculative ripples steps (marked with asterisks)

are motivated by wave rule (7.1).

Chapter 7. Controlling Speculation 122

Insert New Wave Fronts Insert the missing wave fronts and term structure into a
copy of the failed goal — where each meta-variable is coptedself — so
that the partially matching wave rule could be applied. Etag old wave fronts

from the copy.

Reverse Ripple Reverse the direction of new wave fronts, so that outwardsswav
fronts are inwards and vice versa. Ripple the new wave froosptetely in-
wards using the rewrite relatios- instead of=-. This takes us ‘backwards’
through the prodf Sinks are used to indicate meta-variables, so that wawésfro

may be rippled in towards them (see §82.5.1).

Change Induction Revise the original selection of induction rule so that thggaed-
in wave fronts are actually introduced as induction termshyinduction rule.
The proof critic selects a suitable rule from a prestored Bgidate the partial

proof to take account of the new induction.

Continue Proof Continue the proof from the patched goal, and discard the owne

in the first step.

Note that the goal produced lhysert New Wave Frontsmay be a non-theorem. This
Is acceptable, because it is a purely meta-level goal the#ad to determine a suitable

instantiation, and will not appear in the final proof plan.

Convergent Example (contd)

As an example of Ireland and Bundy'’s induction critic, coesithe example theorem

from Figure 7.3. If we try ripple analysis on this goal, it giegts structural induction

1Although we are already doing backwards proof — trying to fingath from goal to axioms — so
this ‘backwards’ step is actually forwards proof!

Chapter 7. Controlling Speculation 123

for nat (the dual induction fort+). Using the wave rules from Figure 7.2, this proof

fails as follows:

everf| s(x) ! +y) < every+|[s(x)|)

ever{s(x+y)|) < every+|s(x)|)

everf|s(x+Yy)|) < everfsy+Xx)|)

Both wave fronts are now blocked.
However, the induction critic spots that wave rule (7.3)tipdly matches the left-

hand wave front. Inserting the missing wave front into thalgee get:

ever{| s(s(x+Y)) T) — everfs(y+X) T)

Notice that this goal is a non-theorem. This is acceptalsleyeaare only going to use
this goal to determine a suitable instantiation — it will ragtpear in the final proof
plan. The critic now erases the old wave-fronts, turns tlvewave front inwards and

reverse ripples:

everfs([six+y)|) < everts(y+x))
U

ever([s(x)| +y) < everis(y+x))

This suggests that the step case requires an addi is(r;_raT in the original induction

term. Searching our set of known induction rules, we find thvatstep induction on
nat fufills this requirement, and we choose this induction rokgead.
The proof needs to be updated: an extra base case is reqame@dditional in-

duction terms are introduced apart from the one we foundexarse rippling. The

Chapter 7. Controlling Speculation 124

patched step case goal is:

ever[s(s(x+y))|) « ever|sly+[sx)|)|)

7.4 A Speculation Critic

The analogy between the Ireland-Bundy critic and our appraaas follows: the new
induction terms introduced in tHéhange Induction step are the equivalent of a use-
ful speculative step which instantiates meta-variabled,so create/modify induction
terms. This suggests that we can control speculation bytadgtpe induction revision
critic.

We propose the following replacement for ttleange inductionstep: every wave
front in the fully rippled in goal should surround a metatsate. Providing no meta-

variable has two occurrences surroundeddifferent wave fronts, then record each

meta-variable/wave front paf(x1, ..., xn)/|F(...) l. Allow a speculative ripple only

if it instantiates eacl to Auj....Aup.F(A'(ug,...,un)) for some fresh.

We will refer to the new critic as thepeculation criticand the old critic as the
induction critic. The essential difference between them is that in the imnoluctritic
the missing wave fronts suggest a particular choice of itidncule from a given set,
whilst in the speculation critic they suggest a speculaipple which will contribute
towards creating a suitable induction rule.

Figure 7.4 shows a succient description of the critic in ®ohpreconditions and
effects. The application of the speculation critic is ithaged in Figure 7.5.

Note that the speculation critic as defined here only workk wonstructor style
induction, just as original induction critic did. It is comjtble with non-constructor

style schematic proofs, but will only suggest patches toatespond to constructor

Chapter 7. Controlling Speculation 125

@ritic: Speculation Critic \

Preconditions:
e The failed rippling goal is not fertilisable.
e There is a wave rul& that partially matche&.
e ConstructG, a copy ofG — the goals now share meta-variables@n

— Insert wave front®V;, ..., W, into G’ so thatR could be applied.

Erase any other wave fronts.

TurnWi, ..., W, inwards.

Fully ripple-inW, ... ,W, with backwards ripple ste, ..., Sn.

— Check no meta-variable i@ surrounded by different wave fronts.
Effects:

e Instantiate each meta-variable @i surrounded by wave front — this will also in-
stantiate meta-variables (&

e DiscardG and its subgoals.

¢ Ripple out inG by applying normal ripple ste@, ..., S;.

K e Apply Rto G and continue rippling. /

Figure 7.4: Definition of the speculation critic

style step cases. We do not extend it to the destructor stytas thesis, although we

hypothesise that this could be done (see §13.7).

Divergent Example (contd)

To get a clearer idea of how the new critic works, consideirethee divergent example

from Figure 7.1. After an initial speculative ripple, defenrippling becomes blocked

Chapter 7. Controlling Speculation 126

4 N

Time
Blocked GoalG Goal CopyG

fla.A.)])

f(@(bA)|)

(2) Ripple In
f(a...[d@d)] ...))
(

-

3) Instantiate

T .
(4) Sharing
tla.. [da)])|) ——" t(a(...[d(d
l (5) Ripple Out

t(ab(A)

(
ANl .

l (6) Unblock

I

o /

Figure 7.5: An application of the speculation critic: 1) the blocked goal is copied, with

new inwards wave fronts 2) which are rippled in; 3) the fully rippled in wave fronts
suggest an instantiation A = d(A); 4) meta-variables are shared between both goals,
producing new wave fronts in the blocked goal 5) which are rippled out; 6) the new wave

fronts allow the goal to be unblocked.

Chapter 7. Controlling Speculation

with the following subgoal:

fld (o, X(X) |

,,,,,,

==

o

idoL/(X

U

127

There is no partially matching wave rule for this goal, anel ¢hitic is not applied. It

cannot fix the ripple proof with further speculation. Henbe tivergence illustrated

in Figure 7.1 has been avoided.

Convergent Example (contd)

Now let us look at how the new critic handles the example ofveayent speculation

from Figure 7.3. After the initial speculative ripple, deferippling becomes blocked

with the following subgoal:

ever

1

)

— even

T
) (7.5)

The wave rule (7.3) partially matches this goal —wibuld match if we were to insert

additional wave fronts into 87.5 as follows:

ever

,,,,,,,,,,,

1

) < even

,,,,,,,,,,,

Because definite rippling has failed with a partial wave ruleh, we can invoke

the speculation critic. It inserts the ‘missing wave frointo the goal (7.5), then re-

verses its directions to give:

evergs(

|

,,,,,,,,,,

A

o

These wave fronts are now ‘reverse’ rippled-in. We have thlewing ‘reverse’ ver-

sion of the wave rule (7.1) available:

S(X+Y)

|

=

+Y

(7.6)

Chapter 7. Controlling Speculation 128

Rippling-in with (7.6) on the LHS gives:

everfs(|s(C'(x,y))| +iD(x,y))) <« evers(D(x,y) i+ C'(xy))|)

[| ' i R R |

The new wave fronts have been fully rippled in. At this stage,change induction
step of the old induction critic would look for induction ad which introduced these

wave fronts as induction terms. Instead, our new critic Spleat one instances &f

is surrounded bys(....) l. Hence the patch to (7.5) is any speculative ripple that will

instantiateC’ to Au.Av.s(C”(u,Vv)).
This patch allows the second speculative ripple in FiguBet@ go ahead, and the

proof to be completed.

7.5 Summary
This chapter looked at the problem of divergent speculatod:
e Provided an analysis of why speculation may not terminate.

e Adapted Ireland and Bundy’s induction critic in order to gohspeculation.

Chapter 8

Controlling Rewrite Search

8.1 Introduction

Our induction strategy relies heavily on rewriting to obhtai proof. This has the po-
tential to introduce a large amount of search into our apgroand in this chapter
we proposeposition ordered rewritingas a technique for reducing redundant search
caused by backtracking during rewriting.

A great deal of research into theorem proving by rewriting bancentrated on
eliminating the need for search by demonstrating that afsetwite rules is, or can be
made confluenfBaader and Nipkow, 1998]. Confluence is the property thatrate
rewritings of a given term are alwaysinable — they can be rewritten to the same
term. There is no need to backtrack over alternative revgstiwvhen using a confluent
system, as they all lead to the same result.

However, there are good reasans to restrict a theorem prover to confluent rule
sets. A non-confluent ruleset may be the most natural, or, evdy to represent a

particular problem. Alternative normal forms for a term nm@present alternative

129

Chapter 8. Controlling Rewrite Search 130

approaches to solving a problem, and so could be useful teaxd¢m prover. In other
words, there can be genuine choice points during rewrifirtgs is illustrated by the
fact that rewrite rules may be based on non-equivalencepieg lemmas, where a
true goal may give rise to a false subgoal. Confluence is natatiés here, as true and
false should not be joinable!

Neither theClamor AClaminduction strategies, nor our induction strategy, assume

confluent rewrite rule sets.

Overview

In this chapter we identify the problem of redundant searahing non-confluent
rewriting, and propose a technique for reducing it. 88.2xshloow redundancy arises
when normal forms are rederived. It introduces the concépbofluent branches,
along with sufficient conditions for identifying them.

In 88.3 we describe how position order rewriting can be usdaldck alternative
paths to a term. The approach is formalisedrmasnd o-rewriting. The question
of completeness is addressed in §88.4, which gives a prodfeoEdmpleteness of-
rewriting. Finally, in 88.5 we show the compatibility of thechnique with meta-

variables, and hence our induction strategy.

8.2 Redundancy in Rewriting

The redundant search caused by rederiving normal forms realjustrated by the
following simple example: consider the rule §et— b} and the initial termf (a,a).

The term is normalised in two steps:

f(a,a) — f(b,a) — f(b,b)

Chapter 8. Controlling Rewrite Search 131

If this normal form turns out to be unsatisfactory, we mayiback over the first step,

and find an alternative normalisation:

f(a,a) — f(a,b) — f(b,b)

The first normal form has been rederived, so this secondatemivis redundant.

Similar examples have the potential to cause a combina®x@osion, as parts
of the term can be ‘independently’ rewritten, and may be in arder. This could
produce a significant amount of redundant rewriting seafciother source of redun-
dancy comes from théle rewriting plays within the theorem prover. A given nofma
form may be the input to another, potentially expensivategy. Such work will be
duplicated if normal forms are rederived. Both these souotesdundancy may be
arbitrarily large.

One solution would be to construct an explicit represenmtatif the search space
as an acyclic directed graph — assuming rewriting is tertiniga— and to extract
the distinct normal forms from this. This completely avoide problem of redundant
search, but the graph may be infeasibly large, even for simgwrite systems. Fur-
thermore, constructing an explicit search space does neefitinto many reasoning
frameworks, including th&Clam proof planner. The technique we propose below

does not have either of these drawbacks.

8.2.1 Confluent Branches

The problem of rederiving normal forms can be restated dewist non-confluent
rule sets may still exhibit ‘locally confluent’ behavior, that someterm may have
alternative rewritings that are joinable. In general, ¢hexay be a terns which has a

confluent branch

Chapter 8. Controlling Rewrite Search 132

/ N\
t1 153
N
t
As there are at least two paths to the ‘joining’ ternt may be visited more than once.
If there are more than two alternative reductions,ahen there may be more than two
ways to get fronstot, or there may be multiple ‘joining’ ternts However, we define
a confluent branch as involving exactly two alternative midus, so in these cases
is considered to have more than one confluent branch.
By considering confluent branches, we can formulate a pieé&ip reducing search.

At each term try to:
1. Identify confluent branches and
2. For each confluent branch block one of the paths to thenjgitarm.

Below we show how this can be done in certain cases.

8.2.2 Identifying Confluent Branches

Consider a terns with two possible redexesa at positionp and b at positiong.
Subterma may be reduced ta'. Subtermb may be reduced tb' by rewrite rulel — r
with substitutiono. Without loss of generality, we may assume exactly one afehr
cases, shown in Figure 8.1. The case analysis is taken fremrtof of the Critical
Pair Lemma in [Baader and Nipkow, 1998]. For each case we wiibiler whether

there is a confluent branch.

Chapter 8. Controlling Rewrite Search 133

4 N

Figure 8.1: A term containing two redexes a and b = o(l). The redexes are either
non-overlapping (left) and so form parallel subterms, or are non-critically overlapping

(middle) where a is within the substitution g, or critically overlapping (right) where a

Koverlaps with the left-hand side |. ([Baader and Nipkow, 1998], pp136.) j

Case 1: No overlap

In this case the two redexasandb are parallel subterms sf shown in the left termin
Figure 8.1. The two reductions trivially form a confluentiteh, illustrated in Figure

8.2. There are two paths: left (subteaythen right (subterniv), or right then left.

Case 2: Non-critical overlap

Here one redex is the subterm of the other, but the inner radeentirely contained
within the substitutiono of the outer reduction, i.e. it is within a subtemrfa] that
matches a variablé in [, the lefthand side the outer rewrite rule. This case istilisd
by the middle term of Figure 8.1.

A confluent branch is formed in this case. The first derivatiegins with rewriting
the outer ternb — b'. The righthand side of the outer rewrite rulewill contain zero
or more copies oK. Henceb' will contain subternt[a] at a set of positionB. Let us

rewrite each of these tgf@’] with the inner rule, to give a final term equal howith

Chapter 8. Controlling Rewrite Search 134

4 N

SN

N /

k Figure 8.2: Non-overlapping redexes form a confluent branch. /

the subterms at positiofsreplaced wittc[a].

The second derivation begins by rewriting each subterm ritetthedX in the
first derivation fromc[a] to c[@]. Now outer rulel — r will still apply, but with an
amended> which replacex with c[a]. Applying the rule, we have the terb with
the subterms at positiofsreplaced wittc[a'] — the same term as before. Hence there

are two alternate routes to the same term, and there is a eahbBranch.

Case 3: Critical overlap

This case has one redex as a subterm of the other, shown imgktiiéarm of Figure
8.1. However, the inner term is not contained in a variablenduthe outer redex’s
reduction. In this case the branch may or may not be conflueeiamples of both
kinds are easily constructed. Because we cannot definitehtifgt whether a conflu-

ent branch exists, and if so what form it takes, we cannotyaihy@ search reduction

Chapter 8. Controlling Rewrite Search 135

principle described above. Hence we ignore this case below.

8.3 Position Ordered Rewriting

To summarise the last section, if there is no overlap or aariital overlap between
the two redexes — when the reductions are ‘independent’ cf ether — then a
confluent branch can be identified. Hence we have sufficienditons for identifying
a confluent branch. We ignore the case of a critical overlawd®n redexes, because
a confluent branch may or not be present.

Given a confluent branch, the next step is to block one of thepgaths to the
joining term, as discussed in 88.2.1. Recall the possiblaatezh paths in the two

‘independent’ cases:

No overlap Left term then right, OR right then left.

Non-critical overlap Outer term then any copies of inner term created, OR all eccur

rences of inner term needed for outer rule to apply, therrdeten.

The number of paths in each case can be cut down by imposirggraoris on the
reductions, based on the position of the redexes, whichalldy a specific ordering

of the independent steps. We will consider the followingevst

Parallel Constraint Left cannot follow right.

Subterm Constraint Outer cannot follow inner.

We call this approachosition ordered rewritingMore formally, we use the rewrit-

ing strategy given in Figure 8.3. The strategy prevents lieerate paths being taken

Lit may be possible to develop techniques based on othersorder

Chapter 8. Controlling Rewrite Search 136

/ 1. The first redex may be chosen freely. \
2. Subsequently, for last reduced subtéramd redet’:

Parallel if t andt’ are parallel theth must be to the left of.

Subterm if t is belowt” and rewrite rulea — b reduced’ then for any unique (single
occurrence) variabl¥ in a, t must not be wholly contained within the subterm
that matche.

& Figure 8.3: The position ordered rewriting strategy. /

when we have confluent branches with independent redexdsg.ti@nleft-first/outer-
first path should ‘get through’ to the joining term.

The subterm constraint in Figure 8.3 requires some exptamait says that if we
follow a reduction with another higher up the term, the restithe inner one cannot
entirely be contained within aniquevariable in the lefthand side of the outer rewrite
rule, i.e. a variable that occurs only once. The next seetanks through some simple
examples, and illustrates why this variable has to be unique

Restricting rewriting in this way is obviously sound, busitiot obvious whether or
not it is complete with respect to the original rewrite redat 88.3.2 lays the ground-
work for a proof of completeness, by giving a formal preseateof position ordered
rewriting. In 88.4 we prove that using the parallel constralone gives a complete

restriction.

8.3.1 Examples

This section illustrates position ordered rewriting widveral examples.

Chapter 8. Controlling Rewrite Search 137

The Parallel Constraint

Recall the motivating example mentioned at the beginning8a2:8the single rewrite
rulea — b is applied to the ternf(a,a). Two derivations of the normal forri(b, b)
are possible. However, the parallel constraint blocks dribese paths, as follows (in

each term the redex is underlined):
f(a,a) — f(b,a) — f(b,b)
f(aa) — f(ab) 4 f(bb)

This step is blocked as the redex is to the left of the lastecedsubterm.

The Subterm Constraint

Now consider the two rule rewrite sga — b, g(X) — h(X)} applied to the terng(a).
The normal formh(b) can be derived via two separate paths, one of which is blocked

by the subterm constraint, as follows:

9@ — g(b) # h(b)

This step is blocked as the last reduced subterm entirehymtite subterm that matches

the unique variablX when we match the lefthand sidéX) to g(b).

Why A Unique Variable?

This example shows why the subterm constraint specifi@sigquevariable, i.e. one
with a single occurrence in the term. Allowing the constré&invork with an arbitrary
variable would prevent redundant search in a greater nuoflEases. Unfortunately,
this form of the subterm constraint is incomplete with resgpe the original rewrite

relation.

Chapter 8. Controlling Rewrite Search 138

To see why, consider the two rule rewrite $at— b, f(X,X) — g(X)} applied to

the termf(a,b). If we use the non-unique version of the subterm constrdiat):

flab) — f(bb) — g(b)

The step is blocked because the last reduced subterm iglgmiithin the subterm
that matches the variab¥when we match the lefthand sidéX, X) to f(b,b). There
are no other derivations gfb), so the term has been pruned from the search space —
hence the non-unique subterm constraint is incomplete.

It may be possible to design a complete position ordereditiegrstrategy that
blocks a step when the last reduced subterm is entirely nvétsubterm that matches
anyvariable. We speculate that this would involve taking intoaunt the positions of

several previous rewrite steps, rather than just the lastoed subterm.

8.3.2 Tt and 0-Rewriting

In order to formalise position ordered rewriting, we intuoe notation for some for-
mal rewriting concepts. Where possible, we have followedstia@dard notation of

[Baader and Nipkow, 1998].

Positions A position p of a subterns of a termt is the list of positive integers that
determines a path from the roottofo the root ofs. pqis the listp appended to
the listq. € is the empty (root) positionposr(s,t) returns the set of positions of

subterms within t.

Above/Below The order< is defined on positions gs< qiff there existsp’ # € such
thatq = pp, i.e. whenp is aboveq in the term tree>>, < and> are defined in

the obvious manner.

Chapter 8. Controlling Rewrite Search 139

Parallel If p#q, p £ gandp # gthenp is parallel tog, written p || g. Note that

p=gq, p<g, p>qandp|| qare mutually exclusive and exhaustive cases.

Before/After The order< is defined as the lexicographic ordering on positions. This
meansp < q iff pcomes beforg in a depth-first traversal of the term tree, <

and> are defined in the obvious manner.

Rewrite Step For positionp and rewrite rule, the rewrite stefy = [p,r] is the trans-

formationt — t’. We use the functional notatign t — t’ andy(t) =t’.

SequenceA sequence of rewrite stefgs= [p1,r1),...,[Pn,rn] is applied to a term by
iteratively applying the steps to the term in the given arderwith rewrite steps,

we use the functional notatigp: t — t’ and@(t) =t'. € is the empty sequence.

Definition 7 (To-sequence)A sequence of rewrite steps igm|-sequencdff for any

two consecutive rewrite stepg, r] and[q, s, where s= (a— b)

(m if pllqthen p=q

(o) if p> q and variable &, occurs only once in a then) qu
Enforcing these constraints on rewriting is calatrewriting . If only the (1)
constraint is enforced a rewrite sequence is callaesaquence, and restricting rewrit-

ing in this way is calledtrewriting. o-sequence and-rewriting are defined analo-

gously.

8.4 Completeness

Having formalised position ordered rewriting we can nowsidar its completeness.

By completeness we mean that usimgrewriting does not prevent any terms being

Chapter 8. Controlling Rewrite Search 140

derived. More formally, it —*t’ then there exists Bo-sequence such thatp(t) =t'.
In other words, any term that has a particular path to it olchy thero restrictions
can be reached by some other acceptable path.

This is not the only form of completeness that could be cared. For example,
the completeness with respectriormal forms[Baader and Nipkow, 1998], i.e. that
exhaustively applyingto-rewriting is equivalent to normal rewriting. However, we
have not found such results any simpler to prove than oungé&onotion of complete-
ness given above.

In this section we prove thatrewriting is complete, and discuss the possible com-
pleteness ob- andmo-rewriting. First we provide some additional concepts thigit

simplify our proofs:
Composition We write ¢ @, to denote the sequence obtained by applypnthen,.

Equivalence Two sequencesy, @, are equivalent (writteip; = @) iff @1(t) = @(t)

for any termt.
Length |q| is the number of steps in

SegmentA sequencey is called a segment of a sequengé @ = Ea@ @z for some

On, PB.

8.4.1 TrRewriting is Complete

In this section we prove the completenesstwewriting: for any sequence there ex-
ists an equivalent-sequence. Our proof treats the given sequence as a ‘broken’
sequence which can be ‘fixed'.

The proof requires three lemmas, the first of which is trivial

Chapter 8. Controlling Rewrite Search 141

Lemma 1 (Segment Lemma)Any segment of B-sequenceg-sequence orno-sequence

is also a sequence of this type.

The following simple lemma shows that swapping the ordehefdteps ‘fixes’ a

‘broken’ T-sequence of length 2.

Lemma 2 (reSwap Lemma) For rewrite stepsy; andys, if y1y2 is not at-sequence

theny,y; is, andyayr = yiye

Proof vyiy» = [p,r][q,9 is not at-sequence, sp || g andp > g. Henceq || p and

a = p, so[q,9[p,r] is atesequence. Alsf,s|[p,r] = [p,r][q,s| becausep || .
Q.E.D.

We now introducé-brokenr-sequencewhere thekth step breaks the-constraint,
and removing it gives a valit-sequence. The definition is followed by a lemma which
shows that we can always fkebrokentesequences. This definition and lemma are
motivated by the step case of the inductive completeness pituich follows, where a

k-brokent-sequence arises and is fixed.

Definition 8 (k-Broken t-Sequence)A sequenceis a k-brokenr-sequencéor k > 2
iff there is a rewrite stey such thatp= @ay@s and|@ay| = k for some sequences, ¢s,

and that:
1. @ais aTE-sequence.
2. @a@s is aT-Sequence.
3. @ayis not a T-sequence.

Lemma 3 (reFix Lemma) For any k-brokenesequence there exists an equivalent

sequence.

Chapter 8. Controlling Rewrite Search 142

Proof Induction onk, the position of the broken rewrite step.

Case n=2. Let@=y1y2@s be a 2-brokent+sequence. Following the definition:
Al. y; is atesequence, which is trivially true anyway.
A2. y1(g IS aT-Sequence.
A3. y1y2 is not aresequence.

By (A3) and ther-swap lemmayy; is aT-sequence anghy> = Yoyi. Therefore by
(A2) y2y1@8 is aTESequence equivalent (o

Step Case. Assume that we can fix ark-brokentesequence. Consider(&+ 1)-
brokentesequence. As @ must have at least three steps, we may Wpite Qay1Y2@s

where|@ay1y2| = k+ 1. It follows from the definition that:
B1l. @ay: is at-sequence.
B2. gay1@B is aTESequence.
B3. gay1Y2 is not ar-sequence.

By (B1) and (B3)y1Y2 is not at-sequence. Henogy: = y1Y2 by thet-swap lemma.
Defineq = @ayoy1¢s = ¢. Now if ¢ is at-sequence then we are done, so let us assume

it is not. Therefore:
Cl. gais atesequence, by (B1) and thesegment lemma.
C2. gay10s is atsequence, which is (B2).

C3. qay2 is not atesequence. If it werepayy1s = ¢ would be by (B2) and the

T-segment lemma, a contradiction.

Chapter 8. Controlling Rewrite Search 143

Given that/@ay2ya| = k+ 1 then|gayz| = k, so@ is ak-brokente-sequence. Hence by

the inductive hypothesis there exists-aequencg’ = ¢ = @.

Q.E.D.

Theorem 3 (rerewriting is complete) For any sequence there exists an equivatent

sequence.

Proof By induction onn, the length of the sequence. The cases0 andn= 1 are
trivial. The casen = 2 was shown by the-swap lemma.

Step Case. Assume then = k case, and consider a sequeief lengthk+ 1. Let

@ = @ay. By the inductive hypothesis, there exists-gaequencep, = @a. Now define

¢ =g@,y=o. If ¢ is at-sequence we are done, so let us assume it is not. Observe that

¢ must now be d|q@,| + 1)-brokentesequence, so by thefix lemma there exists a
Tesequenc®’ = ¢ = .

Q.E.D.

Note that the equivalent-sequences are constructed by reordering the original
sequences, so we can conclude that they are of the same & originals. Hence
T-rewriting will not cause inefficiency by eliminating theatest path to a term — a

Tsequence of equal length will exist.

8.4.2 Towards Tio-Completeness

In this section we provide a swap lemma &Brewriting, as part of an attempted proof
of the completeness af-rewriting. In thertcase lemma 2 put the ‘left’ rewrite step
before the ‘right’ step. In the case lemma 4 puts the ‘higher’ step before the ‘lower’
step. As aresult, the ‘lower’ redex may change position anduplicated. This makes

the statement of the lemma more complex than irrtase.

Chapter 8. Controlling Rewrite Search 144

However, we have so far been unable to prove the completariessewriting
by the route of a correspondirmFix lemma. We leave its completeness, and the

completeness afo-rewriting, as open conjectures.

Lemma 4 (0-Swap Lemma) If [p,r][g,s| is not a o-sequence then there exists an

m
equivalento-sequencéq, s]_Cbl[qu, r] for certain positions y, ..., um, V.
1=

Proof If the (o) constraint is broken, then by definitign> q and fors= (a — b)
there is some variabbe = a|, such thatp > qu. Let posnx,rhs(s)) = {u1,...,um}.
Without loss of generality, assume that j = uj < u;. Theu; are the positions of a
variable, and so must be mutually parallel. Also, as we kipawq, letv be such that
p=quv.

First, we show that the given sequence is-aequence: as thg are mutually
parallel, so musfiuv for i € [1,m]. Furthermorej < j = quV < qu;V, soia_nnl[quv,r] is
ao-sequence. Now, as# quV, [q7S]i£|:n>1[qu,r] is also ao-sequence.

Next, we show that the given sequence is equivaleripto[q,s]: Suppose the
original sequence was applied to a tegysuch thafp,r] : to — t; and|q, s : t1 — to.

t1 is the result of one step and the input to another, so it faltvat there are terms
a, b, candd for which [g,r] :a— b, [¢,5] : ¢ — d andtg|p = &, t1|p = b, t1|g=c and
to|q =d.

Lett |, [t'] denote a term with a subternt” at p. We know thatp = quvand that
the subternty |qu matches the variabbeand is copied byg, s| to positionsguy, . . ., Qum,

SO we may write
to = tolglclulelv(all]

t1 = tolglclulelv[b]]]

t2 = tolqldlfu,. um [€1v (D]

Chapter 8. Controlling Rewrite Search 145

wheree = tg|qu. Now

[@,8/(to) = [a,8(tolqlclulelvall)

= tolqld qu, um [€1v[a]]

and

m

..... to lg [P [uvir](d Ly, u [€1v[@])]

i=1

R=E
=
e
<
s
~—
=
o
il
0
=
=
ks
c
<
c
3
E3
@
o
<
o
=
[

= tolq[dqu,..um} [€1v D]

m
Hence[q,s]_CD1 ' to — tp and so is equivalent t, r][q, 9.
1=

Q.E.D.

8.5 Compatibility with Meta-variables

As it stands, position ordered rewriting is incompatibleéhaterms containing meta-
variables, as it can be shown to be incomplete. The followexamplé illustrates the

problem. Consider the rewrite system:
a — b
g@ — c
Following the use of meta-variables throughout this theses let rewriting instanti-

ate them on the condition that the redex is never meta-fliexitd. so we cannot just

endlessly rewrite a meta-variable subterm.

2Alan Smaill, private communication.

Chapter 8. Controlling Rewrite Search 146

Taking the initial termp(X,g(X)) we can uniquely derive the normal forpib, c)

via the following derivation (in each term the redex is utided):

p(X,g(X)) — p(@c — pb,c)

However, this is not arsequence, and so is blocked by position ordered rewriting.
This is because the second redex is to the left of the firskréde 2|| 1 and 2< 1),
which is disallowed by the definition af-rewriting. Because there is no other way to
derive p(b,c) from the initial term, a normal form has been excluded fromgkarch
space.

The general problem is that a rewrite step may instantiateta4variable that has
other occurrences in parts of the term in whiahrewriting disallows rewriting. A
solution to this problem is to treat meta-substitutionsragstricted rewrite steps. That
IS, instantiating a meta-variable at positipfis considered as a rewriting pt For the

example above:

p(X,9(X)) — p@c) — pb,c)

Note that the first term is now reduced at two positions siamdbusly. This is ok, as
we can regard the leftmost/highest position (the smallgst)as the ‘real’ position.
By this definition the above is nowmo-sequence.

This approach overcomes the known problems with usingipasirdered rewrit-
ing with our induction strategy, and other techniques basemeta-variables. Based

on this we conjecture that the technique is complete in thegce of meta-variables.

8.6 Summary

This chapter examined the problem of redundant searchgluon-confluent rewrit-

ing, and:

Chapter 8. Controlling Rewrite Search 147

e Provided an analysis of redundant rewriting in non-conflisystems based on

confluent branches

¢ Introduced position ordered rewriting as an approach tocid redundancy,

and formalised it asto-rewriting.
¢ Proved the completenessmfewriting.

e Showed how it can be made compatible with middle-out reagpni

Chapter 9

A Proof Planner with Critics

9.1 Introduction

Having laid out the various components of our inductiontetyg in Chapters 4 to 8, we
now consider its implementation. TA€lam proof planner was chosen, and extended
with proof critics, for this purpose.

After explaining in 89.2 why an extendedClam was used, the rest of the chap-
ter describes the novel critics-based proof planning &chire implemented in the
system. The main features of the architecturepa@ning instructiongsee 8§89.4) to
allow more flexible specification of when critics should belégd , andcriticals (see
89.5) which can be used to specify critic strategies in acgmals manner taethod-
icals [Richardson and Smaill, 2001]. 8§9.6 briefly describes a @amased on these
techniques. The architecture is general enough to be obusevide variety of proof
planning strategies.

The AClam system has undergone development since the implementzitiout

new critics architecture, and in 89.7 we briefly describe tiogvcurrent implementa-

148

Chapter 9. A Proof Planner with Critics 149

tion relates to the our design presented here.

9.2 Why AClam?

Our induction strategy is essentiallynan-uniformcollection of heuristics for guiding
proof search, i.e. different parts of the proof require véifferent guidance. This is
especially true for our use of meta-variables. Proof plemaee designed for the imple-
mentation of such non-uniform strategies, and a wide wanésuch examples have
already been implemented, e.g. [Kraan, 1994], [Cheikhrawdm Siekmann, 1998],
[Melis and Meier, 2000]. For the purposes of prototyping stnategy, using a proof
planner is simpler than the adapting another theorem praveriting a stand-alone
system. Furthermore, some parts of the strategy are evenlusin terms of proof
planning operators, e.g. the speculation critic (see Chapt&or these reasons, it was
decided that a proof planning system would be used.

The choice of which proof planner to use came down toQMEGA system and
one of theClam planners (see 82.4). THeélam planners were chosen because, un-
like QMEGA, they have already been successfully used for the im@iegation of a
number of inductive strategies. It is easier to build upas tork than begin a new
implementation iMMEGA — although this would be an interesting exercise.

Of the Clamfamily of planners, only th€lamv3 system has provision for proof
critics, and our strategy specifies two proof critics: thecgpation critic (see 87.4)
and the side condition critic (see 86.5.5). However, of éhggstems, onlwClamis
being actively maintained and developed. It also has otthearstages for our induc-
tion strategy: its higher-order meta-logic provides bunlunification for higher-order

meta-variables, and methodicals greatly facilitate trecdgation of complex strate-

Chapter 9. A Proof Planner with Critics 150

gies (see 82.4.2). Hence it was decided to implement a $eiicaitics mechanism in

theAClamsystem, in order to implement our induction strategy.

9.3 Defining Proof Critics

In this section we describe how proof critics are define€liamv3 [Ireland, 1992]
[Ireland and Bundy, 1996] and in our new architecture. Eacfpritic is associated
with a proof planning method (by virtue of sharing its nanae)] when a method fails

the planner attempts to apply an associated critic. A dsgtaefined by a 4-tuple:
Method The name of the associated method.

Input The partial proof plan, including the method’s failed predibions.
Preconditions Conditions under which the critic is applied.

Effects Instructions to modify the partial plan.

Figure 9.1 shows an example of such a critic definition, fae&ecritic. Once a critic
is chosen, its preconditions are tested, and if they arsfigdd] its effects are executed.
As well as the partial proof plan, the critic has access tddled preconditions of its
associated method, allowing it to provide an appropriatelptor a particular kind of
method failure.

To handle methods with multiple associated critics, a pegfee order is defined for
a set of critics. For example, faravemethod’s critics, the critic with the most general
preconditions is chosen [Ireland and Bundy, 1996]. The manmay backtrack over

this choice.

Chapter 9. A Proof Planner with Critics 151

Gitic(wave, \

Plan,

[preconds(Plan, [], [P4: sinkable(Pos,G,SPos)])],
[speculate_lemma(Pos, SPos, G, Rn:Lemma),
add_wave_rules(Lemma),

insert_method(Plan, [], wave(Pos,[Rn,]))]).

\ /

Figure 9.1: The Clam v3 definition of the lemma speculation wave critic (from

[Ireland, 1992]).

9.3.1 Critic Definitionin AClam

In the AClam critics architecture we adopt a variation of the definitidrpof critic
outlined above. Firstly, the critic is named independanfiyts associated method.
This allows a critic to be associated with several methods several variations of the
wavemethod could be served by the same critic, or to have diffesecurrences of
the same method associated with different critics. Thisssu$sed further in §9.4.

Secondly, there is a slot in the defining tuple representiegautput plan. This
brings the definition of critics in line with methods. Hena#ic preconditions and
effects are declarative statements that relate the inglibatput slots.

Thirdly, the critic definition also relates an input and autplanning agenda, i.e.
the list of open nodes in the plan tree. This gives criticsabiity to further control
the search for a proof plan by changing the agenda. For exatopthange the current
attention of the planning search. Figure 9.2 shows howvidneecritic definition from
Figure 9.1 might appear in the new format.

Our definition of critics clarifies their function: they aredarativé planning oper-

ators that work on a global level, i.e. the whole plan and genda. This complements

Declarative in theory —AProlog can be used to write non-declarative programs.

Chapter 9. A Proof Planner with Critics 152

Gitic (lemma_speculation Pos Lemma) \
Plan
Agenda

(preconds Plan [] [(sinkable Pos G SPos)])

(speculate_lemma Pos SPos G Rn:Lemma,

add_wave_rules Lemma,

insert_method Plan Agenda [] (wave Pos [Rn,]) NewPlan NewA genda)
NewPlan

NewAgenda.

o _/

Figure 9.2: How the lemma speculation wave critic from Figure 9.1 would be defined

in our new critics architecture. The output plan and input/output agendas are explicitly

represented, and the critic’s name differs from its associated method.

methods which are planning operators that work on a localllee. the individual
nodes of the plan tree. Hence our definition of critics britiggn more into line with

methods.

9.4 Planning Instructions

A feature of clam v3 critics is that a critic is invoked if andly if its associated
method fails. However, critics may be of more general yttlian this: a proof strategy
could invoke a critic without a method failure, in ordergositively critiquea partial
plan. For example, a global change to the proof could be gaatproof strategy’s
design, rather than an exception to it. Furthermore, it @ana useful if a critic could
have acontextual associatiowith a method, i.e. it is invoked only in certain strategic

contextg.

2lan Green and Alan Smaill, personal communication.

Chapter 9. A Proof Planner with Critics 153

In Clam v3 such features do not make sense, as it does not expliepyesent
proof strategies above the method level. Buk@lam proof strategies are represented
by compound methods. Hence ouClam critics planner provides support for both
positive critiquing and contextual association with a noethBoth are achieved by ex-
tending the method expression language widmning instructionsvhich modify the
planner’s behaviour, rather than being applied to the atigeal. Planning instruc-
tions are treated as atomic methods by the methodical tianafions used to obtain

the ‘next method’ from a method expression [Richardson andil§ra001].

9.4.1 Postive Critiques: crit _inst

The planning instructiofcrit_inst C) may be included in a method expression to
invoke a positive critique of the plan. The planner intetsupormal planning and
applies the criticC to the partial plan. For example, the following method expien
would apply thevave method and then wouldlwaysapply thelemma_speculation

critic (not a sensible strategy...) :

(then_meth (wave Pos [T,D])

(crit_inst (lemma_speculation Pos Lemma)))

9.4.2 Contextual Method/Critic Association: ~ patch _inst

The planning instructiofpatch_inst M C) may be included in a method expression
to invoke an association with failure of the atomic metiddrhe planner attempts
to apply methodM If it succeeds then planning continues as normal. If itsfalile
critic Cis applied to the partial plan. IkClam the method’s evaluated preconditions

are stored at the corresponding plan node, so the criticd@sa to them in order to

Chapter 9. A Proof Planner with Critics 154

analyse the method failure. To illustrate, the followingthwel expression would apply

thewave method, and if it failed apply thiemma_speculation critic:
(patch_inst (wave Pos [T,D]) (lemma_speculation Pos Lemma)

Note that usindpatch_inst M C) in a method expression is the only way a critic
can be associated with a method in ¥@am critics planner, and it does not univer-
sally associate a critic with a method. This is not a seri@sriction, as e.g. a new
compound methodave2 could be defined with the above method expression, which
would behave like theave method with a universally associatiechma_speculation

critic.

9.5 Criticals

AClamuses methodicals to compose methods into compound meth@sanalogous
way to the composition of tactics via tacticals [Richardsod 8maill, 2001]. The
advantage of this is that complex proof strategies invgivimultiple methods may be
explicitly defined, allowing a declarative reading of metepand making them easier
to write.

Another novel aspect of our proof planning architectureriscals, which allow
critics to be composed in an analogous way to methodicalsngUsiticals, critic
strategies can be built from critics. As well as making casrgritics easier to write by
breaking them down into small, conceptually simple criticallows critic strategies
(such as the ‘most general preconditions’ strategy meetion §9.3) to be explicitly
declared, rather than hard-coded in the planner.

Critic expressions are defined as critics composed via alsticA critical expres-

sion is eitheratomig containing no criticals, else it sompound Table 9.1 describes

Chapter 9. A Proof Planner with Critics 155

Critical Type Description

id_crit crit Do nothing

orelsecrit | crit — crit — crit Apply first or second
thencrit crit — crit — crit Apply first then second
repeatcrit | crit — crit Iterate at least once
try_crit crit — crit Apply or do nothing

condcrit | (plan— bool) — crit | First if condition, else second

— Crit — crit
subcrit ad — crit — crit Apply to subplan at address
somecrit | (A — crit) — crit Apply for some substitution

Table 9.1: Types and descriptions of criticals. The base types are of critics (crit), meth-

ods (meth, proof plans (plan), plan node addresses (ad) and the boolean type (bool).

the various criticals available in tie&Clamcritics planner, and their types.

Following the definition of methodicals [Richardson and Sn2001], we define
a meta-interpreter for criticals by a set of rules, given iguFe 9.3. The notation
C: P~ Qis taken here to mean critf€ applied toP may returnQ, whereP andQ
are critic inputs and outputs. The rules in Figure 9.3 givendnctive definition of—.
The order of the rules in the figure indicates the order in Wiiey should be applied.
TheAClamcritics planner uses these rules to evaluate critic exjmess

Most of the criticals have analogsA€lams methodical set and are quite straight-
forward. The exceptions amubcrit, which applies a critic to a specified subplan
of the current partial plan, arebmecrit which provides existential quantification for
variables in the given critic. This allows variables tha guantified withilAClams

plan structure to be mentioned in the arguments of critias &ine applied to the plan

Chapter 9. A Proof Planner with Critics 156

idcrt:P—P

Ci:P—Q
orelsecritC1C: P— Q

C:P—Q
orelsecritC1C: P— Q

Ci:P—R G:R—Q
thencritC:C:P—Q

C:P—R repeatcritC:R— Q
repeatcritC:P+— Q

repeatcrtC:P— P

C:P—Q
try critC:P—Q

trycritC:P—P

Ci:P—Q
condcrit (AX.A)C1C2:P—Q

if A[P/x] holds

C:P— Q
condcrit (AX.A)C1Co:P—Q

if =A[P/x] holds

C:Q—Q
subcrit a C: P[Q]q — P[Q]q

Clv/x:P—Q
somecrit (AX.C) : P+— Q

vnotinC

Figure 9.3: Rules for interpreting criticals

Chapter 9. A Proof Planner with Critics 157

/plan_goal Goal Method Plan :- \
construct_root Goal Method Root,
planner [nil] Root Plan.

planner [] Plan Plan.

planner Agenda Plan FinalPlan :-
Agenda = [Address|_],
expand_node Address Plan ExpandedPlan Critic,
apply_critic Critic Agenda ExpandedPlan NewAgenda NewPla n,
planner NewAgenda NewPlan FinalPlan.

- /

Figure 9.4: The main loop of a depth-first proof planner with critics

belowthe variable’s binder, whilst still permitting these a#ito appear in compound

critics which are appliedboveit®.

9.6 A Critics Planner

In this section we provide a more detailed description of ptlidirst planner that
uses the techniques outlined above, in order to more phgsgecify the intended be-
haviour. Figure 9.4 shows the main planning loop of the ptairas a simpléProlog
program. The planner is called vian _goal , which constructs the root node of
the proof plan and initiates the planning loop. The loop Eyylanning stepsin-

til the agenda is empty, viplanner . Each planning step consists of two actions:

expand _node followed byapply _critic

3In fact, we subsequently extendk@lamwith a similarsome_meth methodical as part of building
the Dynamissystem (see the next chapter).

Chapter 9. A Proof Planner with Critics 158

9.6.1 Expand Node

The planner takes the first address on the agenda and findsrtesmonding node of
the partial proof plan. The method expression at this nodgatuated to find the next
atomic method, following the rules in [Richardson and Smadi01]. In our planner
this may return a planning instruction instead. If so, theamder of the method
expression is stored at the current node.

A new plan and critic are computed as follows:

e For a method, the planner attempts to apply the method. tesstul, then the
child nodes are added to this node. The critic is taken t¢chuelren A)

whereA is a list of the new child node addresses.

e Fora(patch_inst M C) , the planner attempts to apply the metibaks above.
But if Mfails, the planner stores the failed preconditions in ttepiode, and
the critic is taken to b€. The failure ofMon backtracking causespand _node

to fail.

e For a(crit_inst C) , the critic is taken to b€.

9.6.2 Apply Critic

The critic fromexpand _node is a critic expression of the forrfechildren A) , indi-
cating a method has already been applied. If the latter ésttran normal depth-first
proof planning continues: the address at the top of the agsnmémoved and replaced
with the new child addressés

Otherwise the critic expression is used to transform thedafpartial proof plan,
using the rules given in Figure 9.3. Note that in this casatenda has not necessarily

been changed by the planning step. Unless the critic ekpliters the top of the

Chapter 9. A Proof Planner with Critics 159

agenda, the next planning step will return to the same nodwwveMer, the method

expression has been changed, so this step will not nedgdsarepeated.

9.7 Developmentin AClam

The critics planner is implemented kClam version 2.0. Although the actual im-
plementation was complicated by other considerations {@gng, alternative search
strategies) its behaviour was essentially the same asilbeddn §9.6.

Subsequent development of th€lam system by a number of other authors has
changed the implementation of the planner, but has nottaefiebe critics functional-
ity. In the next chapter we useClamversion 4.0. The most significant change is the
move to acontext plannerwhich replaces an explickProlog term representation of
the partial proof plan with an implicit representation ysasserted facts.

As a result the critic definitions have no explicit plan infputput slot. Instead of
an input plan slot the preconditions are used to access #éme plhe output plan slot

takes the form of an add/delete node list. The critics arerdsed in Chapter 10.

9.8 Summary

This chapter presented a novel proof planning architediased on proof critics ex-
tended withcriticals and planning instructions The advantages of this architecture

are:

e A critic may be specified as being associated with the faidneultiple meth-
ods or a method in a specific strategic context, usingpehinst planning

instruction.

Chapter 9. A Proof Planner with Critics 160

e A critic need not be tied to a method failure, instead beingked as part of a

strategy’s normal execution, using tbet_methplanning instruction.

e Complex critics and critic strategies can specified in a madahd declarative

manner using criticals.

e By changing the planning agenda a critic can influence thefsearch.

Our definition of critics brings them more into line with metts. TheAClam proof

planner was extended with this critics architecure in otdémplement our strategy.

Chapter 10

The Dynamis System

10.1 Introduction

In order to test the inductive theorem proving strategy deed in this thesis, we
implemented it as a set of methods and critics int8&mproof planner (version 4.0)
[Dennis and Brotherston, 2002]. This chapter describestipéeimentation, which we
have calledynamis

Dynamiss method/critic architecture is based on the three partutawdtructure

described in Chapter 6:

REFINE-CASE A middle-out strategy for constructing a suitable step calas is

implemented in thenostep _case method, described in 810.3.

WELLFOUND -HYPS A strategy for proving there exists a wellfounded relatioder
which each inductive hypothesis is less than its conclusidis is implemented

in thewellfound _strat method, described in 810.4.

EXHAUST-CASES A corrective strategy that shows that the induction caseegf

haustive. This is implemented in tloase _strat _basic andcase _strat _rec

161

Chapter 10. The Dynamis System 162

methods, described in §10.5.

In addition, a fourth strategy is used to discharge bases@stpost-fertilisation goals.
This is implemented in thevaterfal ~ method, described in 810.6. These strategies
can be employed by a small number of top-level methods thattdihe search for a
proof plan of an inductive conjectures, which we describg1i.2.

This chapter gives th&Prolog definitions for alDynamiss compound methods,
the speculation critic and some of the key atomic methodsstMbthe lower-level
atomic methods are omitted, as they are not essential foeratahding the overall
operation of the system. More information about Bymamissystem, including the
omitted methods and explanations of #ferolog predicates used in the method con-

ditions, is given in Appendix C.

10.1.1 What's Not Implemented

Several aspects of our strategy have not been realisedsimiplementation:
e Planning step cases with multiple induction hypotheses Geapter 4).
e Generating induction rules with multiple step cases (se@@h®).
e The side condition critic for the wellfoundedness stratégpe Chapter 6).

Also, the rippling and rewriting methods do not perform caghts. All of these fea-
tures were not implemented due to a lack of time only — we fege¥o difficulties in

principle.

Chapter 10. The Dynamis System 163
10.2 The Top-Level Strategy

The top-level strategy coordinates the search for a complein. It is implemented
via the methodlynamis _main, which can be configured to use a variety of submeth-
ods for certain parts of the prooflynamis _main is defined in terms of the methods
schematic _induction , construct _cases andwellfounded . This section describes
all four methods.

The Dynamis Knowledge Base used to store the following global information

about the planning attempt:

e a list of the types of the leading universal quantified vddabn the original

conjecture;
e alist of the inductive proof’s base and step cases;
¢ the wellfounded relation used to justify the induction;
e a list of constraints on this relation and the correspondingstraint solver.

See the predicate&b _types etc. in Appendix C for details about accessing the knowl-

edge base.

Method: schematic _induction

The schematic _induction method, shown in Figure 10.1, is the key methodiy
namiss strategy. It corresponds to the application of the (asuydhown) induction
rule. The precondition (1) succeeds if the input gBa&l is a sequent with a uni-
versally quantified conclusion. It constructs a schemaép saseStepGoal and the
Dynamisknowledge bas&B. The postconditions (2) and (3) construct respectively a

wellfoundedness godlellGoal for this step case, and a gdgdseGoal stating that

Chapter 10. The Dynamis System 164

method: (schematic_induction KB) \
Goal: Goal

Pre: (schematic_stepcase Goal KB StepGoal) (2)

Post:
(wellfound_goal Goal KB WellGoal, (2
exhaustive_goal Goal KB CaseGoal) (3
SubGoal:
(StepGoal ** (WellGoal ** (CaseGoal
!* ((maybeCases Goal KB) ** (wfGoal KB))))) J

Figure 10.1: schematic _induction s the first atomic method applied by Dynamis,
parameterised by the knowledge base KB. Compare with dynamis _main (Figure 10.3)

to see how each subgoal is planned.

this step case is an exhaustive case andlysi®te thatA\Clam uses** to represent
goal conjunction.

The method also produces a subgadybeCases Goal KB) that will be trans-
formed into any additional proof cases that are found latéine planning attempt, and
a subgoa(wfGoal KB) that represents the satisfiability of the constraints ormtbk:
founded relation used to justify the induction. This lastarkevel goal is distinctive in
that it will not be mapped onto an object-level goal in anyaeten of the proof plan.

It plays a purely meta-levebte in the final stage of planning, when a wellfounded
relation that satisfies the constraints is selected (se2810

If the proof plans were used to produce object-level protbfs,wellfoundedness

This goal will always fail, with the failed proof used to finbet missing cases. See Chapter 5, and
810.5 below.

Chapter 10. The Dynamis System 165

St epCoa

Wl | Goal CaseGoa

¢

maybeCases

e

wf Goall

Figure 10.2: Goal ordering for the schematic _induction method (see Figure 10.1).

of < would have to be shown. This could be done by providing a prefated proof
that any relation defined using a measure function is welifiea. However, no proof
search would be required for this either on the object or festal, so there is no need
to associate this withvfGoal or the method which plans it. It could be associated e.g.
with theschematic _induction method.

The ordering okchematic _induction ’s subgoals is important, and assumes the
use of a depth-first planner, or at least one that respectgaakorder. This is the
result of dependencies between the subgoals that requtesrcbranches to be com-
pleted before others are planned, else the final plan wilteytesent a valid inductive
proof. For example, if theaseGoal is planned before th&tepGoal it will be trivially
discharged, as no meta-variables have been instantiategl wallfounded step case
found by plannindstepGoal will then be considered case exhaustive, and the strategy
will terminate with a only one step case and no base casedatiios of other goal
dependancies cause similar problems.

The order requirements are shown in Figure 1@gnamisusesAClams depth-

Chapter 10. The Dynamis System 166

method: (dynamis _main StepStrat WellStrat CaseStrat BaseStrat) \

(complete_meth
(then_meths (schematic_induction KB)
(pair_meth (then_meth StepStrat BaseStrat)
(pair_meth WellStrat
(pair_meth CaseStrat
(pair_meth (then_meth construct_cases BaseStrat)

K (wellfounded Relation))))))) /

Figure 10.3: dynamis _main is Dynamis’s main top-level method. It is parameterised by

four methods.

first or iterative-deepening planner to ensure this ordéhénmethod definition is re-
spected. A more sophisticated approach could represennfbrmation in a declara-
tive manner, but this cannot be done withi@lanm's planning framework.

The goal order necessary for soundness does not specify\Widli@oal is planned
relative toCaseGoal and maybeCases. As discussed in Chapter 6, it is better to
planWellGoal as soon as possible, in order to avoid wasting time on stegsdast
cannot be shown to be wellfounded. Hend&llGoal is planned immediately after

StepGoal .

Method: dynamis _main

The main top-level method fddynamisis dynamis _main, shown in Figure 10.3. It
first appliesschematic _induction , followed by an appropriate method for each of
the resulting subgoals — compare Figure 10.3 and Figure tbOske the mapping

between goals and methods.

Chapter 10. The Dynamis System

167

Method: dynamis _crit

(dynamis_main (mo_step_case spec_critic_ripple)
wellfound_strat

case_strat

(waterfall dynamis_crit))

g s

Method: dynamis _crit _once

(dynamis_main (mo_step_case spec_critic_ripple)
wellfound_strat

case_strat

(waterfall (ind_strat normal_ind)))

)

Method: (dynamis _lim N)

(dynamis_main (mo_step_case (n_spec_ripples N))
wellfound_strat

case_strat

(waterfall (dynamis_lim N)))

g s

Method: (dynamis _lim _once N)

(dynamis_main (mo_step_case (n_spec_ripples N))
wellfound_strat

case_strat

(waterfall (ind_strat normal_ind)))

)

N N N

Figure 10.4: Some configurations of the the top-level method dynamis _main .

Chapter 10. The Dynamis System 168

In our implementatiordynamis _main is actually a methodical, parameterised by
four methods. Hence it acts as a template for a range of t@beethods. In order,

these parameters are:

e StepStrat , a method for the initial schematic step case, mastepcase (see

§10.3).

e WellStrat , a method for the wellfoundedness proof, emglifound _strat

(see §10.4).
e CaseStrat , amethod for the exhaustive cases proof,@sgp strat (see §10.5).

e BaseStrat , a method used to plan base cases and post-fertilisatigoalge.g.

(waterfall IndStrat) (see §10.6).

Some possible configurations dynamis _main are shown in Figure 10.4. For in-
stance, dynamis _crit uses the speculation critic in the step case, and a rewiting
generalisation-induction waterfall to discharge basesawhere it may be called re-
cursively to plan nested inductions. Contrast this wititlamis _lim _once which uses

a fixed number of speculation steps in the step case, andhgsstahdard Claminduc-
tion methods to plan nested inductions. AllowiDgnamisto use a variety of methods

gives us a straightforward way of comparing various comimna of strategies.

Method: construct _cases

The (maybeCases Goal KB) goal produced bgchematic _induction is passed to
the construct _cases method, shown in Figure 10.5. The latter constructs the ad-
ditional proof cases that the exhaustive cases strategydbatfied as missing and

already added to the knowledge base.

Chapter 10. The Dynamis System 169

method: construct_cases \

Goal: (maybeCases Goal KB)
Pre: true
Post:

(dkb_cases KB [_|Cases],
list to_goal Cases (new_case Goal) NewGoals)

Qubgoal: NewGoals /

Figure 10.5: The construct _cases method generates subgoals NewGoals corre-

sponding to the proof cases Cases that have been added to the knowledge base during

the case synthesis strategy.

The preconditions are trivial, so the method always appliée postconditions re-
trieve the added cas€sses from the knowledge bad€B, ignoring the initial step case
that has already been proven. Each case is mapped onto alngeasiconstructed by
restricting the original godboal to that caseNewGoals is a conjunction of these new

proof cases.

Method: wellfounded

The last step during a successful planning attempt is ahilagsapplication of the
wellfounded method to the final subgoal produced dzpematic _induction . The
wellfounded method is shown in Figure 10.6. It chooses a wellfoundedioslavhich
satisfies the constraints built up during during the proofie preconditions retrieve

the relation, constraints and constraint solver from thekadge base. Applying the

Chapter 10. The Dynamis System 170

method: (wellfounded Relation) \
Goal: (wfGoal KB)

Pre:

(dkb_solver KB Solver,
dkb_relation KB Relation,
dkb_constraints KB Constraints,
Solver Relation Constraints)

Post: true

Qubgoal: trueGoal /

Figure 10.6: The wellfounded method applies a constraint solver to the constraints on

the wellfounded relation and the meta-variable representing this relation, instantiating

the latter.

solver to the other data instantiates the relation.

As mentioned above, this is a purely meta-level step whichlgdvaot have any
underlying object-level proof if the proof plan were examfit However, it does in-
stantiate the meta-variable representing the wellfoumdkdion in the plan, which is

required to give a executable plan.

10.3 The Step Case Strategy

Recall from Figure 10.1 that theghematic _induction method sets up a schematic

step case goal using the precondition

(schematic_stepcase Goal KB StepGoal)

2A general object-level proof of wellfoundedness can bemjiaad need not be associated with this
method.

Chapter 10. The Dynamis System 171

Method: (mo_step_case Ripple)

(then_meth embed_hypothesis
(then_meth Ripple
(then_meth mo_fertilise
(try_meth (repeat_meth redundant)))))

Figure 10.7: The mo.step _case method.

whereGoal is the original universally quantified goal. This instateé&StepGoal to

a caseSchema subgoal where the universal variables are replaced by vaetables.
This is best illustrated by example:Gbal has a single universal quantifier, i.e. it is if
the form:

(seqGoal (H >>> (app forall [T, (abs F)])))
thenStepGoal is of the form

(allGoal T x\ (caseSchema (C x) H
(preRippleHyps (F x) [(F (A x))I) (F (B X))

ThecaseSchema contains a meta-variable condition on the step ¢@sg) , the step
case skeletofF x) , a single induction hypothes{s (A x)) and an step case con-
clusion(F (B x)) . Note that the induction terms in hypothesis and conclusi@n
represented by meta-variablesndB respectively. The types of the induction terms
and a representation of this proof case are entered intonthwelkdge bas&B.

The method works in a similar way for goals with more than oneersal quanti-

fier.

Chapter 10. The Dynamis System 172

Method: mostep _case

The strategy for planning a proof of the schematic step caakig implemented by
the compoundnastep _case method, shown in Figure 10.7. Lildynamis _main, it
is a methodical, taking a rippling method as an argument. rbthod follows the
standard step case proof plan outline: embed the hypotivedes conclusion, ripple,
then fertilise. Redundant universal quantifiers are rem@eest-fertilisation.

Suitable choices for theipple method would b& _spec _ripples , which allows a
fixed number of speculative ripple stepsspec critic _ripple , which uses a critic

to control speculation. Both are described in §10.3.2.

10.3.1 Embeddings

Embeddings irDynamisare implemented in a slightly different way from the starndar
AClam methods. IM\Clam, an embedding is a tree which has the same structure as
the skeleton term syntax tree, and has, at each node, a tehlrasadhat indicates
where this node is mapped to on the target term. Wave froetsnaplicit in this
representation: they correspond to the parts of the taeget syntax tree which are
not referenced by address in the embedding.

Because our strategy involves a lot of explicit computatioth wave fronts, e.g.
neutralisation, we have modified embeddings to explicgfgresent wave fronts with
a constructor. This saves a great deal of effort by avoidiegépeated reconstruction
of this information.

Wave fronts may be of varying thickness in our represemato for example a
wave front of thickness + mwill be equivalent to two wave fronts of thicknessnd
m. Hence, wave fronts may be merged and split. We keep wavésfiommaximally

merged form.

Chapter 10. The Dynamis System 173

method: (n_spec_ripples N) \

(then_meth (cond_meth isSideCond solve_sidecond
(speculative_ripple)
(cond_meth (g\ (N > 1, M is N - 1))
(n_spec_ripples M)

K definite_rippling)) J

Figure 10.8: The n_spec _ripples method.

Explicitly representing wave fronts increases the numib@ossible embeddings,
as wave fronts may now be individually directed. In orderéduce the number of

possible embeddings, we apply the following constraints:
¢ Blocks of wave fronts must all have the same direction.
e Outwards wave fronts may not appear below inwards wavedront

e Variables may only be embedded in or into by terms of the sape. t This
constraint is not enforced in the versionxdlamused, leading to the possibility

of spurious embeddings.

Method: embed_hypothesis

The embed_hypothesis method embeds the step case skeleton into the schema’s in-
duction hypothesis and conclusion. The embeddings and wesghts are stored in

the step case goal. This method is described in greatet ohe§d.2.

10.3.2 Speculative Rippling

Speculative rippling decides the form of the step case btamting the step case

meta-variables. We have two alternative methods for ddirgg & strategy with a fixed

Chapter 10. The Dynamis System 174

method: spec_critic_ripple \

(then_meth (speculative_ripple _)
(repeat_meth
(cond_meth isSideCond solve_sidecond
(some_meth2 rule\ ad\
(patch_meth (definite_ripple rule ad)

\ speculation_critic))))) /

Figure 10.9: The spec _critic _ripple method.

number of speculative steps _gpec _ripples), and a more flexible critic-based strat-
egy Gpec _critic _ripple). They are shown in Figures 10.8 and 10.9 respectively.
Then_spec _ripples method, takes an integer argumérdand applies the atomic
methodspeculative _ripple N times before applyinglefinite _rippling . Side
conditions are passed $olve _sidecond (see §10.3.4).
In contrast, thapec _critic _ripple method appliespeculative _ripple once,

then repeatedly applies definitgple. If this fails, the speculation critic is applied.

Method: speculative _ripple

The speculative _ripple method, shown in Figure 10.10, performs a speculative
ripple step, i.e. one where meta-variables are instandtiads it is such a key atomic

method, we now describe the preconditions in greater detail

1. The goal's meta-variablé&rs are identified.

2. The conclusioi€onc is rewritten toNewCwith a wave ruleRule and side condi-
tion Cond. The rewrite relatiomewrite _unif is used, which allows the meta-

variables inConc to be instantiated.

Chapter 10. The Dynamis System

175

method: (speculative_ripple Rule Ad)
Goal: (caseSchema Case Hs (rippleHyps [IndHyp]) Conc)

Pre:

(IndHyp = (annHyp Hyp Skel EH1),

meta_variables Conc [] ConcVars,

meta_variables Hyp ConcVars Vars,

wave_rule_list Rules,

rewrite_inner (rewr_list Rules rewr_unif) Rule _ Conc NewC
embedding Skel EC1 NewC,

reverse Ad At,

speculative_rule Rule Flag,

cancel_context Flag At Skel NewSkel Hyp EH1 EH2 NewC EC1 EC2,
reembed NewSkel bool Hyp bool EH2 EH3,
not_all_meta vars Vars)

Post:

(tidy_hyp_context EH3 EH4 HW,

tidy_conc_context EC2 outward EC3 Out In,

NewlIndHyp = (annHyp Hyp NewSkel EH4 HW EC3 Out In),
Main = (caseSchema Case Hs (rippleHyps [NewIndHyp]) NewC),
condition_goal Cond Case Hs

(c\ (caseSchema Case Hs sideCond c)) Main SubGoal)

Qubgoal: SubGoal

Figure 10.10: The speculative _ripple method.

Chapter 10. The Dynamis System

176

éritic: speculation_critic
Agenda: (active_agenda [PlanAd|Agenda])

Pre:

(get_goal PlanAd Goal,

not (fertilisable Goal),

Goal = (caseSchema Case Hyps (rippleHyps IndHyps) Conc),
partial_lhs Rule LHS PartLHS Dir,

rewrite_so PartLHS LHS Dir Conc RegConc TermAd,

once (embedding Conc E1 ReqConc))

Post:

(tidy_conc_context E1 inward E2 _ Newiln,

get_continuation PlanAd Continue,

InGoal = (caseSchema Case Hyps (blockedGoal Conc E2 Newln) R
InMeth = (then_meth (ripple_in_and_speculate Ripples) Cu
PatchMeth = (ripple_patch Ripples Rule TermAd Continue))

Add/Delete:

[(add_node [1|PlanAd] (and_node InGoal [1|PlanAd] InMeth
(add_node [2|PlanAd] (and_node Goal [2|PlanAd] PatchMeth

Qew Agenda: (active_agenda [[1|PlanAd]|[[2|PlanAd]|Agenda]])

eqConc),
rrentPlan),

Figure 10.11: The speculation _critic critic.

Chapter 10. The Dynamis System 177

3. The rewrite step is checked to be skeleton preservingdmiedding the skele-

ton Skel into NewC

4. If Rule is classified as non-constructor , thelag is switched on, which indi-

cates neutralisation may instantiate meta-variablétyn

5. Zero or more corresponding wave fronts in hypothesis amdlasion are can-
celled out via neutralisationcgncel _context). New embeddingsgEH3 and
EC2 are found for hypothesis and conclusion, along with an edpd skele-

ton, NewSkel .

6. A check that at least one meta-variabl&ans has been instantiated.

The postconditions simply construct the new subgoal, addimoptional subgoal for

the rewrite side conditioGond if it is trivially true or false.

Critic: speculation _critic

Figure 10.11 shows the critepeculation _critic . Its preconditions first check that
the failed goal is not fertilisable. They then find a pargiatiatching wave rul&ule
that would apply if the conclusioBonc were of the formrReqConc. The postconditions
set up two goals: the firdhGoal which aims to rippleReqConc inwards to match
Conc, via the methodipple _in _and _speculate (see Figure 10.12); the seco@dal
tries to continue the ripple proof with the methagple _patch (see Figure 10.13),

which will apply, in reverse, the ripple steBgpples used to solvénGoal .

10.3.3 Definite Rippling

Figure 10.14 shows thaefinite _rippling method, which implements definite (nor-

mal) rippling, where no meta-variable instantiation tagksce. It repeatedly applies

Chapter 10. The Dynamis System 178

method: (ripple_in_and_speculate RipplePlan) \

(orelse_meth
(speculate_wavefronts Ripples RipplePlan)
(then_meth
(repeat_meth
(some_meth2 rule\ ad\ (forwards_ripple rule ad Ripple)))

k (speculate_wavefronts Ripples RipplePlan))) /

Figure 10.12: The ripple _in _and _speculate method.

Method: (ripple_patch Ripples Rule TermAd Continue)

(then_meth redo_embeddings

(then_meth Ripples

(then_meth (definite_ripple Rule TermAd)
Continue)))

Figure 10.13: The ripple _patch method.

Method: definite_rippling

(repeat_meth
(cond_meth isSideCond solve_sidecond
(orelse_meth meta_ripple
(some_meth2 definite_ripple))))

Figure 10.14: The definite _rippling method.

Chapter 10. The Dynamis System 179

definite _ripple andmeta _ripple . Side conditions are passedstve _sidecond
(see §810.3.4).
Method: definite _ripple

Thedefinite _ripple method peforms a single definite ripple step. This can beith
a wave measure decreasing ripple, or a creational rippte¢hzove hypothesis wave
fronts. In both cases, the conclusion is rewritten with #latronrewr _match , which
does not instantiate metavariables. This method is destiibmore detail in 8C.2,

Method: meta _ripple

Themeta ripple method replaces the conclusion embedding with one thatadiesm
under the wave measure, without rewriting the conclusioge 8C.2 for the method

definition.

10.3.4 Side Conditions

Side conditions are defined as goals of the form
(caseSchema _ _ sideCond)

and are sometimes generated by the atomic ripple methods.cdinpound method
solve _sidecond is used to solve these goals, by repeated application ofttmi@
methodsimplify _sidecond (see Appendix C for both methods). This simplifies or

discharges a side condition goal in one of a the followingsvay

e Discharge a trivially true goal.

¢ Discharge using the step case condition.

Chapter 10. The Dynamis System 180

Method: mo_fertilise

(orelse_meth strong_fertilise
(then_meth (orelse_meth (weak fertilise)
strong_fertilise_prop)
replace_metavariables))

Figure 10.15: The mafertilise method.

Discharge using a hypothesis.

Simplify using propositional rules.

Simplify using symbolic evaluation.

Discharge by assuming it is true. This partially instaegathe meta-variable

part of the step case condition.

No search is allowed over these options to avoid a side donditeing repeatedly
solved during backtracking and causing unnecessary seHratcut methodical had
been available ilnClam it would have been possible to have a more modular imple-
mentation that made use of generic rewriting methods alégtided backtracking,

rather than the extremely special-purpose method used here

10.3.5 Fertilisation

Thema fertilise method, shown in Figure 10.15, applies either a) strondiation
or b) weak fertilisation or strong fertilsation which leave residue goal. The latter is
followed byreplace _metavariables , which transforms the schematic step case goal

into a sequent goal without meta-variables.

Chapter 10. The Dynamis System 181

Method: wellfound_strat

(then_meth (construct_ wf_goals Consts)
(orelse_meth estimation_strat
(some_meth ignore_position)))

Figure 10.16: The wellfound _strat method.

These fertilsiation submethods are reimplementationsaofdgrd inductive meth-
ods, and are described in full in 8C.2. Briefljfong _fertilise unifies the hypothe-
sis and conclusion, whereastr¢ng _fertilise _prop) uses the induction hypothesis
to rewrite an arbitary subproposition of the conclusion al/eertilisation rewrites one

side of an equality or iff with an induction hypothesigeék fertilise).

10.4 The Wellfoundedness Strategy

Theschematic _induction method sets up a wellfoundedness gtvallGoal for the
step case, using the quémgelifound _goal Goal KB WellGoal) , whereGoal is the
original universally quantified goal ariB is the knowledge base. ForGoal of the

form
(seqGoal (Hyps >>> Conc))

the wellfoundedness goal is of the form
(stepReduces Hyps KB)

This is simply a dummy meta-level goal which acts as a platgendor the wellfound-

edness goals, as we do not know the form they should takeaitgil the step case is

Chapter 10. The Dynamis System 182

complete. The case may involve an arbitary number of indadiypotheses.

The actual explicit construction of the reduction goalsatagled until the applica-
tion of thewellfound _strat method, shown in Figure 10.16. This first applies the
construct _wf _goals method, which builds the wellfoundedness goals from inform
tion stored in the knowledge base, i.e. the induction casested so far, the types of
the potential induction positions and the constraints entbllifounded relation.

The predicatevellfound _goals (see Appendix C) is used to turn each induction
case into a set of wellfoundedness goals. For each caseragactoinduction position,

a goal is constructed which states that this position isecedwnder some measure.
Therefore, taken together, the goals for a given case $iatewvteryinduction position
reduces under some measure. This is clearly an unnecgssaoihg requirement,
so we allow some of these goals to be ignonadyided that the constraints on the
wellfounded relation remain satisfiabl@& goal can be ignored if it cannot be planned
usingestimation _strat (see below) — instead thgnore _position method (see
8C.3) is applied to end the plan branch. The method a) addgnam® constraint
to the knowledge base, indicating that the induction pasithust be ignored and b)
checks that constraints remain satisfiable. This prevémsystem ignoring all the

induction positions, and so producing a plan that fails talese the induction.

10.4.1 Estimation

The estimation strategy discharges wellfoundedness ,gaat$ is implemented via
the estimation _strat method, shown in Figure 10.17. It uses four submethods:
begin _estimation ,lower _estimate ,upper _estimate andtrivial _estimate (see
8C.3). These implement Walther’s estimation techniquesreded with upper estima-

tion, in a straightforward manner (see 86.5).

Chapter 10. The Dynamis System 183

method: estimation_strat \

(then_meths (begin_estimation N)
(pair_meth
(then_meth (repeat_meth (orelse_meth lower_estimate
upper_estimate))
trivial_estimate)
(then_meth abstract_metavars

K rewrite))) j

Figure 10.17: The estimation _strat method.

Submethodbegin _estimation converts the initial meta-leveddGoal to two sub-
goals: arestGoal , representating the estimation goal, and a sequent, wtatdsghat
the difference equivalerRiff generated by the estimation proof plan is true. Note
thatbegin _estimation also adds to the knowledge base constraints on the measure
for the corresponding induction position.

Submethodower _estimate andupper _estimate implement the lower and up-
per estimation rules respectively. Finallyyial _estimate terminates trivial esti-
mation plan branches.

These definitions of these submethods are given in 8C.3.

10.5 The Case Synthesis Strategy

The case synthesis strategy described in Chapter 5 is imptechey the compound

methodicakase strat (see Figure 10.18). It relies on the following submethods:

e set _conditions instantiates tarueP any remaining meta-variable part of the

side-conditions of the known step case, i.e. no more carditcan be imposed

Chapter 10. The Dynamis System 184

method: case_strat \

(then_meth set_conditions

(then_meth (case_equiv)

(then_meth (case_induction (tuple_split)

(repeat_meth
(then_meth (some_meth case_equiv)

(orelse_meth trivial_case
(orelse_meth (some_meth missing_case)
(orelse_meth (some_meth exists_casesplit)

K case_indstra)))))))) /

Figure 10.18: The case _strat method.

on the step case.
e thecase _equiv method simplifies the case synthesis goal.
e thetriviall _case method, which identifies trivial plan branches.

e themissing _case method, which identifies failed plan branches, to be patched

by adding the missing case(s).
e an existential casesplit (see 5.4.2) methgidts _casesplit

e thecase _indstrat tries to solve the case synthesis goal with induction or a cas

split.

All these methods are given in §C.4.
Figure 10.19 shows thease _indstrat ~ method, which performs induction and
case splits in the case synthesis strategy. After applym@qduction or case split

with thecase _induction method, the method tries rippling and fertilisation, eitbe

Chapter 10. The Dynamis System 185

method: case_indstrat \

(then_meth (some_meth case_induction)

(then_meth (try_meth (some_meth exists_casesplit))

(then_meth (try_meth (then_meth (repeat_meth (some_meth case_ripple))
(repeat_meth case_fertilisation)))

K remove_case_hyps))) J

Figure 10.19: The case _indstrat method.

which may fail without causing the method to fail. These satirods are defined in
8C.4.

The submethodsase _ripple andcase fertilisation are reimplementations
of standard inductive methods in the context of the casehsgig proof. It should be

possible to use these here instead of special-purpose dsetho

10.6 The Base Case Strategy

For base case and post-fertilisation subgoals, a rewfgtgrgeralisation/induction wa-
terfall is used [Boyer and Moore, 1979]. It is implementedhawaterfall method,
presented in Figure 10.20. The submethods used in this ti@firdan be found in
8C.5.

Rewriting and generalisation are performed byrthweite andgeneralise meth-
ods, whereas the induction method is passedaterfall as a parameter, allowing
a variety of inductive strategies to be used. Note #tlate nf is used to reintroduce

stripped universal quantifiers for generalisation and ation.

Chapter 10. The Dynamis System 186

method: (waterfall IndStrat) \

(then_meth (try_meth rewrite)

(then_meth (normalise all_e_nf)

(then_meth (try_meth (repeat_meth generalise))

(then_meth (cond_meth univ_quantified Induction fail_me th)

(waterfall IndStrat))))) /

Figure 10.20: The waterfall method.

10.7 Summary

In this chapter we detailed the implementation of our inthegbroof strategy as a set
of AClam methods and critics. This makes concrete the theoretiealsidutlined in
previous chapters, and allows us to test these theoriesesasiled in the next two

chapters.

Chapter 11

Experimental Evaluation

11.1 Introduction

In this chapter we report on the evaluation of our inductibategy by experimental
testing of theDynamissystem. The test set was made up of problems that could not be
solved using recursion analysis, either gathered fromspirad by the literature. The
experiments were intended both to test the strategy anda@nitpwith lazy induction
[Protzen, 1995], the previous state-of-the-art in indutselection.

The current implementation of the strategyynamiscan construct only induction
rules with single step cases containing single inductigooktyeses. This limited the
scope of the evaluation to theorems that can be solved wath isduction rules.

The hypotheses under consideration were:

1. The induction strategy works as described, automaficgdherating induction
rules to plan proofs for a range of theorems which recurggplé analysis can-

not solve, or for which it selects a sub-optimal rule.

187

Chapter 11. Experimental Evaluation 188

2. There are theorems the strategy proves using non-destratyle induction that

cannot be proved by destructor-only lazy induction.

3. All theorems proved by Protzen’s lazy induction can als@ioved by the strat-

egy.

Unfortunately, direct comparison with a lazy inductionteys was not possible be-
cause the original implementation of the technique in INKAswot available, and
the published description [Protzen, 1995] was not detagleolugh for a faithful re-
construction. Consequently, evaluation of hypothesis @ lwnited to a comparison
based on the results of four theorems published in [ProtZ@95)].

The rest of the chapter is structured as follows: 811.2 dssethe methodology
adopted for these experiments. In 811.3 we report on thdtseand in 811.4 discuss

to what extent they support the hypotheses presented above.

11.2 Methodology

A collection of 24 theorems was compiled, selected on théskthat they are not
solvable using recursion/ripple analysis given the lemprasided. The set included
eight theorems taken from the literature. These were us@tspsation in designing
the rest of the set. Their unsolvability by using recursipple analysis was checked
by hand. Although this could have been checked automatiealfor example, using
AClam— we have found that, in general, simulation of a techniquédiyd is more
likely to produce a proof than an actual implementation,aoee it is not subject to

the particular idiosyncrasies of the system. It is morevaiéto this experiment that a

Lj.e. induction rules which are destructor style, or neitt@mstructor nor destructor, i.e. they have
term structure in both induction hypothesis and concluéiee §3.2).

Chapter 11. Experimental Evaluation 189

Theorem Statement Source

D1 hal f(s(x) +y) < x+y [Protzen, 1995]

D2 odd(x+y) < —odd(s(y+x)) | [Protzen, 1995]

D3 odd(x+Yy) < odd(y+Xx) Variant D2

D4 sunl,x) = sundl,0) + x Variant T15

D5 last(gsort(smallern,l))) < n | [Protzen, 1995]

Table 11.1: The development theorem set.

recursion/ripple analysis cannot prove a theormeprinciple, rather than in the context
of a single system.

The theorems fall into four main groups:
Arithmetic (D1 to D3, T1 to T8) — Theorems about Peano arithmetic.
Lists (D4, D5, T9 to T14) — Theorems about list length and order.
Folding (T15 to T17) — Higher order theorems about list folding fuons.

Gilbreath Card Trick (T18, T19) — Two theorems about lists over tresl/black
datatype [Huet, 1991].

We use the following naming system: D or T indicates a develaqt or test theorem
(see below). Each of these sets of theorems are numbered(9.gFinally, each the
theorem identifier is followed by a C or a D to indicate whetbenstructor style or
destructor style function definitions were used (e.g. D1C).

Three of the theorems — T14, T18 and T19 — required proofs witltiple step
cases. However, we included them in our evaluation to sBgnfmiscould construct

the initial step case.

Chapter 11. Experimental Evaluation 190

Theorem Statement Source
T1 XXY=YXX Original
withoutU x s(V) = (U xV)+U
T2 hal f(s(x)) < x Original
T3 hal f(n4+s(m)) <n+m Variant D1
T4 half(n+m) <m+n Variant D1
T5 hal f(quot(n,m)) = quot(hal f(n), m) [Protzen, 1995]
T6 everix+y) Aeverfy+2z) — everi{x+z) Original
T7 X# 0 — (odd(x+Yy) < —odd(y+ p(x))) Variant D2
T8 y# 0 — (odd(x+Yy) < —odd(p(y) + X)) Variant D2
T9 rotate(len(l),l <> k) = (k<>1) [Ireland and Bundy, 1996]
T10 half(len(l)) < half(len(l <> m)) Original
T11 len(oddelemd <> m) <len(m<>1) Original
T12 len(evenelem$ <> m)) <len(m<>1) Original
T13 len(evenelem$ <> x::m)) <len(l <>m) Original
T14 permx,y) = permy,X) [Protzen, 1995]
T15 Xoid =X A Xo(yoz) = (Xoy)oz
— foldlefttr(o,x,1) = (xofoldleft tr (o,id, 1)) [Paulson, 1991]
T16 foldleft.tr (o, x,1) = foldleft(o, X, rev(l)) Original
T17 foldright_tr (o, x,1) = foldright(o, x,rev()) Original
T18 shuf flegx,y,z) Aalter(x <> y) Aeverflen(x <>)) [Huet, 1991]
Aheadx) # heady) — paired(z)
T19 shuf flgx,y,z) Aalter(x <>y) Aeverflen(x <>)) [Huet, 1991]
Aheadx) = heady) — paired(tail (z) <> headz) :: nil)

Table 11.2: The test theorem set.

Chapter 11. Experimental Evaluation 191

We divided the collection into a small development set anargelr test set. The
first set was used to improve the performanceDghamisduring its development,
and is shown in Table 11.1. The development set also incladednber of theorems
which could be solved by recursion analysis, e.g. the aagaty and commmutativity
of plus, which we omit here. The system was developed in dalgnprove the per-
formance on all these problems. For the main test phasegthe@apment oDynamis
was halted. The system was then run for the first time on thehesrems, shown
in Table 11.2. This two-phase approach was chosen to aveiddielopment process
‘tuning’ the system to these particular examples.

The Dynamissystem was compiled and run using the Tey&solog version 1.0
(beta 33-MRGJ. All the timings are from representative runs on a Dell Optip
GX240 PC with a 1.8GHz Pentium 4 processor running RedHatd Q.

11.2.1 Configuring Dynamis

In this section we describe hdynamiswas configured for the experiments.

Both development and test theorems were tried with both naectst and destruc-
tor style function definitions, each in separate test runs.elach theorem, the system
was run with a variety of lemma configurations, and, if susfidsa minimal con-
figuration was determined. If unsuccessful, we tried to meitge the lemmas which
enabled the system to make the most progress. For constfdesiructor) style defi-
nitions we used lemmas that gave a constructor (destrustide) induction.

Some argument bounded lemmas (see 86.5.2) and rewriteseldéed to datatypes

were made available to the system. The latter group fellfmtio categories:

2Available from the Mathematical Reasoning Group, Uniwgrsiof Edinburgh,
http://dream.dai.ed.ac.uk/

Chapter 11. Experimental Evaluation 192

Destructor definitions e.g.p(s(X)) = X

Equality axioms e.g.s(X) =s(Y) - X =Y

Inequality axioms e.g.s(X) #0

Exhaustive casesplitse.g.Vn:nat.((n=0) v 3x: nat.(n = s(x)))

Definitions and lemmas may be loaded inBlamas rewriting and/or wave rules.
Each rule was classified by hand as being suitable for genenalting and/or rip-
pling. A rule was classified for use with general rewritingtimaintained the termi-
nation of the rule set. For example, recursive cases ofudstrstyle definitions were
not accepted. A rule was classified as a wave-rule if it coelchbnotated as such,
with the additional constraint that definitional rules fofuenction f had the skele-
ton f(Xy,...,Xn). The order of the rewrite and wave rules was not specifiedtiyxac
although definitions were placed before lemmas and ‘sirhplégs came first.

For constructor style problems the default strategy dyaamis _crit (see 810.2),
which uses the speculation critic. If this failed, we attéaato plan the theorem with

this strategy modified in one of the following ways:

e Use a fixed number of speculative steps instead of the sgexgulaitic. Top-
level methodgdynamis _lim 1) and(dynamis _lim 2) use one and two steps

respectively (see Chapter 10).

¢ Use the standar®iClaminduction methods for nested inductions. This is achieved
using the top-level methodiynamis _crit _once, (dynamis _lim _once 1) and

(dynamis _lim _once 2) (see Chapter 10).

Using these alternative strategies allowed us to diagnosiglgans with the default

strategy — for example, we can test whether the speculatitin was the cause of

Chapter 11. Experimental Evaluation 193

particular failure by rerunning the test with a fixed spetiatastrategy.

For destructor style problems, the stratelggamis _liml was used by default, as
the speculation critic was designed for constructor stytkiction only. If the single
step strategy failed, the double simamis _lim2 was tried — this was also consid-
ered as a default approach, simulating the iterative isereithe bound on the number
of speculation steps.

Overall, there were three ways the configuration could beifieddduring the ex-

periment, if the initial default settings failed:
e Adding and removing lemmas.

e Forcing a lemma to be tried before the definitions, using@yeamisclause

needs _priority/5
e Modifying the default strategy in one of the predetermineysvoutlined above.

In the results below we describe the configurations useddcn éheorem.

11.3 Results

The results of the evaluation are summarised in Table 11a8h Eheorem has results
obtained with constructor and destructor style definiti@ml we indicate this with a
C or D after the theorem name, e.g. theorem T9 is considered two theorems T9C
and TOD.

The full results are shown in Tables 11.4 to 11.6. Table 1i/&sghe results for the
development theorems. Table 11.5 and Table 11.6 show thksésr the constructor
and destructor style test theorems respectively. The lessed in the evaluation are

given in Table 11.7 and Table 11.8.

Chapter 11. Experimental Evaluation 194

Set Style | # Theorems # Planned # With Default
Development Both 10 8 4
Cons. 5 4 3
Dest. 5 4 1
Test Both 38 27 19
Cons. 19 14 9
Dest. 19 13 10
Overall Both 48 35 23
Cons. 24 18 12
Dest. 24 17 11

Table 11.3: Results summary.

Tables 11.4 to 11.6 show whether a plan was found for eachrehecand if so
the time taken, the number of speculative steps and the rairgat of lemmas used.
The constructor style default strategy used the speculatitic, while the destructor
style default was the fixed speculation limit strategy. Etatile also indicates if an
alternative to the default strategy was needed. Alteraativategies involved one or

more of the following variations:

Lemma One lemma (marked *) is considered before definitions duréngiting.
Nest Nested inductions are handled by the standathminduction strategy.

Limit For constructor style examples, a fixed speculation styateg used instead of

the critic.

For destructor style (DS) theorems, additional lemmas wegeired to the ones

shown in the results tables, in the form of constructor si@18) definitions. For exam-

Chapter 11. Experimental Evaluation 195

Theorem| Plan| Time (sec)| Alt. Strategy| Spec.| Lemmas

D1C Yes 4 — 2 L2, L3,L10

D1D Yes 15 — 2 L2,L3,L4,L8,L9,L10
D2C Yes 23 — 2 L2,L3

D2D Yes 22 Nest 2 L2, L3, L4

D3C Yes 4 — 2 L2, L3

D3D Yes 14 Nest 2 L2, L3, L4

D4C Yes 35 Lemma 1 L15a*, L18

D4D Yes 58 Lemma 1 L2, L4, L15b*, L18
D5C No — — — | L21,L22

D5D No — — — | L21,L22

Table 11.4: Development results. 8 of 10 theorems were planned, 4 with the default

strategy. * = lemma considered first by rewriting.

ple, if we define the functions in theorem T4 as DS, the CS versidhe definitions
of hal f and< are still required to ripple out wavefronts ‘generated’ bg tlefinition

of +. We do not include these particular kind of CS lemmas in thented results,
because, in theory, all the ones used here could be aut@ihagenerated from the

DS definitions by replacing type destructors with type carors.

11.4 Analysis

In this section we assess to what extent the test set resyfos or refute our hy-

potheses. Recall that these were:

1. The induction strategy works as described, automaficgherating induction

Chapter 11. Experimental Evaluation 196

Theorem| Plan| Time (sec)| Alt. Strategy| Spec.| Lemmas
T1C No — | — — | L5, L6a* L7a
T2C Yes 1| — 2 L8
T3C Yes 10| — 2 L2, L3, L4
T4C Yes 10| — 2 L2, L3, L4
T5C No — | — — | L2,L3,L11,L13,L14
T6C Yes 55| — 2
T7C Yes 26 | Lemma/Nest 2 L1, L2, L3
T8C Yes 26 | Lemma/Nest 2 L2, L3
T9C Yes 7| — 1 L17
T10C | Yes 7| — 2
T11C | Yes 21| — 2 L16, L19, L23
T12C | Yes 23| — 2 L8, L16, L19, L24
T13C | Yes 30| — 2 L16, L24
T14C No — | — —
T15C | Yes 6 | Lemma 1 L28*
T16C | Yes 4 | Limit 1 L25,L28, L31
T17C | Yes 4 | Limit 1 L25, L27, L31
T18C No — | — —
T19C No — | — —

Table 11.5: Constructor style test results. 14 of 19 theorems were planned, 9 with the

default strategy. * = lemma considered first by rewriting.

Chapter 11. Experimental Evaluation

197

Theorem| Plan| Time (sec)| Alt. Strategy| Spec.| Lemmas
T1D No — | — — | L5, L6b*, L7b
T2D No — | — —
T3D Yes 15| — 2 L2,L3, L4,L9,L10
T4D Yes 16 | — 2 L2, L3, L4, L9, L10
T5D No — | — — | L2,L3,L12,1L13,L14
T6D Yes 159 | — 2
T7D Yes 41 | Nest L2,L3, L4
T8D Yes 40 | Nest 2 L2, L3, L4
T9D Yes 10 | — 1 L17,L32
T10D | Yes 15| — 2
T11D | Yes 114 | — 2 L16, L20, L23
T12D | Yes 113 | — 2 L8, L16, L20, L24
T13D | Yes 143 | — 2 L16, L24
T14D No — | — —
T15D | Yes 4 | Lemma 1 L30*
T16D | Yes S| — 1 L26, L30, L31
T17D | Yes 5| — 1 L26, L29, L31
T18D No — | — —
T19D No — | — —

Table 11.6: Destructor style test results. 13 of 19 theorems were planned, 10 with the

default strategy. * = lemma considered first by rewriting.

Chapter 11. Experimental Evaluation 198

Lemma Statement
L1 x# 0 — p(s(x)) = s(p(x))
L2 X+0=0
L3 X+ s(y) = s(x+Yy)
L4 y# 0—Xx+y=s(x+p(y))
L5 U=XAV=Y—=U+V=X+Y
L6a XX (Y+2) = (XXY)+ (XX 2)
L6b xxy=((x—2)xy)+(yx2)
L7a (X+2) xy=(XxYy)+(yx 2
L7b XXY=(XXx(y—2))+(xx2)
L8 X<y—Xx<s(y)
L9 hal f(x) < x
L10 hal f(s(x)) < x
L11 hal f((n+m)+m) = hal f(n) + m
L12 | (m+m)<n— half(n)=half((n—m)—m)+m
L13 quot(0,y) =y
L14 hal f(quot(s(0))) =0

Table 11.7: Arithmetic lemmas.

Chapter 11. Experimental Evaluation 199

Lemma Statement
L15a sumh::t,x) = sunft,x) +h
L15b | # nil — sunql,x) = suntail (1),x) + head])
L16 (I <>nil) =1
L17 (l<>m)y<>n=1<>(m<>n)
L18 nil # 1 <> x::nil
L19 len(l <> x::m)=s(len(l <> m))
L20 m = nil — len(l <> m) = s(len(l <> tail(m)))
L21 y # 0 — last(oapp(x,y)) = last(y)
L22 biggern(x,smallery,|)) = smaller(bigger(x,1))
L23 len(evenelem:: 1)) <len(l)
L24 len(oddelemé&x:: 1)) < s(len(l))
L25 rev(l <> x::nil) =x::rev(l)
L26 | # nil — rev(l) =last(l) :: rev(chopl))
L27 foldright_tr (f,x,| <>y ::nil) = f(y,foldright_tr(f,x,1))
L28 foldlefttr(f,x,| <>y nil) = f(foldlefttr(f,x,1),y)
L29 | | # nil — foldright tr(f,x,1) = f(last(l),foldlefttr(f,x,chopl)))
L30 | # nil — foldlefttr(f,x,l) = f(foldleft.tr(f,x,chogl)),last(l))
L31 X=UAY=V— Xoy=UoV
L32 headl) :: tail(I) =1

Table 11.8: List and folding lemmas.

Chapter 11. Experimental Evaluation 200

rules to plan proofs for a range of theorems not solved byrsgon analysis.

2. There are theorems the strategy proves using non-de&stioduction that can-

not be proved by destructor-only lazy induction.
3. Theorems proved by lazy induction can also be proved bgttiagegy.

Overall the system planned 27 of the 38 test theorems, bytihbf these were
with the default strategy, i.e. fully automatically. Redhlht the default is different for
constructor and destructor style problems: constructoblpms use the critic-based
strategy.

Evaluating the hypotheses involves assessing the straéesgg on the performance
of its implementation irDynamis Hence we need to examimehy the system failed
completely on 11 theorems, and required human intervewotoa further 8.

We can classify these failures of the default strategiessit categories:

¢ Failure of the wellfoundedness proof (T1C/D).

Failure to generate missing cases (T5C).

Divergent applications of the speculation critic (T7C, T8C).

Lack of case splitting during rewriting (T7D, T8D).

Failure due to runtime errors (T15C/D, T16C, T17C).

The need for multiple step case/hypotheses (T14C/D, T18CIBCID).

Theorems T2D and T5D also failed, for which there is no cleg@tanation other

than the inadequacy of our strategy. We discuss the varategaries of failure below.

Chapter 11. Experimental Evaluation 201

11.4.1 Non-wellfounded step cases

The default strategies successfully constructs the stepfoatheorems T1C and T1D.

If we give the system lemmas L6a and L7a this step case is tisrogtor style:
d(x) F D(x+y)

If instead we use lemmas L6b and L7b we get the destructae:styl
dx—y) F DX

In both cases the step case is not wellfounded; ey be zero. Consequently, the

estimation strategy produces the following unsolvabli&ediince equivalent:

Fy#0

Dynamistries to apply rewriting, and the planning attempt fails.

This problem could be overcome by implementing the side itimmdcritic pro-
posed in 86.5.5, which is not currently part Bynamiss wellfoundedness strategy.
The critic would respond to such unsolved difference edeiva by adding them to
the conditions on the step case. In the case of T1, the crdiddhvhave made the step

case wellfounded, and the theorem would have been plancedssiully.

11.4.2 Failure to generate missing cases

For one theorem (T5C) planning failed at the exhaustive caised, after the follow-

ing a wellfounded step case had been generated:

y#0, ®(xy) F O((X+y)+Y,y)

The case strategy fails to find missing cases to completathestion rule.

Chapter 11. Experimental Evaluation 202

11.4.3 Divergent speculation critiques

Theorems T7C and T8C are the only two examples to expose anessbkf the spec-
ulation critic: repeated applications can sometimes dwerThe theorems are very
similar, and essentially the same problem arises in bothillM&rate this with theo-
rem T7C.

The step case is blocked immediately after the the first dataeeiripple, with the

following conclusion (meta-variables are showrxag etc. for simplicity):

)] #0— odd(sx1y)|)~ -oddy+p(sx)]) (@1)

The speculation critic is applied to unblock the ripple gr@md it succeeds following
the definition ofodd. A wavefront is inserted abov€ +y and rippled inwards to
suggest an instantiation. As a result eitkeor y is instantiated — th&' branch fails,

soy is chosen. The post-critic conclusion ripples to:

T
s¥)| £0— odd(x +y) < ~odd(s(y + p([sx)[)|)

Rippling is blocked once again, and the speculation criticceads again with the
definition of odd, this time on the right-hand side. The critic instantiates teta-

variabley' and the post-critic conclusion ripples to:

so)| £0— odd(sx +y")|) < —oddy’ + p((sx)]))

This goal is of the same form as the original blocked goall(}lland so the ripple
proof continues indefinitely, cycling through these two laggtions of the speculation
critic.

This problem was avoided by prioritising the lemma L3, whithen used for the
initial speculation instead of the definition #f However, the proof still fails, because

of the case split problem described in the next section.

Chapter 11. Experimental Evaluation 203

11.4.4 No case splitting

Dynamissuccessfully constructs wellfounded step cases, and giesdrase cases for
theorems T7D and T8D, and theorems T7C and T8C with priedtiemma L3 (dis-
cussed in the previous section). However, in all these elesniifails to plan the base

cases. The problematic base case goals are all of the form:
X#0— odd(x) < —odd(p(x)) (11.2)

Dynamistries schematic induction. After the initial speculatiygpte, the conclusion

is as follows:

s(s(¥))| £0— odd(X) -odd(p(s(sx))]))

This is blocked, as the wavefronts cannot be rippled pastetme p(...), and weak

fertilisation is blocked because of the implication. Natifigr progress can be made.
Interestingly, the standaxdClaminduction methods can solve this base case. The

key difference is that when a ripple proof fails without figsation, the goal is passed

directly to rewriting. This simplifies our blocked goal to:
odd(X) < —odd(s(x)) (11.3)

This is easily proved by induction.

By allowing induction without fertilisationAClamis essentially performing a case
split on (11.2), suggested by the definitionaafd. Whether this is a sensible strategy
in general is questionable — if the abandoned induction adom simplified by rewrit-
ing, but if induction is applicable again, the strategy dodiverge — but the ability to
apply case splits is clearly useful.

A safer approach in general would be to apply a case splingugwriting, pro-
vided each case can be reduced. For the goal (11.2) we cdiildwsg the definition

of p, and we would end up with the solvable subgoal (11.3).

Chapter 11. Experimental Evaluation 204

Dynamiscan plan the theorems T7 and T8 with a strategy that h€ésmto per-
form nested inductions, taking advantage of the abilityasecsplit that our implemen-

tation lacks.

11.4.5 AProlog errors

Theorems T16C and T17C both fail because of runtime errohe féllowing error
message is given in both cases:

Attempting atomic critic speculation_critic

Access to unmapped memory!
Thome/jeremy/dynamis//bin/dynamis: line 9: 1095 Aborted
$TEYJUS_HOME/tjsim --solve "Iclam." ${1:-dynamis}

This is clearly a memory problem with the underlyingrolog implementation, and
needs to be investigated further. The theorems are planma@ssfully without the
critic, usingdynamis _lim2 .

The plan search for theorem T15 begins with a single speweellatep using the
definition offoldleft.tr. In order to find a proof, the planner needs to backtrack over
this choice, and speculate with the lemma L28/L30 for a constr/destructor style
induction. However, the initial search branch is never cleteo — a runtime memory
error occurs after about 15 minutes of search — and this kaakhever occurs. Itis
not clear whether this search branch was divergent, or ehétwvould have bottomed-
out and allowed the backtrack. A plan is found if the lemma 102830 is given
priority over the definitions.

Clues to what might happen without the runtime error can baddwy looking at

the post-fertilisation goals produced during the seartte first such goal is:

(xoy) ofoldlefttr(o,id,|) = xofoldlefttr(o,idoy,!) (11.4)

Chapter 11. Experimental Evaluation 205

Dynamigperforms a nested induction, again speculating with theiefn of foldleft tr.

The post-fertilisation goal is:

(xoy) ofoldleftr (o, (id 0 2),1)

— xofoldleftr (o, ((id oy) 0 2),1) (11.5)

The proof of this subgoal fails, but identical goals are it repeatedly on back-
tracking — a process which accounts for the majority of theime. Eventually, the

system produces a different post-fertilsation goal forrtbsted induction:

((xoy) ofoldleftr (o, (id 0 2),1)) ow

— (xofoldlefttr (o, ((id oy) 02),1)) ow (11.6)

We conjecture that as the subgoal (11.5) failed, the sul{gdad) will also fail, forcing
the system to backtrack over (11.4), and hence apply thesssfid speculation step.
However, we will need to address the memory error before weestablish if this is

actually what will happen.

11.4.6 Multiple step cases/hypotheses required

Recall that we did not expect a plan to be found for theorems T18 and T19,

as they require multiple induction hypotheses and stepscaleey were included to

see whetheDynamismade as much progress as could be expected under its current
restriction of a single step case/induction hypothesis.

The closesDynamisgets to a proof plan for T14 with constructor style definison

Chapter 11. Experimental Evaluation 206

Is the following goal (with metavariables written as congsafor simplicity):

Y#X XFY,

perm(|deletda,u) | ,v) « perm(v,deletda,u))

1

Flye (x::m)Aperm(,|x:: deletéy, m) i)

— |xe(y:l)Aperm(m,|y:: deletéx,l) T)

HereDynamishas failed to neutralise the context arouteleteon the left side. This

is most likely a deficiency in the design or implementatiortha neutralisation algo-
rithm, and needs to be investigated further. If this had bdbmre, the next stage of
the proof from [Protzen, 1995] involves generating and wieatlising with two new
inductive hypotheses — one on each side of the iff — and comtgto ripple towards
the initial inductive hypothesis. Hen&ynamishas clearly made as much progress as

we can expect with its current single induction hypothessdriction.

11.5 Conclusions of the Evaluation

Having looked at the reasons for the failure of the unassidédault strategy on 19 of
the 38 test theorems (with complete failure for 11), we caess how many of these
failures can be attributed to our induction strategy, anal hmany to problems with its
implementation.

To summarise, the following the shortcomings were foundhwhte implementa-

tion:
1. The proposed side condition critic is not implemented.

2. Case splits are not performed during rewriting.

Chapter 11. Experimental Evaluation 207

3. It can only generate a single step case with a single immtubypothesis.
4. Runtime memory errors occur.
5. Not all wavefronts that could be neutralised are removed.

The first three problems were known about before the evaluawhereas (4) is an
unanticipated problem with Teyjudrolog, and (5) is a deficiency in the implementa-
tion of neutralisation. These shortcomings account forflithe 18 failures.

The remaining 5 failures — T2D, T5C/D, T7C and T8C — can belaitad to
shortcomings of our induction strategy. Two of these exasplave uncovered the
potential for divergent applications of the speculatiaticr

The purpose of the evaluation was to provide evidence forgainst our three
hypotheses. The first was that our induction strategy padrthe task it was designed
to, i.e. prove theorems not solvable with recursion analy$he evidence of the test
theorems supports this.

The second hypothesis was that our strategy proves thedmenmn-destructor in-
duction that destructor-only lazy induction cannot pro€ensidering the constructor
style examples, we have provided a collection of such tmsret should be noted
that many of these could be proved by lazy induction, givex tfanslating the defini-
tions to destructor style could be done automatically. H@xehis would not account
for the theorems T1C, T15C, T16C and T17C, where a lemma (e.g.W&3 used to
generate the constructor style induction. Lazy inductioal@ not find these induc-
tions with the given lemma, but would require a different teag e.g. L29, involving
different functions, e.gchopandlast instead of<>. This was discussed in Chapter
3.

Furthermore, theorem T2 seems to have no satisfactoryudéstistyle induction,

Chapter 11. Experimental Evaluation 208

and we cannot see how lazy induction could solve it, whereasconstructor style
proof was successful. Hence, the evidence of the test timsosepports the second
hypothesis, with the proviso that the lemmas supplied argrafisant factor in the
success of our approach.

Considering the third hypothesis, T5D, T14D, T18D, T19D aeednly theorems
cited as successes for lazy induction over recursion aigaty§Protzen, 1995]. None
were planned bipynamis We have accounted for the failure of all but T5D, but further
evaluation is required to verify whether our suggestiomof@rcoming these failures
actually work. Even so, it would be a very small set of exam@e which to base a
comparison. The third hypothesis — that our strategy istbfrmore successful than
lazy induction — is not supported by the evaluation. Idealseimplementaion of lazy
induction inAClamwould be used for a direct comparison over a larger problenitse
should be noted that for T5D and T14D we could not reconstrant [Protzen, 1995]
how the proofs were automatically found, and so we cannabwatcfor why lazy

induction performs better than our system on these examples

Chapter 12

Case Studies

In this chapter we provide a collection of examples of Bhygamissystem in action,

constructing proof plans for theorems from Chapter 11. Fanity] the system traces
are abridged and interspersed with explanatory commerits.abridgement omits a
large amount of system output, but gives an accurate andb&agresentation of the

system’s search for a proof plan.

We consider three examples which illustrate the techniguéged in this thesis,

and the range of thBynamissystem:

1. T6C (see §12.2), a constructor style problem which regumultiple specula-

tions. Dynamisuses the speculation critic to justify the second specdatiep.

2. T9D (see 812.3), a destructor style problem, for whichirgion analysis chooses
the wrong induction variable, bilynamiscreates the correct one. This also il-
lustrates the use of creational rippling, where the comnatuis rewritten to match

wave fronts in the induction hypothesis.

3. T16C (see 812.4), a constructor style problem which reguan induction with

a non-trivial case structure.

209

Chapter 12. Case Studies 210
12.1 Presenting Dynamis Output

As mentioned above, a number of changes have been made tgsteensoutput to
make it shorter and more readable. This involved removireggelamount oAClam
trace messages (e.g. “Attempting... dynagis’), plan information (e.g. the address
of the current node in plan tree) and some heuristic infoonafe.g. the wave mea-
sure of annotated goals). The layout of goals and formulaeals been tidied up.
Dynamisdisplays embeddings as wave annotation, for exaffiple.//]](+)

For clarity, this has been changed below to the standartingppox-and-hole notation.

Renaming Variables

Another presentational change is the renaming of variasidsneta-variablea.Clam
displays variables asProlog constantsglc-0-1> |, <lc-0-2> etc. We have renamed
these to more recognisable lowercase letterskegetc.

More importantly,AClam displays meta-variables without consistent names — a
shortcoming of Teyjus\Prolog. In other words, two occurrences the same meta-
variable may be displayed differentpynamisimproves slightly on this by naming
consistently within formulae. It displays them as congauoirrounded by curly brack-
ets e.g{<lc-0-1> }. We have renamed meta-variables by hand with a unique name
for each meta-variable. Uppercase letters are usedd,8gtc. If a meta-variablé is
partially instantiated then the meta-variables in itsansiater will be named’ , A”
etc. As a consequence of this, it is not clear below what bga meta-variable is

dependant on — but this is not essential to understandingdbes.

Chapter 12. Case Studies 211

Pretty Printing

There are also differences which should be noted betwedty gmenting in AClam
andDynamis Standard sequent goals (e.g. the root goal) are displaydteloriginal
AClamcode. Other meta-level goals introduced in this thesish stscthe schematic
step case, are displayed using nBynamiscode. Dynamistends to do more pretty
printing, in order to reduce the size of goals. For instaitcéisplays functions like

plusandoappas+ and<> in the examples below.

12.2 Case Study T6C: Speculation

Theorem T6 is stated as follows:
VX, Y, znat. ever{x+y) A every+z) — ever{x+z)

In test T6C, bothevenand + (sometimes displayed gdus) have constructor style
definitions, and no lemmas were provided to the system.

This problem needs multiple speculation steps, as two gepls svith the definition
of plus are required, in order to create the two wave fronts that @anigpled by
the definition ofeven RunningDynamison this example illustrates the use of the
speculation critic, where the second speculation is ap@®a patch to the definite

ripple method.

T6C: Initial Planning

We begin planning T6C withlynamis _crit , the default constructor style method.

Dynamisloads the necessary function and datatype definitions:

This is Lambda-CLAM v4.0.0
Copyright (C) 2002 Mathematical Reasoning Group, Universi ty of Edinburgh

Chapter 12. Case Studies

NOTE: this program uses the MRG patched version of Teyjus 1.0 -b33.

Iclam:
dynamis_plan dynamis_crit evenptrans 1 constructor.

Functions: zero :: s :: plus :: even :: nil

Eval Lemmas: nil
Wave Lemmas: nil

Loading Eval Rules: idty :: s_functional :: neq_s_zero :: ne g_zero_s :
plusl :: plus2 :: evenl :: even2 :: even3 :: nil
Loading Wave Rules: s_functional :: plus2 :: even3 :: nil

Planning:
evenptrans
>>> forall x:nat forall y:nat forall z:nat
((even plus (x, y) A\ even plus (y, z)) -> even plus (X, z))

Expandingdynamis _crit to dynamis _main, schematic _induction

to the top-level goal.

Method application: dynamis_crit

Method application: dynamis_main (mo_step_case spec_cti tic_ripple) wellfound_strat
case_strat (waterfall dynamis_crit)

Method application: ~ schematic_induction ...

212

is then applied

A conjunction of five subgoals is produced: 1) the schemagig sase:

allGoal nat (x\ allGoal nat (y\ allGoal nat (z\

caseSchema

A

(((even (B + C)) N\ (even (C + D)) -> (even (B + D))

>>> (((even (E + F)) A (even (F + G))) -> (even (E + G))))

2) the wellfounded step case goal:

** stepReduces

3) the exhaustive cases goal:
** allGoal tuple_type (nat :: nat :: nat :: nil) (u\
existsGoal (x\ existsGoal (y\ existsGoal (z\
caseGoal

Case: (trueP, u)
>>> (AN (u=EF Q)

4) the unknown cases:

** maybeCases

5) the wellfounded rule goal:

** wiGoal

Chapter 12. Case Studies 213

T6C: Step Case Plan

After splitting the conjunction and moving the goal quangtion into the proof plan,

the step case goal is considered:

caseSchema

A

(((even (B + C)) N\ (even (C + D))) -> (even (B + D))
>>> (((even (E + F)) \ (even (F + G))) -> (even (E + G)))

A single speculative ripple is tried to start the proof offceeeding with the definition
of plus This creates two wave fronts in the conclusion, with thexeft rippled out

by this step:

Method application: mo_step_case spec_critic_ripple

Method application: embed_hypothesis

Method application: ~ spec_critic_ripple

Method application: ~speculative_ripple plus2 (2 = 1 = 2 = 12 2 il)

caseSchema
A
(((even (B + C)) N\ (even (C + D))) -> (even (B + D))

>>> (((even [(s (E+F)]) A (even (F + G) > (even ([(sE)| +G))

The rightmost wave front is now rippled out with the definitiof plus(+):

Method application: patch_meth (definite_ripple plus2 (2 2 2 onil)) speculation_critic

caseSchema
A
(((even (B + C)) N\ (even (C + D)) -> (even (B + D))

>>> (((even (s (E'+F)) ') \ (even (F + G))) -> (even (s (E'+@)) i)

Rippling is blocked, but the failure afefinite _ripple suggests the application of
speculation _critic . The critic identifies missing wave fronts below the leftios
wave front — if inserted into the goal they would allow the dé&fon of evento be

applied. It inserts them, then attempts to ripple them inlwado find a suitable instan-

tiation. This is successful:

Chapter 12. Case Studies 214

Method application: patch_meth (definite_ripple _273629 _273643) speculation_critic
speculation_critic succeeded

caseSchema
A
(((even (B + C)) N\ (even (C + D))) -> (even (B + D))

>>> (((even (s (s (E'+F)) ') A (even (F + G))) -> (even (s (E' + G))))

Method application: ripple_in_and_speculate _
Method application: forwards_ripple plus2 (2 = 2 =1 2 12 :nil)
(definite_ripple plus2 (2 =2 =1 212 i))

caseSchema
A
(((even (B + C)) N\ (even (C + D))) -> (even (B + D))

>>> (((even (s (| (s E) K F)) A (even (F + G)) > (even (s (E' + G)))

Method application: speculate_wavefronts (definite_rip pleplus2 2 ::2 12122 xnil):)
(definite_ripple plus2 (2 :: 2 =1 2 12 nil)

trueGoal!

Branch closed!

The speculation critic has found an instantiation and eggatch that allows the defi-

nition of evento apply. It now applies this patch and teeenripple:

Method application: ripple_patch (definite_ripple plus2 =212 1:2::ni)
even3 (1 =2 =122l _
Method application: redo_embeddings

Method application: definite_ripple plus2 (2 :: 2 = 1 2 12 :nil)
Method application: ~definite_ripple even3 (1 = 2 = 1 2 nil)
caseSchema

A

(((even (B + C)) N\ (even (C + D))) -> (even (B + D))

>>> (((even (E + F) N (even (F + G))) > (even s [cen] +ap|)

A side effect of the speculation critic’s patch was to createther wave front on the

right-hand side, which is now rippled out in two steps:

Method application: patch_meth (definite_ripple plus2 (2 2 2 2 :onil)) speculation_critic

caseSchema
A
(((even (B + C)) N\ (even (C + D)) -> (even (B + D))

>>> (((even (E" + F)) A (even (F + G))) -> (even (s| (s(E"+@)) i D))

Chapter 12. Case Studies 215

Method application: patch_meth (definite_ripple even3 (2 2 nil)) speculation_critic

caseSchema

A

(((even (B + C)) N\ (even (C + D))) -> (even (B + D))

>>> (((even (E” + F)) A (even (F + G))) -> (even (E" + G)))

Strong fertilisation completes the step case plan:

Method application: mo_fertilise
Method application: strong_fertilise

trueGoal!
Branch closed!

T6C: Wellfounded Step Case Plan

The planner returns to the four remaining goals:

stepReduces

*%
allGoal tuple_type (nat :: nat :: nat :: nil) (u\
existsGoal (x\ existsGoal (y\ existsGoal (z\
caseGoal
Case: (trueP, u)
>>>

(AN(u=(s(sEY)FEM

*%

maybeCases

*k

wfGoal

The next to be planned is the wellfounded step case goalngaetermined the form
of the step case above, thenstruct _wf _goals method is now applied to explicitly

construct its wellfoundedness goal, using the unknownfaugtided relatiorH:

stepReduces
Method application: ~ wellfound_strat
Method application: construct_wf_goals (const_disj (mea sure 3 _ : measure 2 _ : measure 1 _ :onil))

allGoal nat (x\ allGoal nat (y\ allGoal nat (z\
redGoal 1
>>> A > H (E", (s (s E")

redGoal 2

>> A > H (F, F)
redGoal 3

>>> A -> H (G, G))

Chapter 12. Case Studies 216

This three-part conjunction actually represents a digjancin that only one of the
three induction positionseedsto be proved to show the step case is wellfounded.
However, in order to build up constraints on all the inducgimsitions a proof of each
subgoal is attempted, with failed subgoals being ‘provedttee ignore _position
method.

Considering the first goal, the estimation strategy is afpli€his produces two
subgoals: the first states that some unknown differencevalguit! holds iff this in-
duction position reduces under an unknown measutee second states that difference

equivalent holds:

redGoal 1
>>> A > H (E", (s (s E")

Method application: estimation_strat
Method application: begin_estimation 1

estGoal
| <> JEM < J(s (s EM))

*%

>>> (trueP -> 1)

The plan of both subgoals is straightforward, instant@thre measure function to the

identity:

estGoal
<> JE") < I(s (s E)

Method application: lower_estimate

estGoal
I' <-> id(E") < id((s E™)

Method application: lower_estimate

estGoal
I" <-> id(E™) < id(E")

Method application: trivial_estimate

trueGoal!
Branch closed!

>>> (trueP -> (trueP V (trueP V falseP)))
Method application: rewrite_equiv nil

trueGoal!
Branch closed!

Chapter 12. Case Studies 217

The other two wellfoundedness goals are unsolvable, bugytseem can ignore them

both as the first goal has been planned:

redGoal 2
>>> A > H (F, F)
redGoal 3
>>> A -> H (G, G)

Method application: ignore_position 2

trueGoal!
Branch closed!

Method application: ignore_position 3

trueGoal!
Branch closed!

This completes the step case wellfoundedness plan.

T6C: Exhaustive Cases Plan

Returning to the three remaining subgoals, the next goal pddmned is the exhaustive

cases goal:

allGoal tuple_type (nat :: nat :: nat :: nil) (u\
existsGoal (x\ existsGoal (y\ existsGoal (z\
caseGoal

Case: (trueP, u)

>>> (AN (u=(s(sE)FGN

*k

maybeCases

*k

wfGoal

Method application: case_strat
Method application: set_conditions

caseGoal
Case: (trueP, u)
>>> (trueP \ (u = (s (s E") F G))

First the redundaritueP is removed and the universal variable is split, in order to

separate the three elements of the tuple:

Method application: case_equiv (and3 :: nil)
Method application: case_induction (tuple_split 3)
Method application: case_equiv (tuple_eq_rec :: tuple_eq _rec :: tuple_eq_base :: nil)

caseGoal
Case: (trueP, pqgr)
>>(p=66ENAN(@=FAN({F=0)

Chapter 12. Case Studies 218

The case strategy goes through a waterfall of methods, @agntrying structural

induction:

Method application: case_induction nat_struct

caseGoal

Case: (trueP, zero qr)

>>> ((zero = (s (s E") A ((@ = F) A (r = G))
allGoal nat (W

caseGoal

Case: (trueP, (sv)qr
(v=(@EEMN(@=FN({F=0)

>>> (| (s v) [- EEEMA@=RAr=09))

The base cadgrueP, zero q 1) } is reduced tdalseP , and included as a missing

case:

caseGoal
Case: (trueP, zero qr)
>>> ((zero = (s (s E)) A (@ =F) A(r=G))

Method application: remove_case_hyps
Method application: case_equiv (neq_zero_s :: andl : nil)

caseGoal
Case: (trueP, zero qr)
>>> falseP
Method application: missing_case (case_abs nat (x\ case_a bs nat (y\
case trueP (_ x y) (tuple (zero :y = x = nil))
trueGoal!

Branch closed!

The step case is simplified so that one of the two construigeesnoved. Induction is

applied again to remove the remaining constructor:

Method application: remove_case_hyps
Method application: case_equiv (s_functional :: nil)

caseGoal
Case: (trueP, (sv)qr
>>((v=(E)N(@=FAN({T=Q)

Method application: case_induction nat_struct

caseGoal
Case: (trueP, (s zero) q r)
>>> ((zero = (s E)) A (@@ = F) A (r = G))

*k

allGoal nat (w\

Chapter 12. Case Studies 219

caseGoal
Case: (trueP, (s (sw) qr
(wW=@6E)AN(@=FN({F=0))

>>> (| (s w) e EENA(@=FRA(r=0))

Again the base case is false, and this time the (tas®, (s zero) q 1) is added

as a missing case:

caseGoal
Case: (trueP, (s zero) q)
>>> ((zero = (s E) A (@ = F) A (r = G))

Method application: remove_case_hyps
Method application: case_equiv (neq_zero_s :: andl : nil)

caseGoal
Case: (trueP, (s zero) q r)
>>> falseP

Method application:
missing_case (case_abs nat (x\ case_abs nat (y\ case trueP (_ XY) (tuple (app s zero :y : x : nil)))

trueGoal!
Branch closed!

The step case is trivial:

caseGoal

Case: (trueP, (s (s w)) p 1)

(w=(s E /\T (P=FA@F=0)

>> ([ew] =EENVAE =P A= 0)

trueGoal!
Branch closed!

T6C: Base Case Plans

Dynamisnow explicitly constructs the missing cases identified @&ov

maybeCases ** wfGoal
maybeCases
Method application: ~ construct_cases

allGoal nat (y\ allGoal nat (x\
>>> ((even plus (0, x) A\ even plus (x, y)) -> even plus (0, y))))
*%
allGoal nat (y\ allGoal nat (x\
>>> ((even plus (s 0, x) A even plus (x, y)) -> even plus (s O, y))

Chapter 12. Case Studies 220

The first base case is simplified by rewriting, then solved hgsted induction, which
we omit here:

Method application: waterfall dynamis_crit

Method application: rewrite

Method application: normalise all_i_nf

Method application: rewrite_equiv (plusl :: plusl :: nil)

>>> ((even x N even plus (x, y)) -> even y)

Method application: normalise all_e_nf

Method application: dynamis_crit

Method application: dynamis_main (mo_step_case spec_cti tic_ripple) wellfound_strat
case_strat (waterfall dynamis_crit)

Branch closed!

The second base case is planned in a similar way:

allGoal nat (y\ allGoal nat (x\
>>> ((even plus (s 0, x) A\ even plus (x, y)) -> even plus (s 0, y))

Method application: ~waterfall dynamis_crit

Method application: rewrite

Method application: normalise all_i_nf

Method application: rewrite_equiv (plus2 :: plusl :: plus2 2 plusl o nil)

>>> ((even s x N\ even plus (x, y)) -> even s y)

Method application: normalise all_e_nf

Method application: dynamis_crit

Method application: dynamis_main (mo_step_case spec_cti tic_ripple) wellfound_strat
case_strat (waterfall dynamis_crit)

(-]

Branch closed!

T6C: Final Plan

As a final step, the system plans the meta-level gd@bal that represents the well-
foundedness of the rule. Thellfounded method solves the constraints on the rule’s

relation, and instantiates it accordingly:

wfGoal
Method application: ~ wellfounded (app select_induce (tupl e (app s zero = id : nil))

trueGoal!
Branch closed!

reached empty agenda
Plan Succeeded

Chapter 12. Case Studies 221

schematic _induction

embed_hypothesis* and

|
speculative _ripple
plus2
definit L |
efinite _ripple Wi _goal
olus? construct _wf _goals ()
|
definite _ripple
(failed)*

begin _estimation 1 ignore _position 2* ignore _position 3*

forwards ~_ripple redo _embeddings*
plus2* |

| definite _ripple lower _estimate abstract _metavars
speculate _wavefronts* plus2 | |
o lower _estimate normalise
definite _ripple | all i .nf
even3d trivial _estimate

|
o rewrite _equiv
definite _ripple

plus2
|
definite _ripple
even3

|
strong fertilise

(1)

and

set _conditions* and
|
case _equiv
case _induction construct _cases* wellfounded*
(tuple _split 3)
|
case -equiv normalise normalise
o all i nf all i nf
case _induction | |
nat _struct rewrite _equiv rewrite _equiv
| |
normalise normalise
all _enf all _e_nf
remove _case _hyps* remove _case _hyps* é é
| | (2) 3)
case _equiv case _equiv
| |
missing _case case _induction
(case trueP (0, vy, 2)) nat _struct
remove _case _hyps* remove _case _hyps*
| |
case _equiv case _equiv
| |
missing _case trivial ~ _case

(case trueP (s 0, y, 2))

Figure 12.1: Proof plan for T6C. (2) and (3) indicate the nested inductions for the sub-
goals ever{x) A ever{x+y) — everty) and ever{s(x)) Aeverix+y) — everis(y)). We

omit these subplans. * indicates a purely meta-level plan step.

Chapter 12. Case Studies 222

The proof plan for T6C is shown in Figure 12.1, with the subpléor the two nested
inductions omitted. The plan has 129 nodes, including tlsofplans.Dynamiscre-

ated and validated the following induction rule:

F ®(0,y,2)
F @(s(0),y,2)

D(x,y,2) F P(s(s(x)).,2)
Vx:nat.vy:nat.vVznat.®(x,y, z)

12.3 Case Study T9D: Destructor Style

In this section we give an example Blynamisplanning a destructor style problem.

Theorem T9 is stated as follows:
VI, molist(nat). rotate(olengthl),l <>m)=m<>|

For test T9D the functionsotate olengthand <> (sometimes displapapp have

destructor style definitions. The following lemmas werevmted:

(X<>y)<>z = x<>(y<>2 (L17)
headl) ::tail(l) = | (L32)
rotate(s(n),h::t) = rotate(n,t <> (h::nil))
(hit)y<>1 = hu(t<>I)
The last two lemmas are constructor style definitions reguior the destructor style

proof.

T9D: Inital Planning

When planning is initiatedDynamisfirst identifies the defining functions and lem-

mas pertaining to the theorem, then loads the appropriatdaslyc evaluation and

Chapter 12. Case Studies 223

wave rules into thaClamdatabase. It then begins planning with the top-level method

dynamis _lim1 , the default method for destructor style problems.

This is Lambda-CLAM v4.0.0

Copyright (C) 2002 Mathematical Reasoning Group, Universi ty of Edinburgh
NOTE: this program uses the MRG patched version of Teyjus 1.0 -b33.
Iclam:

dynamis_plan dynamis_lim1 gen_rotlen 1 destructor.
Functions: onil :: ocons :: tail :: zero :: head :: oapp s i 0 length :: p :: rotate :: nil

Eval Lemmas: def rotate 3 :: oapp2 :: ass_app :: consl : nil
Wave Lemmas: def rotate 3 :: oapp2 :: ass_app :: consl : nil

Loading Eval Rules: idty :: cons_functional :: neg_nil_con s i neg_cons_nil :: taill :: tail2 :
headl :: head2 :: oappl : s_functional :: neg_s_zero :: neq_ zero_s : olengthl :: pl :: p2 :
def rotate 1 :: def rotate 2 :: def rotate 3 :: oapp2 :: ass_app : : consl :: nil

Loading Wave Rules: cons_functional :: tail2 :: head2 : oap p3 :: s_functional :: olength3 ::
p2 :: def rotate 4 :: def rotate 3 :: oapp2 :: ass_app :: consl : nil

Planning:

gen_rotlen

>>> forall l:olist nat forall m:olist nat (rotate (olength | , oapp (I, m)) = oapp (m, 1))

Dynamisexpands the definition afynamis _lim1 , which givesdynamis _main param-
eterised by four methods. This in turn is expanded, soh@matic _induction is

applied to give a conjunction of five goals.

Method application: ~dynamis_lim1

Method application: dynamis_main (mo_step_case (n_spec_ ripples 1)) wellfound_strat
case_strat (waterfall (dynamis_lim 1))

Method application: schematic_induction ...

allGoal olist nat (\ allGoal olist nat (m\
caseSchema

A

((rotate (olength B) (B <> C)) = (C <> B))
>>>

((rotate (olength D) (D <> E)) = (E <> D))))

*k

stepReduces

allGoal tuple_type (olist nat :: olist nat :: nil) (u\
existsGoal (\ existsGoal (m\

caseGoal

Case: (trueP, u)

>>> (AN (u= DE))

*%

maybeCases
*%

wfGoal

Chapter 12. Case Studies 224

T9D: Step Case Plan

After splitting the goal conjunction and moving the goal gtifgcation into the plan,

the first goal is the schematic step case:

caseSchema

A

((rotate (olength B) (B <> C)) = (C <> B))
>>> ((rotate (olength D) (D <> E)) = (E <> D))

Planning the step case proceeds by embedding the indugtpmittesis into the con-
clusion, and applying a single speculative ripple step withdefinition ofolength—

only one such step is allowed by the step case method usedliesestep instantiates
the induction hypothesis, creating three wavefronts is tiyipothesis, one of which is
neutralised immediately. The step produces two subgdasfinst of which is a side

condition.

Method application: mo_step_case (n_spec_ripples 1)

Method application: embed_hypothesis

Method application: n_spec_ripples 1

Method application: speculative_ripple olength3 (1 :: 2 :: 12 il

sideCond

A

>>> (neg (D = onil))
*%

caseSchema

A

((rotate (olength (tail B') ((tail B')| <> C)) = (C <> |(tail B)|))

>>> ((otate | (s (olength (tail D))) ‘T D < E) = (E <> D))

Dynamisfirst plans the side condition by applying teieplify _sidecond method.
To discharge it the method assumes it as a condition on tpecate, by instantiating

Ato((neg (D = onil)) A A)
sideCond

A

>>> (neg (D = onil))

Method application: simplify_sidecond assume_cond

trueGoal!
Branch closed!

Chapter 12. Case Studies 225

Returning to the main step case goal, three ripple steps afiedpFirst, a creational
ripple with the definition ofoapp (<>) which neutralises one of the two remaining

hypothesis wavefronts:

Method application: definite_rippling
Method application: definite_ripple oapp3 (2 = 2 @1 1 = 2 = nil)

caseSchema
((neg (D = onil)) A A)

((rotate (olength (tail B")) ((tail B') <> C)) = (C <> (tail B') |))

>>> ((rotate | (s (olength (tail D))) ‘T (ocons (head D) ((tail D) <> E)) ‘T) = (E <> D))

Next a ripple with the definition ofotate
Method application: definite_ripple (def rotate 3) (1 == 2 : 2 nil)

caseSchema
((neg (D = onil)) N A"

((rotate (olength (tail B")) ((tail B') <> C)) = (C <> (tail B') |))

>>> ((rotate (olength (tail D)) (((tail D) <>E) <> (ocons (head D) onil)) ‘T) = (E <> D))

And finally an inwards ripple with the associativity oapp(<>):
Method application: ~ definite_ripple ass_app (2 =1 2 =1 1 2 :2onil)

caseSchema
((neg (D = onil)) N A)

((rotate (olength (tail B")) ((tail B') <> C)) = (C <> (tail B') |))

>>> ((rotate (olength (tail D)) ((tail D) <> ’(g<> (ocons (head D) onil)) ‘L) = (E <> D))

Rippling is now blocked, and weak fertilisation is applied:
Method application: mo_fertilise

Method application: weak_fertilise 0

caseSchema

((neg (D = onil)) N A"

>>> (((E <> (ocons (head D) onil)) <> (tail D)) = (E <> D))

Method application: replace_metavariables

>>> forall a:olist nat forall b:olist nat
(oapp (oapp (a, ocons (head b, onil), tail b) = oapp (a, b))

Chapter 12. Case Studies 226

Rewriting with the associativity obappand function and datatype definitions com-

pletes the step case plan:

Method application: waterfall (dynamis_lim 1)
Method application: rewrite
Method application: normalise all_i_nf

>>> (oapp (oapp (a, ocons (head b, onil)), tail b) = oapp (a, b))
Method application: rewrite_equiv (ass_app :: oapp2 :: oap pl :: consl :: idty :: nil)
trueGoal!

Branch closed!

T9D: Wellfounded Step Case Plan

Dynamisnow returns to the four remaining induction subgoals. Notiat the exhaus-
tive cases subgoal has become instantiated with the condjtieg (D = onil))

N A) by the step case planning.

stepReduces

allGoal tuple_type (olist nat :: olist nat :: nil) (u\
existsGoal (x\ existsGoal (y\

caseGoal

Case: (trueP, u)

>>> (((neg (D = onil)) A A) A (u= D E)))

*%

maybeCases
*%

wfGoal

After splitting the goal conjunction, the system tries tarpthe wellfoundedness goal.
Theconstruct _wf _goals transforms the dummy meta-level gas#dpReduces into
the wellfoundedness goals for the step case that has justfbeed. There are two

such subgoals — one for each universal variable in the @igionjecture:

stepReduces

Method application: ~ wellfound_strat
Method application: construct_wf_goals (const_disj (mea sure 2 _ :measure 1 _ :onil) ;)

allGoal olist nat (x\ allGoal olist nat (y\
redGoal 1
>>> ((neg (D = onil)) A A) -> F ((tail D), D)
*%
redGoal 2
>>> ((neg (D = onil)) N A’) -> F ((E <> (ocons (head D) onil)), E)

Chapter 12. Case Studies 227

Selecting the first wellfoundedness gdaynamisapplies the estimation strategy. Ini-
tially, this gives a conjunction of subgoals: an estimatioal which states that some
unknown difference equivale@holds iff the induction terms reduce under some un-
known measureél; and a goal that states the step case conditions imply tfiéeetice

equivalent.
redGoal 1
>>>

((neg (D = onil)) A A) -> F ((tail D), D)

Method application: estimation_strat
Method application: begin_estimation 1

estGoal
G <-> H((tail D)) < H(D)

*%

>>> ((" (D = onil) N\ trueP) -> G)

This goal is planned by estimating the list destru¢ddr , which instantiates the mea-

sure toolength

estGoal
G <-> H((taill D)) < H(D)

Method application: upper_estimate

estGoal
G’ <-> olength(D) < olength(D)

Method application: trivial_estimate

trueGoal!
Branch closed!

Moving on to the next subgoal, we see the difference equivdlas been instantiated
by the estimation planning. Replacing the meta-variabléis wniversal constants, the

goal is passed tewrite , which discharges it with a tautology checker:
>>> ((" (D = onil) A trueP) -> (" (D = onil) V falseP))

Method application: abstract_metavars

>>> ((" (z = onil) A trueP) -> (" (z = onil) V falseP))

Method application: rewrite

Method application: normalise all_i_nf

Method application: rewrite_equiv nil

trueGoal!
Branch closed!

Chapter 12. Case Studies 228

The step case’s second wellfoundedness goal arises fromdaition position that

was used to sink a wavefront. As befoBgnamisapplies the estimation strategy:

redGoal 2
>>> ((neg (D = onil)) A A) -> F (E <> (ocons (head D) onil), E)

Method application: estimation_strat
Method application: begin_estimation 2

estGoal
| <-> J((E <> (ocons (head D) onil))) < J(E)

*k

>>> ((" (D = onil) A\ trueP) -> 1)

The estimation plan fails, agons cannot be upper estimated using any measure func-
tion. On backtracking thignore _position method is applied instead, completing the

step case wellfoundedness plan:

estGoal
| <> J((E <> (ocons (head D) onil))) < J(E)

Method application: ignore_position 2

trueGoal!
Branch closed!

T9D: Exhaustive Cases Plan

The system now considers the two remaining subgoals frorarigaal five goal con-
junction:

allGoal tuple_type (olist nat :: olist nat :: nil) (u\
existsGoal (x\ existsGoal (y\

caseGoal

Case: (trueP, u)

>>> (((neg (D = onil)) A A) A (u = D E)))

*k

maybeCases

*k

wfGoal

Splitting the conjunction, the first goal is the exhaustigses goal. The case strategy
is applied. Theset _conditions method instantiate&’ , the remaining meta-variable

part of the step case condition,ttoeP

Chapter 12. Case Studies 229

allGoal tuple_type (olist nat :: olist nat :: nil) (u\
existsGoal (x\ existsGoal (y\

caseGoal

Case: (trueP, u)

>>> (((neg (D = onil)) A A) A (u= D E)))

Method application: case_strat
Method application: set_conditions

caseGoal

Case: (trueP, u)
>>> (((neg (D = onil)) A trueP) A (u = D E))

After removing the redundaritueP ,(case _induction (tuple _split 2)) is ap-
plied to the universal variable This ‘induction’ is actually a case split which allows

the tuple to be broken up into individual terms:

Method application: case_equiv (and4 :: nil)

Method application: case_induction (tuple_split 2)

Method application: case_equiv (tuple_eq_rec :: tuple_eq _base :: nil)
caseGoal

Case: (trueP, p q)
>>> ((neg (D = onil)) A ((p = D) A\ (q = E))

The system goes through thase strat waterfall of methods, eventually succeed-
ing with exists _casesplit . This constructs a disjunct for each of the two possible

instantiations of the meta-varialile Simplification then removes the first disjunct:

Method application: exists_casesplit list_struct
caseGoal
Case: (trueP, p q)
>>> (((neg (onil = onil)) A ((p = onil) A (@ = E)))
V
((neg ((ocons K L) = onil)) A ((p = (ocons K L)) A (g = E))))
Method application: case_equiv (idty :: negl :: andl : or3 : : neg_cons_nil :: neg2 :: and3 :: nil)
caseGoal

Case: (trueP, p q)
>>> ((p = (ocons K L)) A (q = E)

The system goes through the method waterfall again, this simcceeding with struc-

tural induction orp:

Method application: case_induction list_struct

caseGoal
Case: (trueP, onil q)

Chapter 12. Case Studies 230

>>> ((onil = (ocons K L)) A (g = E))

*%

allGoal nat (W allGoal olist nat (w\
caseGoal

Case: (trueP, (ocons v w) q)

((w = (ocons K L)) A (q = E))

>>> ((| (ocons v w)| = (ocons K L)) A (q = E))))

In the base case, rewriting reduces the conclusiofal$eP . The missing _case
method adds thé&ase trueP _ (tuple [onil,])) to the list of missing cases,

completing the plan branch:

caseGoal
Case: (trueP, onil q)
>>> ((onil = (ocons K L)) A (g = E))

Method application: remove_case_hyps
Method application: case_equiv (neg_nil_cons :: andl :: ni)}

caseGoal
Case: (trueP, onil q)
>>> falseP

Method application: missing_case (case_abs (olist nat) (w 1\ case trueP (_ wl) (tuple (onil :: wl :: nil))))

trueGoal!
Branch closed!

Rippling fails in the step case, but simplification complétesplan branch:

allGoal nat (W allGoal olist nat (w\
caseGoal
Case: (trueP, (ocons v w) q)

((w = (ocons K L)) A (g = E)
>>> ((= (ocons K L)) A (q = E))

Method application: remove_case_hyps

Method application: case_equiv (cons_functional :: solve _eq : nil)
caseGoal

Case: (trueP, (ocons v w) q)

>>> trueP

Method application: trivial_case

trueGoal!
Branch closed!

Chapter 12. Case Studies 231

T9D: Base Case Plan

There are now only two subgoals remaining: the first reptesgthe missing cases of
the induction, and the second that the rule is wellfoundedtte first goal, the missing

base case determined by the exhaustive cases plan aboydidcglg>constructed:
maybeCases ** wfGoal

maybeCases

Method application: construct_cases

allGoal olist nat (I\
>>> (rotate (olength onil, oapp (onil, 1)) = oapp (I, onil)))

The goal is passed to the rewriting/generalisation/indacwaterfall, where it is sim-

plified by rewriting:

Method application: ~waterfall (dynamis_lim 1)

Method application: rewrite

Method application: normalise all_i_nf

Method application: rewrite_equiv (olengthl :: def rotate 1 :: oappl : nil)

>>> (I = oapp (I, onil))

The waterfall now applies a nested induction usingdgmamis _lim method. We omit

the induction here, but it succeeds in completing the base jgian:
Method application: normalise all_e_nf
>>> forall l:olist nat (I = oapp (I, onil))

Method application: dynamis_lim 1
Method application: dynamis_main (mo_step_case (n_spec_ ripples 1)) wellfound_strat
case_strat (waterfall (dynamis_lim 1))

(-]

Branch closed!

T9D: Final Plan

The last remaining goal represents the wellfoundednesiseoémtire induction rule.
Thewellfounded method discharges this by solving the wellfoundednesst@nts
built up during planning. This instantiates the wellfouddelation to one induced by

measuring the first induction term loyength The proof plan for T9D is complete:

Chapter 12. Case Studies

232

schematic _induction

embed_hypothesis*

|
speculative _ripple olength3

simplify _sidecond definite _ripple
assume _cond oapp3

|
definite _ripple
(def rotate 3)

|
definite _ripple
ass _app

|
weak fertilise 0
|
replace _metavariables*

normalise
all i nf

rewrite _equiv

set _conditions*
|

case _equiv

case _induction
(tuple _split 2)
|

case _equiv

exists _casesplit
list _struct
[

case _equiv

case _induction
list _struct

remove _case _hyps*

case _equiv

missing _case trivial
(case trueP (onil, m))

case _equiv

and
construct _wf _goals (D)

begin _estimation 1
|
upper _estimate
|

trivial _estimate

abstract _metavars*

normalise
all _i _nf
|

rewrite _equiv

ignore _position 2*

(1) and

and

construct _cases* wellfounded*

normalise
all i _nf

rewrite _equiv

normalise
all _e.nf

2)

remove _case _hyps*

Figure 12.2: Proof plan for T9D. (2) indicates the nested induction for the subgoal onil =

| <> onil. We omit this subplan. * indicates a purely meta-level plan step.

Chapter 12. Case Studies 233

wfGoal
Method application: ~wellfounded (app select_induce (tupl e (app s zero : olength :: nil)))

trueGoal!
Branch closed!

reached empty agenda
Plan Succeeded

The proof plan for T9D is shown in Figure 12.2, with the subdiar the nested induc-
tion in the base case omitted. Altogether, the plan has 6&@&ynamiscreated and

validated the following induction rule:

= d(nil,m)

| # nil, ®(tail (1), (m<> (headl) ::nil))) = d(I,m)
vl list(nat).vm: list(nat).®(l,m)

12.4 Case Study T16C: Case Structure

We now look at a theorem which illustrates the creation of -tniwvial case structure

for an induction rule. Theorem T16 is as follows:
Vl:olist(nat).foldleft tr (o, el,) = foldleft(o, el, oreV1))

The system was provided with the following lemmas:

rev(l <>x:nil) = x:revl) (L25)
foldrighttr(f,x,| <>y:nil) = f(yfoldrighttr(f,x 1)) (L27)
X=UAYy=V — Xoy=UoV (L31)

The induction is motivated by the either of the first two lensma
We use the top-level methagnamis _lim1l , as the default constructor style method
dynamis _crit causes a memory error with this example because of an ertbein

underlying implementation ofProlog (see 811.4.5).

Chapter 12. Case Studies

T16C: Inital Planning

Dynamisbegins by loading the appropriate functions and lemmas:

This is Lambda-CLAM v4.0.0

Copyright (C) 2002 Mathematical Reasoning Group, Universi ty of Edinburgh
NOTE: this program uses the MRG patched version of Teyjus 1.0 -b33.
Iclam:

dynamis_plan dynamis_lim1 foldleft_rev 1 constructor.
Functions: onil :: ocons :: oapp :: orev : foldleft :: ell :: o pl : foldleft_tr :: nil

Eval Lemmas: foldltr_last :: rev_last :: oappl :: oapp2 : ni |

Wave Lemmas: foldltr_last :: rev_last :: oapp2 :: opl_funct ional :: nil

Loading Eval Rules: idty :: cons_functional :: neg_nil_con s :: neg_cons_nil :: oappl :: oapp2 :
orevl : orev2 :: foldleftl :: foldleft2 :: foldleft_trl :: f oldleft_tr2 :: foldltr_last ::
rev_last :: oappl :: oapp2 : nil

Loading Wave Rules: cons_functional :: oapp2 :: orev2 :: fol dleft2 :: foldleft_tr2 ::

folditr_last :: rev_last :: oapp2 :: opl_functional :: nil

Planning:
foldleft_rev
>>> forall l:olist nat (foldleft_tr (opl, ell, I) = foldleft (op1, el1, orev 1)

The top-level method is expanded dgnamis _main, andschematic _induction

applied, giving the usual five goal conjunction:

Method application: ~ dynamis_lim1

Method application: dynamis_main (mo_step_case (n_spec_ ripples 1)) wellfound_strat
case_strat (waterfall (dynamis_lim 1))

Method application: schematic_induction ...

allGoal olist nat (I\

caseSchema

A

((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

>>> ((foldleft_tr opl ell C) = (foldleft opl ell (orev C))))

*%

stepReduces
*%
allGoal tuple_type (olist nat :: nil) (u\
existsGoal (x\
caseGoal
Case: (trueP, <Ic-0-2>)
>>> (AN (u=0Q))

*

maybeCases

*k

wfGoal

T16C: Step Case Plan

The step case begins with a speculative ripple with the disimof foldright_tr:

234

is

Chapter 12. Case Studies 235

allGoal olist nat (I\

caseSchema

A

((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

>>> ((foldleft_tr opl ell C) = (foldleft opl ell (orev C))))

Method application: mo_step_case (n_spec_ripples 1)

Method application: embed_hypothesis

Method application: n_spec_ripples 1

Method application: speculative_ripple foldleft_tr2 (1 : 22 :onil)

caseSchema

A
((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

i 1
>>> ((foldright tropl | (opl €' ell) | C") = (foldleft opl ell (orev (ocons C' C") |)

The speculative step on the left creates a wave front on gine which is now rippled

out with the definition obrev.

Method application: definite_rippling
Method application: definite_ripple orev2 (3 = 2 @1 2 1 2 nil)

caseSchema
A
((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

1 1
>>> ((foldright tropl |(oplC el1l)| C") = (foldleft opl ell ((orev C”) <> (ocons C' onil)) |))

However, rippling is now completely blocked. The specuwolatritic is not being used
in this example because aProlog problems (see above), so rippling just fails. Fer-
tilisation also fails, anddynamismust backtrack over the initial speculative ripple. It

tries again, this time with lemma (L27) instead of a functit&finition:

Method application: mo_fertilise

Attempting...

strong_fertilise

Attempting...

weak_fertilise _

Attempting...

strong_fertilise_prop

backtracking over

mo_fertilise

backtracking over

definite_ripple orev2 (3 = 2 = 2 = 2 = nil)
backtracking over

definite_rippling

backtracking over

speculative_ripple foldleft_tr2 (1 :: 2 :: nil)

Chapter 12. Case Studies 236

Method application: speculative_ripple folditr_last (1 : 22 :onil)

caseSchema
A
((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

i 1
>>> (| (opl C” (foldright_tr opl ell C'))| = (foldleft opl ell (orev ‘ (¢’ <> (ocons C” onil)) ’)

Again, the speculative ripple on the left creates a wavetfoorthe right. This time the

wave front is rippled out with the lemma (L25), and then witk tlefinition offoldleft

Method application: ~ definite_rippling

Method application: ~definite_ripple rev_last (3 = 2 = 2 = 2 onil)
caseSchema

A

((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

i U
>>> (| (opl C” (foldright_tr opl ell C'))| = (foldleft opl ell (ocons C” (orev C')) |))
Method application: definite_ripple foldleft2 (2 = 2 :: ni)]
caseSchema
A

((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

1
>>> (| (opl C” (foldright_tr opl ell C')) ‘ =

1
(op1 C” (foldleft opl ell (orev C'))) ‘)

The wave fronts on both sides are rippled out over the equallowing strong fertili-

sation to be applied. Rewriting completes the step case plan:
Method application: definite_ripple opl_functional nil
caseSchema

A
((foldleft_tr opl ell B) = (foldleft opl ell (orev B)))

1
>>> | ((¢"=¢") /\ ((foldright_tr opl ell C') = (foldleft opl ell (orev C'))))

Method application: mo_fertilise
Method application: strong_fertilise_prop

caseSchema
A
>>> ((C” = C") N trueP)

Method application: replace_metavariables

Method application: ~ waterfall (dynamis_lim 1)
Method application: rewrite

Method application: normalise all_i_nf

Method application: rewrite_equiv (and4 :: idty : nil)

trueGoal!
Branch closed!

Chapter 12. Case Studies 237

T16C: Wellfounded Step Case Plan

Dynamisnow considers the four remaining induction subgoals, istasvith the step

case wellfoundedness goal. First, the goal is constructelcCely:

stepReduces

*k

allGoal tuple_type (olist nat :: nil) (u\
existsGoal (x\

caseGoal

Case: (trueP, u)

>>> (AN (u = (C' <> (ocons C" onil))))))

*%
maybeCases
*%
wfGoal
stepReduces

Method application: ~ wellfound_strat
Method application: construct_wf_goals (const_disj (mea sure 1 _ =onil))

allGoal olist nat (x\

redGoal 1
>>> A > D (C, (C' <> (ocons C" onil))))

The estimation strategy is applied, producing two subgdals first stating that un-
known difference equivaleri holds iff the induction terms reduce under some un-

known measure functiol; the second th& is true:

Method application: estimation_strat
Method application: begin_estimation 1

estGoal
E <> F(C) < F((C' <> (ocons C" onil)))
*%

>>> (trueP -> E)

Considering the first goal, the lower estimation method idiagp— it estimates the
first argument of th@app(<>) function from the step case conclusion, instantiating

the measure function wength

estGoal
E <> F(C) < F((C' <> (ocons C" onil)))

Method application: lower_estimate

estGoal
E’ <-> olength(C’) < olength(C")

Chapter 12. Case Studies 238

Method application: trivial_estimate

trueGoal!
Branch closed!

The estimation of the first argument @& ppabove had the side effect of instantiating
the difference equivalent. The system now plans its rengiproof, completing the

wellfoundedness proof for the step case:
>>> (trueP -> (" (ocons (C", onil) = onil) V falseP))

Method application: abstract_metavars

Method application: rewrite

Method application: normalise all_i_nf

Method application: rewrite_equiv (imp3 :: or4 :: neg_cons _nil -z nil)

trueGoal!
Branch closed!

T16C: Exhaustive Cases Plan

The exhaustive cases goal comes next. The goal is nonktagié contains the defined

functionoapp(<>), not just datatype constructors:

allGoal tuple_type (olist nat :: nil) (u\
existsGoal (x\

caseGoal

Case: (trueP, u)

>>> (AN (u = (C' <> (ocons C" onil))))))

*%

maybeCases
*%

wfGoal

Method application: case_strat
Method application: set_conditions

caseGoal
Case: (trueP, u)
>>> (trueP \ (u = (C' <> (ocons C" onil))))

Even though there is only a single term being considered harknot a tuple of terms,
there is still a tuple ‘wrapper’ arour(@ <> (ocons C” onil)) in the underlying
syntax. This is removed by ttease _induction method (rather confusingly, the gen-
erality of the method means we label the step as an inductitrout any inductive

hypotheses and with only one case!):

Chapter 12. Case Studies 239

Method application: case_equiv (and3 :: nil)
Method application: case_induction (tuple_split 1)
Method application: case_equiv (tuple_eq_base :: nil)

caseGoal
Case: (trueP, p)
>>> (p = (C' <> (ocons C” onil)))

Moving on, the case strategy goes through a waterfall of agstheventually applying

structural list induction te':

Method application: case_induction list_struct

caseGoal

Case: (trueP, onil)

>>> (onil = (C' <> (ocons C” onil)))
allGoal nat (W allGoal olist nat (w\
caseGoal

Case: (trueP, (ocons v w))

(w = (C' <> (ocons C" onil)))

>>> (| (ocons v w) ' = (C' <> (ocons C” onil)))))

In the base case, an existential case split is applied torgtefgument obapp(<>),

to allow its definition to be applied:

caseGoal

Case: (trueP, onil)

>>>

(onil = (C' <> (ocons C" onil)))

Method application: exists_casesplit list_struct

caseGoal
Case: (trueP, onil)
>>> ((onil = (onil <> (ocons C” onil))) V (onil = ((ocons G H) <> (ocons C” onil))))

Rewriting reduces both disjuncts faseP , and the base case is added to the list of

missing cases:

Method application: remove_case_hyps
Method application: case_equiv (oappl :: neg_nil_cons :: o r3 :: oapp2 : neq_nil_cons :: nil)

caseGoal
Case: (trueP, onil)
>>> falseP

Method application: missing_case (case trueP _ (tuple (oni [2 nil))

trueGoal!
Branch closed!

Chapter 12. Case Studies 240

The step case also begins with an existential case splivatetl by the definition of

oapp(<>). The method reembeds the inductive hypothesis in the oeiwtl:

allGoal nat (W allGoal olist nat (w\
caseGoal

Case: (trueP, (ocons v w))

(w = (C' <> (ocons C" onil)))

1
>>> (| (ocons vw)| = (C' <> (ocons C" onil)))))
Method application: exists_casesplit list_struct
caseGoal

Case: (trueP, (ocons v w))
(w = (C' <> (ocons C” onil)))

>>> | (((ocons v w) = (onil <> (ocons C” onil))) \/ (| (ocons v w) ‘T = (‘ (ocons I J) ' <> (ocons C” onil))))

Rippling is tried before simplification, and succeeds inyfuippling out the wave

fronts:

Method application: case_ripple oapp2

caseGoal
Case: (trueP, (ocons v w))
(w = (C' <> (ocons C” onil)))

i

>>> | (((ocons v w) = (onil <> (ocons C” onil))) \/ (| (ocons v w) ' =| (ocons I (J<> (ocons C” onil))) |))

Method application: case_ripple cons_functional

caseGoal
Case: (trueP, (ocons v w))
(w = (C' <> (ocons C” onil)))

>>> | (((ocons v w) = (onil <> (ocoms C” onil))) \/ |((v=1I) /\ (w=(J<> (ocons C” onil)))) ‘T)

Fertilisation is now applied, which removes the defined fiomoapp(<>) from the

goal. Simplification can now complete the plan:

Method application: case_fertilisation
Method application: remove_case_hyps

caseGoal
Case: (trueP, (ocons v w))

Chapter 12. Case Studies

>>> (((ocons v w) = (onil <> (ocons C” onil))) V ((v = 1) A tru
Method application: case_equiv (and4 :: solve_eq :: or2 :: n
caseGoal

Case: (trueP, (ocons v w))

>>> trueP

Method application: trivial_case

trueGoal!
Branch closed!

T16C: Base Case Plan

241

eP))

Having found the missing base case ab@namisconstructs the base case and dis-

charges it with rewriting:

maybeCases ** wfGoal

maybeCases

Method application: construct_cases

>>> (foldleft_tr (opl, ell, onil) = foldleft (opl, ell, orev
Method application: ~waterfall (dynamis_lim 1)

Method application: rewrite

Method application: normalise all_i_nf

Method application: rewrite_equiv (foldleft_trl :: orevl

trueGoal!
Branch closed!

T16C: Final Plan

onil))

:: foldleftl :: idty :: nil)

The last step is to solve the constraints on the rule’s watifted relation:

wfGoal
Method application: ~wellfounded (app select_induce (tupl

trueGoal!
Branch closed!

reached empty agenda
Plan Succeeded

e (app s zero :: olength :: nil))

The proof plan for T16C is shown in Figure 12.3. The plan hasi@¥es. Dynamis

Chapter 12. Case Studies

embed_hypothesis*

speculative
foldltr
definite

definite

definite

|
strong _fertilise

|
_ripple
rev _last

|
_ripple
opl _functional

schematic _induction

and

_ripple
_last
construct _wf _goals

begin _estimation

|
_ripple
foldleft2

lower _estimate abstract _metavars*

_estimate normalise
all i _nf

_equiv

trivial

-prop rewrite

|
replace _metavariables*

normalise

all i

rewrite

set _conditions*

_nf

_equiv

(1)

and

and

case _equiv

construct _cases* wellfounded*

case _induction

(tuple
|

_split 1)

normalise
all i nf

case _equiv

rewrite _equiv

case _induction

list

exists
list

_casesplit
_struct

remove _case _hyps

case _equiv

missing _case
(case trueP (onil))

Figure 12.3: Proof pl

_struct

exists
list

_casesplit
_struct

|

case _ripple

oapp2
|

case _ripple

cons _functional

|
case _fertilisation
|
remove _case _hyps*
|

case _equiv

trivial _case

an for T16C. * indicates a purely meta-level plan step.

Chapter 12. Case Studies 243

created and validated the following induction rule:

= ®(nil)
d() F (1 <> (x:nil))
vl : list(nat).®(l)

As part of creating the ruldDynamisalso invented and validated the following case
split:

vulist(nat).(u = nil) v 3l:list(nat).Ix:nat.(u = (I <> (x:: nil)))

12.5 Summary

This chapter has provided in-depth details of three casdiestwhere thdynamis
system has been used to automatically generate a proof4gdlahese examples could
not be automatically solved using recursion/ripple analys$urthermore, the case

studies have demonstratBgnamiss ability to:
e Control problematic speculative steps using a critic.
e Handle both constructor and destructor style examples.

e Generate novel case structure for an induction rule.

Chapter 13

Related & Further Work

13.1 Introduction

In this chapter we compare in detail our strategy and someqare work on induction

rule selection. Specifically:
e Recursion analysis and related approaches.
e Kraan’sPeriwinklesystem [Kraan, 1994].
e Hutter’s labelled fragments [Hutter, 1994].
e Protzen’s lazy induction [Protzen, 1995].

These techniques were surveyed in 82.

13.2 Recursion Analysis

Recursion analysis can be considered to be a group of te@s)jidascended from the

induction selection methods of [Boyer and Moore, 1979], Wikt select an induction

244

Chapter 13. Related & Further Work 245

rule derived from the relevant recursive functions. Théegues use various methods
to combine and select induction rules, i.e. subsumptioeviSts, 1990], containment
[Walther, 1993] and ripple analysis [Bundy et al., 1989]. hee surveyed in detail in
82.6. Most inductive theorem provers which automate indactelection use a form
of recursion analysis.

As discussed in 8§2.7, these techniques have two significsadantages: that they
must select a rule from a ‘space’ of induction rules whichredefined by the function
definitions, and that they do not take the effect of the choit® account beyond the
first rewriting of each induction term.

Previous work (e.g. [Protzen, 1995] has already addressse {problems to a lim-
ited extent. Our work also has clear theoretical advantagesrecursion analysis in
that it overcomes both these problems, and can prove a wadgerof problems. The
evaluation of Chapter 11 has also demonstrated praticahtatyes of our strategy, as
the Dynamissystem planned proofs for a collection of theorems that ctibe solved

by recursion analysis.

13.3 The Periwinkle System

Like our strategyPeriwinkle uses middle-out reasoning to determine a suitable step
case for an inductive rule, i.e. a schematic step case goahfes instantiated during
its proof [Kraan, 1994] (see also §2.7.1). The goal schemasimilar in that they use
second order meta-variables to represent unknown indutgfrons, and use rippling to
guide the step case proof.

However, our work goes beyond Kraan’s in three importameets: the dynamic

construction of induction rules, the generality of the snhend speculation control.

Chapter 13. Related & Further Work 246

Periwinkleused the step case obtained by middle-out reasoning td sel@éeduc-
tion rule from a prestored set. In contrast, we use the step aa the basis for an
induction rule which is constructed ‘from scratch’. Our agpgech lifts the restriction
that all induction rules must be provided to the system lefand from some outside
source, e.g. generated from function definitions providethk user.

Our step case schema is more general, as it can be instdrtbadestructor style
step cases. We have also suggested using Protzen’s he(sexti Chapter 4.3.3) to
allow multiple induction hypotheses, although this has yeitbeen implemented in
Dynamis Kraan’s step case schema did not allow any of these featsegsrely re-
stricting the kind of inductive proofs it could perform.

The third key difference is the control of speculative ripglsteps — the steps
which instantiate meta-variables — and so determine tha fairthe induction rule.
Kraan recognised that such steps made rippling potentiallyterminating, even when
definite (non-speculative) steps were preferred. In otlords; there is no limit on the
complexity of the step casePeriwinkle overcame this problem by placing a finite
limit on the number of such steps, typically a limit of one. igm turn limits step
case proofs, and hence the induction proofs, that the systeniind. Our strategy
overcame this problem by allowing an initial speculativepstand requiring subsequent
speculations to be licensed by a critic which analysed tiheréaof rippling. This was
discussed in greater depth in Chapter 7.

Another difference between our work and Kraan'’s is that stes tnigher-order pat-
tern unification, a decidable restricted form of high-ordeification (HOU), whereas
we use full HOU. Although decidability might be useful in seroontexts, we have
not experienced problems with termination in our work. @tethors on middle-out

reasoning have also used full HOU [Hesketh, 1991, IrelambBamdy, 1996].

Chapter 13. Related & Further Work 247
13.4 Labelled Fragments

The first technique which dealt with constructing an inductiule entirely using in-
formation gleaned from proof was the use of labelled fragsen[Hutter, 1994] (see
§2.8.1). The key difference between our approaches is thaeFs work was aimed
at proving existential theorems, whilst we have conceatrain universal theorems.
However, it is worth comparing the methods, as there is thermpial to extend each
technique into the other’'s domain.

Hutter uses labelled fragments — basically an abstracésgmtation of wave rules
— to predict the induction terms which will lead to a succakgpple proof. This is
done by performing a kind of ‘abstract step case’ using tihe fragments. However,
the prediction can be incorrect, i.e. when the actual step gaoof is performed it
may fail. In contrast, our strategy determines the samermmdtion whilst actually
performing the proof, and so avoids this risk. The technigas also restricted to

generating destructor style induction rules, whilst otaitey is not.

13.5 Lazy Induction

Lazy induction [Protzen, 1995] is similar to our strategyhat it constructs an entire
valid induction rule during a proof attempt, avoiding thedeo rely on user provided
rules or those generated from terminating function deéingi It takes the original
conjecture as the step case conclusion, using rippling idegihe proof, definitional
case splits to construct separate proof cases and lazigragiemg induction hypotheses
whenever they can be used to rewrite the goal (see §2.8.2dm details).

The technique uses steps which increase the ripple measutelay the samete

as the meta-variable instantiating speculative ripplethefschema-based approach.

Chapter 13. Related & Further Work 248

We name these speculative steps by analogy, although oner &fpeculative steps
may be equivalent to many lazy speculative steps.

There are three fundamental differences between our watkaary induction: the
restriction to destructor-style, the problem of mixed spaton and speculation con-
trol. As far as we know there are no relative disadvantagesit@pproach.

One key difference is that this method can only generateutdst style inductive
proofs — Protzen’s work is entirely based in a destructdiedtyrmalism. We argued
in Chapter 3 why this is overly restrictive for inductive tmem proving: even if one
only ever uses destructor style functions (which authargeneral, do not) then some

useful induction rules are still suggested by ‘construstgle lemmas’, e.g.
foldlefttr (F, X,L <> [Y]) = F(foldleft.tr (F, X,L),Y)

Unless an equivalent destructor style lemma is also préisemtroof will not be found,

e.g.
L # nil — foldleft.tr(F,X,L) = F(foldleft tr (F, X,choplL)),last(L))

(chopremoves the last element of a list.) Converting between tleréguires syn-
thesing inverse functions, which is not a practical altéveao allowing constructor
style inductions.

The other fundamental difference between our strategy angdihduction is that
the latter has no explicit representation of the as-yetronk step case throughout the
proof. It does not construct an induction hypothesis umtitilisation, i.e. the point
the hypothesis is applied. The drawback here is that in tiuglleiof the proof, when
some decisions have been made which correspond to a partfoain of induction
hypothesis, subsequent proof steps have no way of accebssngpformation, and

may make inconsistent decisions. We call this probieixed speculationand it can

Chapter 13. Related & Further Work 249

significantly increase the size of the search space, aseabdghrch paths where the
speculative steps are not consistent must be explored. fdidem arises because
speculation is a local phenomenon, not accessible to thefrdse proof.

In contrast, speculation in our strategy is global. When astgtatis made about
the form of the step case, a meta-variable is instantiatetisa this decision is prop-
agated throughout the proof. Future proof steps must beistens with this choice
of instantiation, and are prevented from making inconsistdoices. This prevents
mixed speculation, and so cuts down the search space codripdezzy induction.

Mixed speculation occurs, for example, if we apply lazy iciln to theorems
T15, T16 or T17 from Chapter 11. However, in order to more tyedlustrate the

phenomenon, we use a more concise, abstract example theorem

f(x) = 9(x (13.1)

fx) = f(p(x)) (13.2)
gx) = r(g(p(x)) (13.3)

f(x) = f(ax) (13.4)
gx) = gax) (13.5)

Applying lazy induction to the goal (13.1), both (13.2) ad8.4) can be used to specu-
late on the LHS. The same is true for (13.3) and (13.5) on the.RE&y induction will

Chapter 13. Related & Further Work 250

try all four possible combinations of these speculativeste the following order:

f(pX|) = MgfngT (13.6)
f(pX®)|) = 9(aX)|) (13.7)
flax)|) = MgfngT (13.8)
fla®|) = 9(a®|) (13.9)

Of these, only the last (13.9) is successful, with the inidichypothesisf (q(x)) =
9(q(x)). The first goal (13.6) almost matches the hypothés$ix)) = g(p(x)), but
the wavefront(...) is blocked and the proof fails. Goals (13.7) and (13.8) cawdeak
fertilised, but both proofs fail because of mixed specalat- each has induction term
p(...) on one side and(...) on the other.

If instead we applying our induction strategy to the goal.1).3we find that only
two of the four combinations are generated (meta-variadnesvritten asA B, ... for

simplicity). The first is:
f(A)=g(A) + f(B)=g(B)
f(p(A)) =g(|pA)|) F f(p(B))=9(B)
f(p(A)) =g(p(A)) = f(p(B))=|r(g(p(B))

This branch corresponds to (13.6), and is blocked. Backimgakver the first step we

get the successful branch:

f(A)=g(A) f(B)=g(B) (13.10)
f(a(A))=ga(aA)|) + f(aB))=g(B) (13.11)
f(a(A')) =g(q(A)) F f(p(B))=g(a(B)) (13.12)

Our strategy has avoided searching the two inconsistenthes. Although the addi-

tional search is not that great in this abstract exampleillitverease with the number

Chapter 13. Related & Further Work 251

of alternative wave rules and reducible terms. In additibe,search required to estab-
lish that an inconsistent branch will fail could be arbitisatarge.

The third fundamental difference between our strategy amg induction, is that
Protzen did not address the problem of non-terminatingudpon in his thesis. In
fact, he does not even recognise it, leaving his strategyeasritbed highly prone to
non-termination. Hence our work on speculation controk (§&3.3) represents an

advance over lazy induction.

13.6 Further Evaluation

We now discuss various ways in which the work described ias thésis could be
continued. The most immediate area is to extend the implatien of Dynamisto

reflect the full induction strategy set out in Chapter 4 to Céa@t This would require:
1. Case splits during rewriting;

2. Creation of multiple induction hypotheses, via Protzé#éristic, i.e. adding
applicable instances of the inductive conjecture as hygsatd during the proof

(see 84.3.3);
3. Creation of multiple step cases (see §86.3);
4. Side condition critic for failed estimation proofs (seée35);
5. To-rewriting (see §88.3.2).

Implementation of features (1) to (4) was suggested by tperaxental evaluation in
Chapter 11: they would allow a larger number of theorems toléenged byDynamis

using the default strategies. Feature (5) would reducesthigting search — although,

Chapter 13. Related & Further Work 252

as discussed below, its completeness has not yet beenigstablFeatures (3) to (5)
are novel, and implementation would allow their effectessto be evaluated.

In addition, the description of (2) in [Protzen, 1995] doet provide much de-
tail of its implementation or evaluation, and no implemdotais currently available.
Including it in Dynamiswould allow Protzen’s Heuristic to be assessed. Given our ex
perience with speculative ripple steps, we anticipate dllditional search heurisitics
will have to be developed to make this effective.

Another possible direction for research is the impleméonaof lazy induction
[Protzen, 1995] to allow experimental comparison with otliesna-based approach.
The evaluation in Chapter 11 failed to support or refute theokiyesis that our strat-
egy is more powerful than lazy induction, because of shamtngs of the implemen-
tation. However, it did highlight the lack of data on lazy uation, and a working
implementation is required to overcome this problem. It ldaalso allow us to test
the theoretical claim that using a schema reduces seargbazechto a lazy generation

approach, by avoiding mixed speculation (see §13.5 above).

13.7 Developing the Strategy

As well as fully implementing and evaluating our inductidragegy, there are a number
of areas where we can see the strategy could be improved. stfesdithese in turn

below.

Extending the Speculation Critic

The speculation critic currently has two obvious shortaaysi Firstly, it can only

create constructor style step cases. However, it may behi@ss extend the critic

Chapter 13. Related & Further Work 253

patch to destructor style by instantiating a hypothesisamatiable to match the fully
rippled-in wave fronts in the conclusion. As an example sider the following, where
a required wave front has been rippled in to find an instaatidhat would generate it

(A etc. are meta-variables):

A+B... - ..[sC+D)

To find a destructor style step case, a destructor style ecréeds to identify that the
wave front can be generated fra@H D using the destructor style definition ef,
providingA is instantiated tg(A).

Secondly, the current speculation critic can suffer from-termination, e.g. the-
orem T7C in 811.4.3. This could be prevented by imposing skime& of measure
reduction on the critiqued goals to ensure that the proofhagressed since the last
application of the critic. Further experimental work is ueed to obtain more exam-

ples of desirable and undesirable speculation, in ordeartadlate a suitable measure.

Formalising Neutralisation

Although the neutralisation procedure used by the step stagategy has been imple-
mented inDynamis we have not formulated a clear, formal description. Doimg t
would allow a cleaner implementation, and probably helpustderstand the bugs in
Dynamisthat allowed certain corresponding wave-fronts in hypsithand conclusion
to remain unneutralised (see Chapter 11). We have alreadydpoba specification
that any neutralisation procedure must meet (see Defin®johe procedure as im-
plemented is suitable for formulation as a set of rules, laintd those that defined

embeddings [Smaill and Green, 1996].

Chapter 13. Related & Further Work 254

Instantiation Selection

We can see two shortcomings with the way in which the strasegyches the possible
instantiations of the meta-variables in a given goal. Kirst is prone to searching
the same instantiation multiple times if it is generated tfgcent speculative ripples.
A more efficient strategy would be to identify all possibleesplative steps and the

instantiations they generate, and only try each instaotiaince.

Interleaving Rule Validation

The induction strategy currently constructs a step case,tlan constructs a well-
foundedness plan for it. In contrast, [Protzen, 1995] leteres the two processes, by
only allowing wave fronts that contain lower argument boeshéLinctions to be moved
towards induction positions, where they may be incorparaito induction hypothe-
ses. Hence the wellfoundedness checks are integratedemtiting. This is more
efficient, as non-wellfounded step cases are pruned at §nstage, rather than after
they have been completed.

A similar approach could be taken with our strategy, usindpamer that is capa-
ble of prioritising open subgoals. By giving a partially iastiated estimation goal a
higher priority than its step case, the strategy could enthat any instantiation of the

induction terms is immediately validated before the stege@ntinues.

Existential Problems

All the example theorems considered in this thesis have peesly universally quanti-
fied. The application to existential theorems — and hencgrara synthesis — would
be a fruitful research direction, given that one signifigarablem in this work is the

need to generate novel inductions rules that cannot be ggdefrom the function

Chapter 13. Related & Further Work 255

definitions provided, i.e. the existential witness is a pang with a novel recursive

structure [Hutter, 1994].

Object Level Proofs

TheAClamsystem, and hence tliyynamissystem built on top of it, does not have any
facility for constructing object level proofs from the pfqaans it produces. Indeed,
AClam has been deliberately designed to avoid commitment to @&pkat logic —
this is entirely the decision of the method designer, who bmags specific about the
logic as she chooses.

Previous work on proof planning has established that indeigroof plans can be
used by a variety of tactic-based systems to generate proafgsariety of logics, e.g.
[Bundy et al., 1991, Boulton et al., 1998]. However, our prolaing are substantially
different from those in previous work, in that they also urd# a proof that the induc-
tion rule is valid. Further work is required to validate tagdans by execution to object

level proofs.

13.8 Exploring TO-Rewriting

Chapter 8 set out a novel technique for controlling our inducstrategy’s search
during rewriting/rippling. However, the technique is mavelely applicable to any
non-confluent rewriting system. Several areas of futurearh suggest themselves.
Firstly, identifying other applications which use such rigwwg. Secondly, implemen-
tation and evaluation of the technique, to assess how ef#eittis in reducing search
for various applications.

Another direction is the proof of completeness @rewriting, which we presume

Chapter 13. Related & Further Work 256

could be used with the existirmgcompleteness result to prove completeness for full

TIO-rewriting.

13.9 Research on Proof Planning

Another area closely related to our thesis is proof planrang theAClamproof plan-

ner in particular. On a prosaic level, our evaluation uncegebugs in the\Prolog
implementation underlying th®Clam proof planner. These need to be addressed in
some way.

More interestingly, in Chapter 10 we found the lack of a cuthodical inA\Clam
to be a very significant factor in the design of our methodsar&eduring proof plan
construction can be made impractical when key choices aweded by a large num-
ber of unimportant ones — unless the previous choices pbaus been cut. Without
this ability, we were sometimes forced to use a less cleahodeformulation than
we would have chosen, in order to avoid constant backtrgc&irer such unimpor-
tant choices, e.g. equivalence preserving rewriting. Tésgh could have been much
cleaner if a cut methodical was available. A design for a pptanner which handles
cut using explicit OR branches has been propdgaat not yet implemented.

In Chapter 9 we gave a design for a critics planner which iategrcritics with the
methodical-based approachXxtlam Further research could assess whether this is,
in general, a suitable proof planning architecture, by geshnvestigating whether it
allows superior reimplementations of previous critic waelg. with more declarative
formulations.

Our induction strategy is a case study in delaying searchcelausing meta-

variables: they are used for induction terms, hypothesegsare functions etc. Fur-

LJulian Richardson, personal communication.

Chapter 13. Related & Further Work 257

ther work is needed to establish how is this related to ptes/proof planning research
that uses similar techniques e.g. [Cheikhrouhou and Siekni®98], and whether

such work can be included in a common reasoning framework.

13.10 Summary

In this chapter we have compared our induction strategyuo eeces of closely re-
lated research in automated induction rule selection.dtdi@ar advantages over all of
them.

Compared to Kraan'’®eriwinkle system our strategy has three significant advan-

tages:
e It constructs induction rules dynamically, rather tharyirej on a prestored set.

¢ Induction rules may be destructor style and, in theory, hmau#tiple induction

hypotheses.

e The speculation critic allows speculative rippling to beitiéy controlled, rather

than setting a fixed limit on the search.
Compared to Protzen'’s lazy induction our strategy has thieardages:

¢ Induction rules need not be destructor style. Recall thasttoator style rules

are required even if all function definitions are destrustgte.

e Our strategy does not suffer from mixed speculation, bexeeta-variables are

used to explicitly represent the developing induction rule

e The speculation critic controls speculative rippling — algem not addressed

at all by Protzen.

Chapter 13. Related & Further Work 258

We have also outlined a number of future search directioredan our work, which

include:

e Further implementation and evaluation of our strategy wWigDynamissystem.

e Designing a destructor style speculation critic, and figdirmeasure that forces

the critic to terminate.

e Ensuring that each meta-variable instantiation is comsitlenly once.

¢ Interleaving the step case proof with the wellfoundednegsfp

e Synthesising programs with novel recursive structures.

e ExecutingDynamiss plans to object level proofs.

e Implementing and proving completenesswofrewriting.

e Evaluating our proof planner design.

Chapter 14

Conclusions

14.1 Introduction

In this chapter we review the contributions made by the thesid assess whether our

work has met the aims laid out at the beginning.

14.1.1 Contributions of the Thesis

Our thesis contributes specifically to the understandingadctive theorem proving

in four key ways:

1. Itidentifies the significance of restricting inductiodasito constructor style or

destructor style.

2. It describes improved search control and coverage farcteh rule creation

using a schema-based approach.
3. Itincludes a novel procedure for generating missing focases.

4. It gives a modular induction strategy for creating induttules during proof.

259

Chapter 14. Conclusions 260

We expand on each of these below.

Rule Structure Firstly, in Chapter 3 we have explained the relationship betw
constructor and destructor style induction rules and fonatefinition, and explained
why neither style of rule is totally sufficient for inductiywoof. This prompted the
definition of simple induction rules as a suitable class taoemated proof, and a novel
formulation of creational rippling in order to provide selaicontrol for this class.

Search Control and Coverage Secondly, we have shown in Chapter 4 how a step
case schema can be used to delay key choices until the mitidie step case proof,
giving better choice of induction rule than recursion/tgppanalysis, and which unlike
previous work [Kraan, 1994, Protzen, 1995] is not just fet&d to either constructor
or destructor style step cases. Search control is also imgranon-terminating spec-
ulative steps are controlled using a critic on the ripplehradt(Chapter 7), and using a
meta-variable schema avoids the problem of mixed speoul#tiat arises with a lazy
generation approach [Protzen, 1995] (Chapter 13).

Case Synthesis Thirdly, a procedure for generating the missing cases ohan i
duction rule was given in Chapter 5, based on trying to proatttie existing cases are
exhaustive. The failed proof is patched by adding missirsgs#o the conjecture, fol-
lowing previous work on correcting faulty conjectures [Rem, 1995, Monroy, 2000].
We identified that non-equivalence preserving steps — itiqua@r instantiating free
variables — are incompatible with such corrective techegjuThe equivalence pre-
servingexistential case splitwas proposed instead.

Modular Strategy Lastly, in Chapter 6 an induction strategy for generating in-
duction rules during the inductive proof was describeds Itniodular with respect to
three sub-strategies: one for step case generation, arotlesuring step case well-

foundedness, and a third for generating missing proof ca&eagstricted version of

Chapter 14. Conclusions 261

this strategy has been implemented in Bygamissystem, using our schematic step
case strategy, Walther’s estimation method and our casergigon procedure as the
three sub-strategies ‘modules’.

The thesis also makes more general contributions to aueahtheorem proving.
Some of the techniqgues mentioned above have potentialcagipls outside induc-
tion rule creation. Our strategy for generating missingesad a case analysis, which
connects the problem to research in correcting faulty atajes. We proposeto-
rewriting in Chapter 8 as a way to further reduce the proofcear inductive proof,
and we have proved the completenesstoéwriting, a useful restriction of this tech-
nique. It is a technique that could be applied to other nanflaent rewriting systems.
Furthermore, our arguments for the superiority of a schgopacach over lazy gener-
ation has implications for any delayed commitment strategy

Finally, we have described a novel proof planning architextor specifying critics

and combining them with method expressions.

14.1.2 Have We Achieved Our Aims?

The aims set out at the beginning of this thesis were to desigractical, delayed
choice induction rule creation strategy, which improvegaogvious research with bet-
ter search control for speculation steps and a wider rangmwdrage of induction
rules, and hence theorems.

We have demonstrated that our strategy is a practical apiprimainduction rule
creation by implementing it in th®ynamissystem and evaluating it on a range of
test problems. Three of the contributions above improvestaach control for the
crucial step case proof, and of these two have been impleteamd evaluated. The

evaluation also supported the hypotheses that the strategggonstruct a wider range

Chapter 14. Conclusions 262

of induction rules than previous work, which has been retgtt to constructor style
[Kraan, 1994] or destructor style [Protzen, 1995] inductioles.

However, a few of our aims have not been met. The claim thatirduction
strategy isstrictly better than lazy induction — i.e. it can proamy theorem lazy
induction can — has not been backed up va#perimentakvidence. This is partly
because of the lack of available data for lazy induction. \&eehshown in Chapter
13 that our strategy is theoretically superior to lazy irtcug although experimental
evidence could not be gathered because no working impletemtexists. We hope
further work will be able to gather this evidence. Furtherepcsome parts of the
strategy still have to be implemented and evaluated exeriatly: notably creating
induction rules with multiple induction hypotheses and tiplé step cases, amb-
rewriting.

In conclusion, further implementation and evaluation wisrkequired to provide
conclusive experimental evidence that our full inductitnategy meetsll our aims,
but the majority of our original aims have been met. We havealestrated experi-
mentally that even a partial version already exceeds the sfahe art in automated
inductive theorem proving in several important respects.

Our work also has implications beyond inductive theorenvioigp The induction
strategy presented in this thesis is perhaps one of the roogtlex yet implemented
using proof planning, both because it brings several coxnmleof strategies together
in order to construct an inductive proof, and because ofxtsresive use of delayed
commitment with meta-variables. This demonstrates thabfpplanning is a viable
framework for developing such complex automated prooftefjias. We anticipate
that the techniques employed here can be used to improvmated theorem proving

in a variety of domains, and that a better understanding @dfpplanner design —

Chapter 14. Conclusions 263

such as improved support for critics and meta-variables -tavbe of great benefit to

automated reasoning.

Appendix A

Glossary

[n] The finite se{1,2,...,n}.
[n,m] The finite set{n,n+1,...,m}.
Base Case An induction casevith noinduction hypothesis

Case Complete Covering all possible cases. For example, an complete set of

duction casesor completaecursive definition

Case Conditions A hypothesis of arinduction casevhich isnot a variant of the

rule’s conclusion.
Case Formula Aformula which expresses tloase completenes$ a set of cases.

Constructor Style Of aninduction rule havinginduction termswvhich are com-
pound in conclusions of each step case, and non-compouthe inypotheses.
Of arecursive definitionhaving a head with compound arguments and recursive

calls with non-compound arguments.
Context In rippling: parts of term which do not belong to the terraleleton

264

Appendix A. Glossary 265

Creational Rippling An extension ofrippling which can handlevave frontsin
the induction hypothesiby having a commomkeletorfor two different terms.

See 83.4.

Destructor Style Induction Of aninduction rule havinginduction termswvhich
are non-compound in conclusions of each step case, and compo the hy-
potheses. Of aecursive definition having a head with non-compound argu-

ments and recursive calls with compound arguments.

Domain Of a substitutiono: the set of variablegx : x/t € o} replaced by the

substitution, written aBom(o).

Dual Induction Of arecursive functionaninduction rulewith the same recursive
structure as the function: cases of the definition maptuction casesthe
head of a defining equation maps to a case’s conclusion;sigeuralls map to
induction hypothese$unction arguments map toduction termsconditions on

an equation map toase conditions

Embedding A mapping of a term tree into another term tree where funcion-
bols and constants are mapped to copies of themselves anll pigiserves or-
dered ancestor-descendant relationships. Can be usegling to map askele-

toninto another term.
Estimation A proof technique used to prove inductions and definitwalfounded

Existential Case Split An equivalence preserving proof step which proves an ex-
istential statement by proving a disjunct of instantiasiarf the existential vari-

able. The set of instantiations mustdese complete

Appendix A. Glossary 266

Induction A proof which establishes a statement by using some varidiatstate-

ment to prove another variant. Seeuction ruleand 82.2.
Induction Case The premise of amduction rule

Induction Hypothesis A hypothesis in afmnduction casevhich is a variant of the

rule’s conclusion.

Induction Term A term substituted into amduction positionn the premises of

aninduction rule

Induction Position A universally quantified variable in the conclusion of ian
duction rule Also the corresponding subterm in the variants of the amich

in the rule’s premises.

Induction Rule A rule of inference which represents gnaductionargument. This

thesis deals witlsimple induction rules

Lazy Induction A technique for automatindestructor style inductioby rewrit-
ing a conjecture to create and remamantext usingProtzen’s heuristido gen-

erateinduction hypothesesee §2.8.2.

Multiset An unordered collection of objects, in which each object rppear

more than once.

Neutralisation In creational rippling the process of finding correspondingve

frontsin two terms and making this syntax part of their comns&gleton

Noetherian Induction The most general form ahduction All induction rules

are instances of the Noetherian induction rule. See §2.2.1.

Appendix A. Glossary 267

Protzen’s Heuristic In automatednduction generating amduction hypothesihen

the goal can be rewritten with an instance of the originajecmre.

Recursive Function A function defined in terms of itself. The definition must be

wellfoundedo be valid.

Rippling A heuristic rewriting technique which removes the differes between a
term and itsskeleton Used to automatstep casgroofs by removing the differ-
ences between the induction conclusion and one or more tiodutypotheses.

See 82.5.

Simple Induction Rule A syntactic restriction omduction rulesnvhere the rule’s
conclusion is of the fornyx,....Vx,.®. The rule’s premises are all sequents that
have a conclusion which is an instancedvaind a list of hypotheses which are

either:

¢ induction hypothesesghich are instances @b with optional universal quan-

tification, or

e case conditions

See 83.3 for a formal definition. For a simple induction ruebe valid it is

sufficient that it iswellfoundedandcase complete
Skeleton A term formed by removing some of the structure from anoteent
Step Case Aninduction casevith at least onenduction hypothesis

Substitution A function from terms to terms, defined by a set of variabtefte
pairsx/t. A substitutiono replaces all occurencesxfvith t for all X/t € 0. See

domain

Appendix A. Glossary 268

Var The free variables of a term.

Wave Front A syntactic difference between a term andskeletonin rippling.

Wellfounded Definition A recursive definitionvhere each recursive call is smaller

than the head of the definition, by somvellfounded relation

Wellfounded Induction An inductionwhere the eacimduction hypothesis smaller

than its corresponding conclusion by somellfounded relation

Wellfounded Relation A relation > with no infinite descending chaing > xo >

X3~

Appendix B

Datatype & Function Definitions

This appendix collects together all of the definitions foe thatatypes and functions
mentioned in this thesis. For simplicity all functions, lumting datatype destructors,

are total. If a function is defined under a alternative nani@yinamisthis is given.

Datatype: bool

The boolean datatype simply has two base constructors:

true : bool

false : bool

We define the usual propositional functions\, v, —, < of typebool — bool — bool.

269

Appendix B. Datatype & Function Definitions 270

Datatype: nat

The Peano natural numbaerat has two constructors 0 (zero) asfsuccessor) and the

destructom (predecessor):

0 : nat

S . nat— nat

p : nat— nat
p(0) = 0
p(s(X)) = X

Datatype: list(T)
Thelist(t) (olist in Dynamig datatype has two constructari (the empty listpnil)
and :: pcons) and one destructaail :

nil @ list(1)

T — list(t) — list(1)

tail @ list(t) — list(1)
tail(nil) = nil

tal(H:T) = T

Appendix B. Datatype & Function Definitions

271

For each typea we define a second destructerad:

head
head(H :: T)
headool(nil)
headhat(nil)
headg;(q) (nil)

headarg(nil)

list(t) — T
H

true

nil

red

We write omit the subscript when this is obvious from the context. An alternative

would be to use partial functions and define a single gemerac

Datatype: card

The card datatype is defined for the Gilbreath Card Trick (see Chaptgrdid is

isomorphic tabool.

black :

Function: <> (append

oapp in Dynamis
<>
nil <>M
H:T<>M

L + nil — L<>M

card

card

list(t) — list(t) — list(1)
M

H:(T<>M)

(©)

headlL) :: (tail(L) <> M) (D)

Appendix B. Datatype & Function Definitions 272

Function: even

even : nat— bool

everis(0)) = false

everis(s(X))

everf0) = true
)

= everfX) (©)

XAOAX#£S0)— everfX) = everfp(p(X))) (D)

Function: evenelems

evenelems :

evenelemsil)

evenelems :: nil)

evenelems 1Y i L)

L # nil Atail (L) # nil — evenelemd.)

Function: foldleft

foldleft
foldleft(F,Anil) =
foldleft(F, A H:T) =
L # nil — foldleft(F,A,L) =

Function: foldlefttr

foldleft.tr

foldlefttr(F,Anil) =
foldlefttr(F,AAH:T) =
L # nil — foldlefttr(F,AL) =

list(t) — list(1)

nil

nil

Y ::evenelemd)

headtail (L)) :: evenelemgail (tail (L)))

(a—=B—a)—a—list(B) —a

A

F(foldleft(F,A,T),H) ©)

F(foldleft(F,Atail(L)),headL)) (D)

(a—=B—a)—a—list(p) —a

A

foldlefttr(F,F(A/H),T) ©
foldlefttr(F,F(A headl)),tail(L)) (D)

(©)
(D)

Appendix B. Datatype & Function Definitions 273

Function: foldright

foldright : (B—a—a)—a—list(f) —a
foldright(F,A,nil) = A
foldrightt(F,A/H::T) = F(H, foldright(F,A/T)) (©)
L # nil — foldright(F,A,L) = F(headl), foldright(F,A tail(L))) (D)

Function: foldright_tr

foldrighttr : (B—a—a)—a—list(f) —a
foldright_tr(F,A,nil) = A
foldright_tr(F,A/H :: T) = foldrighttr(F,F(H,A),T) ©
L # nil — foldright_tr(F,A,L) = foldrighttr(F,F(headlL),A),tail(L)) (D)

Function: half

half : nat— nat
half(0) = 0
half(s(0)) = O
hal f(s(s(X))) = s(half(X)) ©)
)

X#O0AX #5(0) — half(X) = s(half(p(p(X)))) (D)

Function: len

olength in Dynamis

len : list(t) — nat
len(nil) = 0
lenH:T) = s(len(T)) ©)

L # nil — len(L) = s(len(tail(L))) (D)

Appendix B. Datatype & Function Definitions

Function: <

leq in Dynamis

A

2 o

IN - IA

o < IA

X #£0AY #0 X <Y

Function: + (plug

|
0+Y =
SX)+Y =

X#A0— X4Y =

Function: odd

X £ 0AX # 5(0) —

odd

274

nat — nat — bool
= true
= false
= XY

= p(X) <p(Y)

nat — nat — nat
Y

S(X+Y)

s(p(X) +Y)

(©)
(D)

nat — bool
= false
= true
= odd(X) (®)
= odd(p(p(X))) (D)

Appendix B. Datatype & Function Definitions 275

Function: oddelems

oddelems : list(t) — list(1)
oddelem&il) = nil
oddelemgX ::nil) = X:nil
oddelemgX 1Y L) = X: oddelemf) ©)
L # nil Atail (L) # nil — oddelemf.) = headLl) :: oddelem#ail (tail(L))) (D)

Function: quot

quot : nat— nat— nat
quot(X,0) = 0
Y#O0A-(Y <X)— quot(X,Y) = 0
Y#0— quot(X+Y,Y) = s(quot(X,Y)) ©)
Y #0AleqY,X) — quot(X,Y) = s(quot(X—Y.,Y)) (D)

Function: rev

orev in Dynamis

rev : list(t) — list(1)
rev(nil) = nil
reviH::T) = rev(T) <> (H:nil) ©)

L # nil — rev(L) = revtail(L)) <> (headL) ::nil) (D)

Appendix B. Datatype & Function Definitions 276

Function: rotate

rotate : nat— list(t) — list(1)
rotate(O,L) = L
rotate(X,nil) = nil
rotate(s(X),H :: T) = rotateX,T <> (H ::nil)) ©)
)

X #O0AL #nil — rotate(X,L) = rotate(p(X),tail(L) <> (headL):: nil)) (D)

Function: sum
sum : list(nat) — nat— nat
sunm(nil,X) = X
sumH = T,X) = sumT,X+H) ©
L #nil — sumL,X) = suntail(L),X+headL)) (D)

Function: x (timeg

X . nhat— nat— nat
OxY =0
sX)xY = (XxY)+Y (®)

X£0— XxY = (pX)xY)+Y (D)

Appendix C

Dynamis Documentation

This appendix documents several aspects ofjieramissystem: how to run it, the
lower level methods that were not fully covered in Chapter A€ theAProlog pred-
icates used in method pre- and postconditions. We alsol detaminor changes that

were made to the maikClamsource code in order to integrddynamiss code.

C.1 Running Dynamis

There are two predicates that can be used abeamiscommand line to plan theo-

rems. Both are built on top afClanis claudio _plan (version 4.0).

plan _and display: meth -> query -> o

Initiates planning of the given query with the given methadd displays the plan if

one is found.

dynamis _plan: meth -> query -> int -> style -> o

Loads a predetermined configuration of rewrite and wavesrdifen initiates planning

277

Appendix C. Dynamis Documentation 278

of the given query with the given method. If successful ipthgs the plan.

The configuration is determined by tisgyle , which is the function definition
style to be usedcfnstructor or destructor), and an integer indicating the lemma
set to be loaded. This information must be hard-coded bleéor@ For example, the

command:
dynamis_plan dynamis_crit comp 1 constructor.
relies on the following two hard-coded facts:

defn_rules plus constructor [plusl, plus2] [plus2].

needs comp 1 constructor [plus_rightl, plus_right2] [plus _right2].

C.2 Step Case Methods

Method: embed_hypothesis

Theembed_hypothesis method, shown in Figure C.1, takes an unannotated step case
goal with a single hypothesis and adds embeddings for hgs@land conclusion.

The preconditions embed the skeletkel into both the hypothesimdHyp and
conclusionConc, with embedding€EH1 and EC1 respectively. The postconditions
merge and orient wave-fronts to give embeddiBgg andEC2, and then weigh them
using the number of wave-frontsl\y and the wave measur@ut, In) respectively.

The method’s subgoal has a single annotated induction hgpsiNewAnnHyp.

Method: redo _embeddings

Shown in Figure C.1 is theedo _embeddings , which recomputes the conclusion em-

bedding during the middle of the step case. It is requireer dfte speculation critic

Appendix C. Dynamis Documentation 279

ﬁ/lethod: embed_hypothesis
Goal: (caseSchema Cond Hyps (preRippleHyps Skel [IndHyp]) Conc)

Pre:
(once (embedding Skel EH1 IndHyp,
embedding Skel EC1 Conc))

Post:

(tidy_hyp_context EH1 EH2 HW,

tidy_conc_context EC1 outward EC2 Out In,

AnnHyp = (annHyp IndHyp Skel EH2 HW EC2 Out In))

\SubGoaI: (caseSchema Cond Hyps (rippleHyps [AnnHyp]) Conc)

method: redo_embeddings
Goal: (caseSchema Case Hyps (rippleHyps [AnnHyp]) Conc)

Pre:

(AnnHyp = (annHyp Hyp Skel EH HW _ _),
embedding Skel EC1 Conc)

Post:
(tidy_conc_context EC1 outward EC2 Out In,
NewAnnHyp = (annHyp Hyp Skel EH HW EC3 Out In))

QubGoal: (caseSchema Case Hyps (rippleHyps [NewAnnHyp]) Conc)

AN

/

Figure C.1: The embedding methods: embed_hypothesis and redo _embeddings .

Appendix C. Dynamis Documentation 280

method: (definite_ripple Rule Ad) \
Goal: (caseSchema Case Hs (rippleHyps [AnnHyp]) Conc)

Pre:

(AnnHyp = (annHyp Hyp Skel EH HW EC1 Out In),

wave_rule_list Rules,

rewrite_inner (rewr_list Rules rewr_match) Rule _ Conc New C Cond Ad,
not (rulestyle Rule destructor),

reverse Ad At,

subterm_embed undir Rule At [] EC1 EC2 Skel NewC bool,

tidy_conc_context EC2 anydir EC3 NewOut Newin,

measure_less Out In NewOut Newln)

Post:
(NewAnnHyp = (annHyp Hyp Skel EH HW EC3 NewOut Newin),
Main = (caseSchema Case Hs (rippleHyps [NewAnnHyp]) NewC),
condition_goal Cond Case Hs
(c\ (caseSchema Case Hs sideCond c)) Main SubGoal)

KSubgoaI: SubGoal J

Figure C.2: Clause 1 of the definite _ripple method.

has instantiated a meta-variable, and the embedding in #ive step case plan branch
needs updating to reflec this.
The method works in a similar way tanbed_hypothesis , but leaves the hypoth-

esis embedding untouched.

Method: definite _ripple

The method has two clauses, shown in Figure C.2 and Figure & 3irst for wave-
measure decreasing ripples, the second for creationdésipghbat remove hypothesis
wave-fronts. In both clauses, the conclusion is rewritté&h tine relationrewr _match ,

which does not instantiate metavariables. The rewrittdriesm is reembedded with

Appendix C. Dynamis Documentation 281

method: (definite_ripple Rule Ad) \
Goal: (caseSchema Case Hs (rippleHyps [AnnHyp]) Conc)

Pre:

(AnnHyp = (annHyp Hyp Skel EH1 HW EC1 _),

wave_rule_list Rules,

rewrite_inner (rewr_list Rules rewr_match) Rule _ Conc New C Cond Ad,
not (rulestyle Rule constructor),

reverse Ad At,

subterm_embed undir Rule At [] EC1 EC2 Skel NewC bool,
cancel_context 0 At Skel NewSkel Hyp EH1 EH2 NewC EC2 EC3,
reembed NewSkel bool Hyp bool EH2 EHS3,

tidy_hyp_context EH3 EH4 NewHW,

NewHW < HW)

Post:
(tidy_conc_context EC3 outward EC4 Out In,
NewAnnHyp = (annHyp Hyp NewSkel EH4 NewHW EC4 Out In),
Main = (caseSchema Case Hs (rippleHyps [NewAnnHyp]) NewC),
condition_goal Cond Case Hs
(c\ (caseSchema Case Hs sideCond c)) Main SubGoal)

QubGoal: SubGoal /

Figure C.3: Clause 2 of the definite _ripple method.

the corresponding subterm of the skele8kel

In the first clause, the preconditions check the wave-measureduced. In the
second, neutralisation is performed to give an expandel@tskeNewSkel , and new
embeddings for the hypothesiBH2) and the conclusionEC3). The weight of the
hypothesisNewHWthe number of wave-fronts) is measured — it must be lessttan
old weightHW

Both clauses disallow certain rewrite rule styles in ordgarevent unwanted ripple

steps. Destructor style rules are typically used in creatisteps, and so the first

Appendix C. Dynamis Documentation 282

method: meta_ripple \

Goal: (caseSchema Cond Hyps (rippleHyps [AnnHypl]) Conc)

Pre:

(AnnHypl = (annHyp Hyp Skel EH HW EC1 Out In),
embedding Skel EC2 Conc,

tidy_conc_context EC2 anydir EC3 Newout In,
measure_less Out In NewOut In)

Post: (AnnHyp2 = (annHyp Hyp Skel EH HW EC3 NewOut In)

KGoaI: (caseSchema Cond Hyps (rippleHyps [AnnHyp2]) Conc) /

Figure C.4: The meta _ripple method.

clause excludes these rules. Constructor style rules ai@tlypused in wave measure
reducing steps, and so the second clause excludes themne fEstisctions only affect

definitional rewrites — lemmas are always allowed.

Method: meta _ripple

Themeta _ripple method is shown in Figure C.3. A meta-ripple step reduces gvew
measure of the embedding without rewriting the underlygmgt The preconditions
simply reembed the step case skeleton in the conclusion. néiveembeddindC3

must be less than the original embeddb@.

Method: forwards _ripple

Theforwards _ripple method is used after the speculation critic has been apptied
ripples inwards the ‘missing’ wave fronts inserted by thgarso that a suitable instan-

tiation that unblocks the main ripple proof can be found ligspeculate _wavefronts

Appendix C. Dynamis Documentation 283

method: (forwards_ripple Rule Ad Ripples) \
Goal: (caseSchema Case Hyps (blockedGoal Skel E1 In) Conc)

Pre:
(wave_rule_list Rules,
rewrite_inner (rewr_list Rules rev_rewr_match)
Rule _ Conc NewC trueP Ad,
reverse Ad At,
subterm_embed undir (backwards Rule) At [] E1 E2 Skel NewC bo ol,
tidy_conc_context E2 inward E3 nil Newln,
measure_less nil In nil Newln)

Post: (varadd (definite_ripple Rule Ad) Ripples)

\SubGoal: (caseSchema Case Hyps (blockedGoal Skel E3 NewlIn) NewC) /

Figure C.5: The forwards _ripple method.

method (see below). This strategy is implemented irrihpte _in _and _speculate
method (see Figure 10.12).

Theforwards _ripple method is shown in Figure C.5. Its preconditions are simi-
lar to the first clause of théefinite _ripple method (see Figure C.2). The conclusion
Conc is rewritten toNewG and the embedding is updated fr@hto E3. The key dif-
ference from standard rippling is that we are constructireggdroof in reverse, as we
are looking for an instantiatioearlier in the proofwhich would have unblocked the
current ripple goal. Confusingly, proof search\i@lamis normally backwards (from
theorem to axioms) so by reversing the proof direction weremg going forwards
(from axioms to theorems). Hence the name of the method.

Because its geverseripple method:

¢ the method ripples wave fronts inwards.

Appendix C. Dynamis Documentation 284

method: (speculate_wavefronts Ripples RipplePlan) \
Goal: (caseSchema _ _ (blockedGoal Goal E _) Conc)

Pre:

(fully_rippled_subs Conc E [] Subs,
speculate_subs Subs)

Post: (compose_plan_steps Ripples RipplePlan)

QubGoal: trueGoal j

Figure C.6: The speculate _wavefronts method.

e the rewrite relation is usdohckwardsrev _rewr _match instead ofewr _maitch .

e The wave measure musicrease

Method: speculate _wavefronts

Thespeculate _wavefronts method is applied when thigple _in _and _speculate
method (see Figure 10.12) has exhaustively rippled in thesimg’ wave fronts so that
they surround meta-variables. It is shown in Figure C.6. Tle¢d tries to find an
instantiation of the goal’s meta-variables which woulddarce the fully rippled-in
wave fronts.

Its preconditions find the pairings of wave front/meta-&aleSubs, and then com-
putes a set of instantiations if one exists. The postcanwstinstantiat®ipplePlan
with the ripple steps that lead to the instantiation, softirey can be applied in reverse

in the main step case plan branch.

Appendix C. Dynamis Documentation 285

method: strong_fertilise \

Goal: (caseSchema _ _ (rippleHyps [AnnHyp]) Conc)

Pre:

(AnnHyp = (annHyp Hyp _ _ 0 _ _),
rewrite_match_with_hyp equiv Hyp trueP Conc trueP T[],

Conc = Hyp)

Post: true

Qubgoal: trueGoal J

Figure C.7: The strong _fertilise method.

Method: strong _fertilise

Strong fertilisation comes in two forms. Firstly, where thgothesis and conclusion
are unified, via thetrong _fertilise method. Secondly, where the hypothesis ap-
pears as a subterm of the conclusion (seestiioeg _fertilise _prop method in the
next section). Thetrong _fertilise method is shown in Figure C.7.

The preconditions first check that the induction hypoth&gscontains no wave
fronts, i.e. the hypothesis measure equals zero. The cgionlis then rewritten to
trueP using the rewrite ruleHyp = trueP , without instantiating the conclusion’s
meta-variables. The method does this before it unifies tleptopositions as a check
that they are unifiable. The check is made because higher onifecation often di-
verges if hypothesis and conclusion are non-unifiable.df#write succeeds then they

are unified.

Appendix C. Dynamis Documentation 286

method: strong_fertilise_prop \

Goal: (caseSchema Case Hyps (rippleHyps AnnHyp) Conc)

Pre:

(not (Conc = (app F), (F = eq; F = iff),

AnnHyp = (annHyp Hyp _ _ 0 (econtext _ _ EC) _),
fully_rippled_in EC,

rewrite_match_with_hyp equiv Hyp trueP Conc NewConc)

Post: true

QUbgoal: (caseSchema Case Hyps postRippleHyps NewConc) /

Figure C.8: The strong _fertilise _prop method.

Method: strong _fertilise _prop

Thestrong _fertilise _prop method is shown in Figure C.8. It performs the second
form of strong fertilisation, namely where the inductiorpbyhesis matches a subterm
of the conclusion. The preconditions are similastrong _fertilise , except that a
check is made that all wave fronts are fully rippled out or Aresidual conclusion

remains as a subgoal.

Method: weak _fertilise

Theweak fertilise method, shown in Figure C.9, performs weak fertilisationereh
the induction hypothesis is used to rewrite one side of arpipeedicate conclusion —
eithereq or iff. The method is parameterised by a flag indicating whetherinduc-

tion hypothesis has been ‘flipped’ before being applied. sdd@al subgoal is left after

fertilisation.

Appendix C. Dynamis Documentation

287

method: (weak_fertilise Swap)

Pre:

(F = eq; F = iff),

swap A B Swap A2 B2,

AnnHyp = (annHyp Hyp _ EH _ EC _),

Hyp = (app F (tuple [X, Y])),

EH = (eapp [] (ebase [1]) (etuple [2] [XH, YH])),
EC = (eapp [] (ebase [1]) (etuple [2] [XC, YC])),
swap X Y Swap X2 Y2,

swap XH YH Swap XH2 _,

swap XC YC Swap XC2 _,

hyp_weight XH2 0 0,

fully_rippled XC2,

rewrite_match_with_hyp equiv X2 Y2 A2 NewA2)

Post: (swap NewA2 B2 Swap A3 B3)

Goal: (caseSchema Case Hyps (rippleHyps [AnnHyp]) (app F (tuple [

A, B))

ijgoalz (caseSchema Case Hyps postRippleHyps (app F (tuple [A3, B3])

method: replace_metavariables
Goal: (caseSchema _ Hyps _ Conc)

Pre:

(metavars Conc [] MVs bool,
abstract_meta_vars Conc MVs [| NewConc)

Post: true

Subgoal: (seqGoal (Hyps >>> NewConc))

\

/
~

/

Figure C.9: The weak fertilise and replace _metavariables

methods.

Appendix C. Dynamis Documentation 288

method: (construct_wf_goals Consts) \
Goal: (stepReduces Hyps KB)

Pre:

(dkb_cases KB Cases,

dkb_constraints KB Consts,

dkb_types KB Types,

length Types N,

setup_constraints N Consts,

list to_goal Cases (wellfound_goals Hyps Consts) RedGoal s)

Post: true

\\fgbgoah RedGoals ///

Figure C.10: The construct _wf _goals method.

Method: replace _metavariables

The replace _metavariables ~ method is shown in Figure C.9. It finds the meta-
variables in a schematic goal and replaces them with urallgrguantifed variables.

The quantifiers appear at the top of the conclusion.

C.3 Wellfoundedness Methods

The theory and implementation of the wellfoundednessesisatvas discussed in 86.5
and 810.4. This section briefly describes the low-level més$tthat did not appear in
§10.4.

Appendix C. Dynamis Documentation 289

method: (ignore_position N) \

Goal: (redGoal N Consts _ _ _)

Pre:

(varadd (ignore N) Consts,
check_satisfiable Consts)

Post: true

Qubgoal: trueGoal /

Figure C.11: The ignore _position method.

Method: construct _wf _goals

Theconstruct _wf_goals method is shown in Figure C.10. It transforms the dummy
meta-levelstepReduces goal to a conjunction of wellfoundedness goals for a step
case. If this is the first step case then the method also pesfgire constraints on
the step case, indicating the measure function used foriedahtion position. At this

point the unknown measures are represented by meta-\esiabl

Method: ignore _position

Theignore _position method is shown in Figure C.11. It can be applied to any
wellfoundedness goal, irrespective of its validity, paiug this leaves at least one
wellfoundedness goal that has not been ignored. The metipoelconditions post an
ignore constraint for the corresponding induction position, ahdaks the current

constraints are still satisfiable, indicating a valid positremains.

Appendix C. Dynamis Documentation 290

method: (begin_estimation N) \

Goal: (redGoal N Consts Hyps Cond A (induce M) B)

Pre:

(varmemb (const_disj MConsts) Consts,
varmemb (measure N M) MConsts,
not (varmemb (ignore N) Consts))

Post: (extract_condition Cond Cond2)

Subgoal:

((estGoal M A B Diff)
k** (seqGoal (Hyps >>> (app imp (tuple [Cond2, Diff]))))) /

Figure C.12: The begin _estimation ~ method.

C.3.1 Estimation Methods

This section describes the low-level methods used to im@hgalther’s estimation
method, employed by our strategy to discharge wellfoundssigoals. These methods

are organised into a strategy by #stimation _strat method (see Figure 10.17).

Method: begin _estimation

Thebegin _estimation method is shown in Figure C.12. It takes a wellfoundedness
goal and sets up an estimation proof, consisting of two salsg&-irstly, an estimation
goal, which claims i) that one term is equal to or smaller thaother under a measure
and ii) that it being strictly smaller is equivalent®df . Secondly, a goal stating that

the difference equivaleiiff is implied by the corresponding case conditions.

Appendix C. Dynamis Documentation

291

method: lower_estimate
Goal: (estGoal M L R (app or (tuple [DiffLit, DiffEquiv])))

Pre:

(not (headvar_osyn R),

R = (app F Args),
lower_arg_bound F N M DiffPred)

Post:
(nth_arg Args N Arg,
DiffPred Args DiffLit)

ijgoalz (estGoal M L Arg DiffEquiv)

method: upper_estimate
Goal: (estGoal M L R (app or (tuple [DiffLit, DiffEquiv])))

Pre:

(not (headvar_osyn L),

L = (app F Args),
upper_arg_bound F N M DiffPred)

Post:
(nth_arg Args N Arg,
DiffPred Args DiffLit)

Qubgoal: (estGoal M Arg R DiffEquiv)

2N

Figure C.13: The lower _estimate and upper _estimate

methods.

Appendix C. Dynamis Documentation 292

method: trivial_estimate \

Goal: (estGoal M X Y falseP)

Pre:

(not (headvar_osyn M),

(headvar_osyn X; (not (headvar_osyn X), obj_atom X)),
(headvar_osyn Y; (not (headvar_osyn Y), obj_atom Y)),
X=Y)

Post: true

Qubgoal: trueGoal /

Figure C.14: The trivial ~ _estimate method.

Method: lower _estimate

Thelower _estimate method is shown in Figure C.13. It applies the lower estinmatio
rule (see 86.5.4), i.e. it takes an estimation goal wheréstimaller’ term has a top
functor f that is lower argument bounded, and removes this functoorto the sub-
goal. The difference equivalent is instantiated to a dijiom of the difference literal

for f and a fresh meta-variable.

Method: upper _estimate

Theupper _estimate method, shown in Figure C.13, implements Walther’s original
form of estimation. It is analogous to thmver _estimate method, except an upper

argument bounded function is stripped off the ‘larger’ terihthe inequality.

Appendix C. Dynamis Documentation 293

method: abstract_metavars \

Goal: Goal

Pre:

(Goal = (seqGoal (Hyps >>> Conc)),

fold_left (v1\ t\ v2\ (metavars t v1 v2 bool)) [] [Conc|Hyps] Vars,

abstract_goal Goal Vars [| AbsGoal)

Post: true

Qubgoal: AbsGoal /

Figure C.15: The abstract _metavars method.

Method: trivial _estimate

The trivial _estimate method is shown in Figure C.14. The method discharges
trivial estimation goals. The preconditions check thatheside of the inequality is
either a meta-variable or an atom, and unifies the two sides difference equivalent

is instantiated tdalseP , indicating that this inequality is not strict.

Method: abstract _metavars

Theabstract _metavars method is shown in Figure C.15. The method collects to-
gether the meta-variables in a sequent goal and replaceswiita variables. These
variables are univerally quantified in the subgoal.

The purpose of this method is two remove any meta-variabtes the difference

equivalent goal before rewriting is applied.

Appendix C. Dynamis Documentation 294

method: set_conditions \

Goal: (caseGoal C M Hs F)
Pre: (inst_var_literal F)

Post: true

Subgoal: (caseGoal C M Hs F)

o _/

Figure C.16: The set _conditions method.

C.4 Case Synthesis Methods

The implementation of the wellfoundedness strategy wasudsed in 810.4. This

section briefly describes the low-level methods that didapgptear there.

Method: set _conditions

Theset _conditions method is shown in Figure C.16. Itinstantiates the metaatbtei
representing any unknown case conditions, so that the gubsecase strategy does

not accidently instantiate it.

Method: case _equiv

Figure C.17 shows thease _equiv. method. This method simplifies the case formulae
during the case exhaustiveness proof using equivalensemiiag steps, i.e. rewriting
with certain rules or removing ‘solved’ disjuncts. Thesepstdo not need to be back-
tracked over, so several are applied together withiretpes _case predicate, which

prevents this happening.

Appendix C. Dynamis Documentation 295

method: (case_equiv Rules) \

Goal: Goal
Pre: (equiv_case Goal NewGoal Rules)

Post: true

Qubgoal: NewGoal /

Figure C.17: The case _equiv method.

This is an unelegant way to represent these proof steps —vidio@dil method ap-
plications would have been better. However, without a cuthodical available in
AClamthis is the only way to prevent needless backtracking thnaigch sequences

of simplification (see also §10.3.4).

Method: exists _casesplit

The exists _casesplit method, shown in Figure C.18, applies the existential case
split method described in 85.4.2. Although its precondsgiseem quite complex, they

implement the heuristics described in full in 85.6.

Method: case _induction

Thecase _induction method is shown in Figure C.19. It applies induction to theecas
formula during the case exhaustiveness proof, followirg lieuristics described in
85.6. The method consists of two clauses, correspondirtgetonto different contexts
in which it was determined induction could be applied.

After induction, rippling and fertilisation are appliedttee case formula, using the

case _ripple andcase _fertilisation methods shown in Figure C.20.

Appendix C. Dynamis Documentation

296

ﬁ/lethod: (exists_casesplit Scheme)
Goal: (aseGoal CasePair Missing Hyps Conc)

Pre:

(not (rewritable Conc),

metavars Conc [] Vars bool,

memb (otype_of Var Type) Vars,

not (headvar_osyn Type),

once (junctive or Disjunct Conc,
junctive and Conjunct Conc,

((Conjunct = (app eq (tuple [UTerm, (app F Args)])),
defined_function F (ATypes arrow),
contains_metavar Args ATypes Var Type,
not (is_univ_var UTerm));

(not (Conjunct = (app eq)),
contains_metavar Conjunct bool Var Type))),
exhaustive Scheme Type ExCases,
for_each ExCases (some_case (c\
(sigma t\
(sigma n\ (not (not (case_term ¢ Var, rewritable Conc))))))

Post:
(map_junction or (split_exist Var ExCases) Conc NewConc,
mappred Hyps (reembed_casehyp NewConc) NewHyps)

QUbgoal: (caseGoal CasePair Missing NewHyps NewConc)

Figure C.18: The exists _casesplit method.

Appendix C. Dynamis Documentation

297

method: (case_induction Scheme)

Goal: Goal
Pre:
(Goal = (caseGoal _ _ _ Conc),

not (rewritable Conc),

junctive or Disjunct Conc,

universal_vars Disjunct [UVars,

subset [] IndSet UVars,

mappred2 IndSet (x\ y\ z\ (x = (otype_of y 2))) IndVars Types,

case_scheme Scheme Types IndVars Goal SubGoals,

for_each_goal SubGoals (g\ (sigma c\ (get_conc g c, rewrita ble c))))

Post: (map_goal SubGoals rename_and_embed NewSubGoals)

ijgoalz NewSubGoals

method: (case_induction Scheme)

Goal: Goal
Pre:
(Goal = (caseGoal _ _ _ Conc),

not (rewritable Conc),
junctive or Disjunct Conc,
universal_vars Disjunct [] UVars,
subset [] IndSet Uvars,
mappred2 IndSet (x\ Y\ z\ (x = (otype_of y z))) IndvVars Types,
case_scheme Scheme Types IndVars Goal SubGoals,
not (for_each_goal SubGoals (g\ (sigma c\
(get_conc g c, rewritable c)))),
once (memb (otype_of UVar Type) IndSet,
junctive and (app eq (tuple [UVar, (app F _)])) Disjunct,
not (headvar_osyn F),
defined_function F (_ arrow Type)))

Post: (map_goal SubGoals rename_and_embed NewSubGoals)

ijgoalz NewSubGoals

2N

Figure C.19: The two clauses of the case _induction method.

Appendix C. Dynamis Documentation

298

ﬂethod: (case_ripple Rule)
Goal: (caseGoal Case Missing Hyps Conc)

Pre:

(wave_rule_list Rules,

rewrite_outer (rewr_list Rules rewr_match) Rule _ Conc New
nth Hyps N (caseHyp Hyp E1 Outl) Rest,

reverse Ad At,

subterm_embed undir Rule At [] E1 E2 Hyp NewConc bool,
tidy_conc_context E2 outward E3 Out3 nil,

measure_less Outl nil Out3 nil)

Post: (nth NewHyps N (caseHyp Hyp E3 Out3) Rest)

QubGoal: (caseGoal Case Missing NewHyps NewConc)

Conc trueP Ad,

method: case_fertilisation
Goal: (caseGoal Case Missing Hyps Conc)

Pre:

(memb (caseHyp Hyp _) Hyps,
junctive or Disj Hyp,

junctive and Conj Disj,
case_fert Conj Conc NewConc)

Post: true

SubGoal: (caseGoal Case Missing Hyps NewConc)

N

Figure C.20: The case _ripple and case _fertilisation

methods.

Appendix C. Dynamis Documentation 299

method: remove_case_hyps \

Goal: (caseGoal C M Hs F)
Pre: true

Post: (remove_casehyps Hs NewHs)

QubGoal: (caseGoal C M NewHs F) /

Figure C.21: The remove _case _hyps method.

Method: remove _case _hyps

The remove _case _hyps method is shown in Figure C.21. It strips the case formula
of any inductive hypotheses, if rippling and/or fertiligat fail. This happens when
induction was used to achieve a case split, rather than argemductive argument

(see 85.6).

Method: trivial _case

Thetrivial _case method is shown in Figure C.22. It discharges trivially case f
mulae during the case exhaustiveness proof.

Method: missing _case

Themissing _case method is shown in Figure C.22. The method discharges tgvial
false case formulae during the case exhaustiveness prubfidantifies the missing
proof case that corresponds to this failed subgoal. The isagdded to the list of

missing caseslissing

Appendix C. Dynamis Documentation 300

method: trivial_case \

Goal: (caseGoal _ _ _ trueP)
Pre: true

Post: true

Qubgoal: trueGoal

AN

method: (missing_case AbsCase)
Goal: (caseGoal (case Cond _ Term) Missing _ falseP)
Pre: true

Post:

(univ_vars Cond [] Vars,

univ_vars Term Vars Vars2,

abstract_case Vars2 [] (case Cond _ Term) AbsCase,
varadd AbsCase Missing)

Qubgoal: trueGoal /

Figure C.22: The trivial ~ _case and missing _case methods.

C.5 Base Case Methods

The base case strategy was described in 810.6, and thisrspodivides definitions for
the low-level methods which were not given there. Theserawngite |, rewrite _equiv ,

rewrite _nonequiv andnormalise (see Figure C.23 and Figure C.24).

Appendix C. Dynamis Documentation

301

method: rewrite

(then_meth (normalise all_i_nf)
(then_meth (some_meth rewrite_equiv)
(try_meth
(repeat_meth
(then_meth (some_meth rewrite_nonequiv)

K (some_meth rewrite_equiv))))))

ﬂethod: (rewrite_equiv Rules)
Goal: Goal

Pre:
(equiv_simplification Goal SubGoal Rules)

Post: true

QubGoal: SubGoal

AN

method: (rewrite_nonequiv Rule)
Goal: (seqGoal (H >>> C))

Pre:

(sym_eval_rewrites_list Rules,

rewrite_outer (rewr_list Rules rewr_unif) Rule Dir C NewC t
not (Dir = equiv))

Post:

(condition_goal Cond trueP H (c\ (seqGoal (H >>> c)))
(seqGoal (H >>> NewC)) SubGoal)

QubGoal: SubGoal

AN

rueP _,

/

Figure C.23: The rewrite , rewrite _equiv and rewrite _nonequiv methods.

Appendix C. Dynamis Documentation 302

method: (normalise NF) \

Goal: G
Pre: (NF G G2)

Post: true

ijGoaI: G2 J

Figure C.24: The normalise method.

Appendix D

Dynamis Traces

This online appendix provides in the full trace files for theleation theorems of

Chapter 11. It can be found atp://homepages.inf.ed.ac.uk/s9362054/thesis

303

Bibliography

[Allen et al., 2000] Allen, S., Constable, R., Eaton, R., Kreiz, and Lorigo, L.
(2000). The Nuprl open logical environment. In McAllestEr, A., editor, Au-
tomated Deduction - CADE-17: 17th International ConferenneAotomated De-
duction, Pittsburgh, PA, USA, June 2000, Proceedinggume 1831 ofLecture
Notes in Artificial Intelligencepages 170-176. Springer.

[Aubin, 1976] Aubin, R. (1976)Mechanizing Structural InductiorPhD thesis, Uni-
versity of Edinburgh.

[Baader and Nipkow, 1998] Baader, F. and Nipkow, T. (1998%rm Rewriting and
All That Cambridge University Press.

[Bachmair, 1991] Bachmair, L. (1991fanonical Equational ProofsBirkhauser.

[Bajcsy, 1993] Bajcsy, R., editor (1993roceedings of the 13th International Joint
Conference on Artificial Intelligence, Chaény, France volume 1. Morgan Kauf-
mann.

[Basin and Walsh, 1993] Basin, D. and Walsh, T. (1993). Difieesunification. In
[Bajcsy, 1993], pages 116-122. Also available as TechnicpbR&MPI-1-92-247,
Max-Planck-Institut @ir Informatik.

[Basin and Walsh, 1996] Basin, D. and Walsh, T. (1996). A cale@ibr and termina-
tion of rippling. Journal of Automated Reasonintg(1-2):147-180.

[Benznmilller et al., 1997] Benziler, C., Cheikhrouhou, L., Fehrer, D., Fiedler,
A., Huang, X., Kerber, M., Kohlhase, M., Konrad, K., Meier,,AMelis, E.,
Schaarschmidt, W., Siekmann, J. H., and Sorge, V. (199¥nega: Towards a
mathematical assistant. In McCune, W., edifarfomated Deduction — CADE-14:
14th International Conference on Automated Deduction, TeiasNorth Queens-
land, Australia, July 1997, Proceedingslume 1249 ot ecture Notes in Artificial
Intelligence pages 252—-255. Springer.

[Bouhoula et al., 1992] Bouhoula, A., Kounalis, E., and Rusindwy M. (1992).
SPIKE, an automatic theorem prover. In [Voronkov, 1992gm460-462.

304

Bibliography 305

[Boulton et al., 1998] Boulton, R., Slind, K., Bundy, A., and Gong M. J. C. (1998).
An interface betwee@lamand HOL. In Grundy, J. and Newey, M. C., editoffie-
orem Proving in Higher Order Logics, 11th International Cerdnce, TPHOLS'98,
Canberra, Australia, September 1998, Proceedinvgtume 1479 ot ecture Notes
in Computer Scien¢@ages 87-104. Springer.

[Boyer and Moore, 1979] Boyer, R. S. and Moore, J. S. (1978)Computational
Logic. Academic Press. ACM monograph series.

[Boyer and Moore, 1988] Boyer, R. S. and Moore, J. S. (1988) Computational
Logic Handbook Academic Press. Perspectives in Computing, Vol 23.

[Boyer and Moore, 1992] Boyer, R. S. and Moore, J. S. (1992). @rdtfiiculty of
automating inductive reasoning. Rroceedings of the Workshop on Mathematical
Induction, CADE-11

[Bundy, 1988] Bundy, A. (1988). The use of explicit plans todgiinductive proofs.
In [Lusk and Overbeek, 1988], pages 111-120.

[Bundy, 1991] Bundy, A. (1991). A science of reasoning. In leasd. L. and Plotkin,
G., editors,Computational Logic: Essays in Honor of Alan Robinspages 178—
198. MIT Press.

[Bundy, 1994] Bundy, A., editor (1994)Automated Deduction — CADE-12: 12th
International Conference on Automated Deduction, NancyhéeaJune 1994, Pro-
ceedingsvolume 814 ol_ecture Notes in Artificial Intelligencé&pringer.

[Bundy, 2001] Bundy, A. (2001). The automation of proof by neattatical induction.
In Robinson, A. and Voronkov, A., editorsjandbook of Automated Reasonjing
volume 1, pages 845-911. Elsevier Science.

[Bundy and Green, 1996] Bundy, A. and Green, |. (1996). An erpental compari-
son of rippling and exhaustive rewriting. Research paper Bgpartment of Arti-
ficial Intelligence, University of Edinburgh.

[Bundy et al., 1990a] Bundy, A., Smaill, A., and Hesketh, J90#). Turning eureka
steps into calculations in automatic program synthesiClamke, S. L. H., editor,
Proceedings of UK IT 9Qpages 221-226.

[Bundy et al., 1993] Bundy, A., Stevens, A., van HarmelenElahd, A., and Smaill,
A. (1993). Rippling: A heuristic for guiding inductive praofArtificial Intelligence
62:185-253.

[Bundy et al., 1991] Bundy, A., van Harmelen, F., Hesketh,rdd, @maill, A. (1991).
Experiments with proof plans for inductionJournal of Automated Reasoning
7(3):303-324.

Bibliography 306

[Bundy et al., 1989] Bundy, A., van Harmelen, F., Hesketh,rid, 8tevens, A. (1989).
A rational reconstruction and extension of recursion asialyln Sridharan, N. S.,
editor, Proceedings of the 11th International Joint Conference dtifidial Intelli-
gence, Detroit, USApages 359-365. Morgan Kaufmann.

[Bundy et al., 1990b] Bundy, A., van Harmelen, F., Horn, C., anthii, A. (1990b).
The Oyster-Clam system. In [Stickel, 1990], pages 647—-648.

[Burstall, 1969] Burstall, R. (1969). Proving properties obgrams by structural in-
duction. The Computer Journall2(1):41-48.

[Burton, 1988] Burton, D. M. (1988)The History of Mathematics - An Introduction
William C. Brown, Dubuque, lowa.

[Castaing, 1985] Castaing, J. (1985). How to facilitate treopof theorems by using
the induction-matching, and by generalization. In [Jo$BB5], pages 1208-1213.

[Cheikhrouhou and Siekmann, 1998] Cheikhrouhou, L. and SaekmJ. H. (1998).
Planning diagonalisation proofs. In Giunchiglia, F., edirtificial Intelligence:
Methodology, Systems, and Applications, 8th InternatiQuaference, AIMSA '98,
Sozopol, Bulgaria, September 1998, Proceedingkime 1480 ot.ecture Notes in
Computer Sciencgages 167-180. Springer.

[Comon, 2001] Comon, H. (2001). Inductionless induction. IrbiReon, A. and
Voronkov, A., editorsHandbook of Automated Reasonimgplume 1, pages 913-
962. Elsevier Science.

[Comon and Nieuwenhuis, 2000] Comon, H. and Nieuwenhuis, RAQR0Anduction
= l-axiomatization + first-order consistendpformation and Computatiqri59(1—
2):151-186.

[Dennis and Brotherston, 2002] Dennis, L. and Brotherstof20D2).AClam v4.0.1:
User/Developer's ManualMathematical Reasoning Group, Division of Informat-
ics, University of Edinburgh.

[Dennis et al., 2000] Dennis, L., Bundy, A., and Green, |. @00aking a productive
use of failure to generate witness for coinduction from dyeat proof attempts.
Annals of Mathematics and Artificial Intelligenc29:99-138. Also available as
paper No. RR0004 in the Informatics Report Series.

[Dershowitz, 1987] Dershowitz, N. (1987). Termination edwriting. Journal of Sym-
bolic Computation3:69-115.

Bibliography 307

[Dershowitz and Hoot, 1993] Dershowitz, N. and Hoot, C. (1)998opics in termi-
nation. In Kirchner, C., editofRewriting Techniques and Applications, 5th Inter-
national Conference, RTA-93, Montreal, Canada, June 1993;é&dingsvolume
690 ofLecture Notes in Computer Scienpages 198-212. Springer.

[Free, 1992] Free, N. (1992). Summing series using prodfiplaMaster’s thesis,
Department of Atrtificial Intelligence, University of Edialgh.

[Giesl, 1995a] Giesl, J. (1995a). Automated terminatiooofs with measure func-
tions. In Ipke Wachsmuth, Claus-Rainer Rollinger, W. B., edk##95: Advances
in Artificial Intelligence, 19th Annual German ConferenceAutificial Intelligence,
Bielefeld, Germany, September 1995, Proceedimgisime 981 ol ecture Notes in
Artificial Intelligence pages 149-160. Springer.

[Giesl, 1995b] Giesl, J. (1995b). Generating polynomialesngs for termination
proofs. In [Hsiang, 1995], pages 426—431.

[Giesl, 1995c] Giesl, J. (1995c). Termination analysisftorctional programs using
term orderings. In Mycroft, A., editoBtatic Analysis, Second International Sympo-
sium, SAS’95, Glasgow, UK, September 1995, Proceediofisme 983 ofLNCS
pages 154-171.

[Gordon and Melham, 1993] Gordon, M. J. C. and Melham, T. Ftpesi(1993).In-
troduction to HOL: A theorem proving environment for higleeder logic Cam-
bridge University Press.

[Gow and Bundy, 2000] Gow, J. and Bundy, A. (2000). N@&amsystem: Response
to challenge problems. In Schurmann, C., edi®sgceedings of the 9th Workshop
on Automation of Proof by Mathematical Induction, CADE-17

[Gow et al., 1999] Gow, J., Bundy, A., and Green, I. (1999). disions to the esti-
mation calculus. In Ganzinger, H., McAllester, D. A., and&okov, A., editors,
Logic for Programming and Automated Reasoning, 6th Inteonal Conference,
LPAR’99, Thilisi, Georgia, September 1999, Proceedingtume 1705 ot ecture
Notes in Artificial Intelligencgpages 258-272. Springer.

[Gramlich, 1990] Gramlich, B. (1990). UNICOM: a refined contma based induc-
tive theoremprover. In [Stickel, 1990], pages 655—656.

[Harrison, 1996] Harrison, J. (1996). Formalized matheécsatTechnical Report 36,
Turku Centre for Computer Science (TUCS), Finland.

[Hesketh, 1991] Hesketh, J. (1991)sing Middle-Out Reasoning to Guide Inductive
Theorem ProvingPhD thesis, University of Edinburgh.

Bibliography 308

[Hsiang, 1995] Hsiang, J., editor (19953ewriting Techniques and Applications, 6th
International Conference, RTA-95, Kaiserslautern, Germamyil 1995, Proceed-
ings, volume 914 ol_ecture Notes in Computer ScienS&pringer.

[Huang et al., 1995] Huang, X., Kerber, M., and CheikhrouHay(1995). Adapting
the diagonalization method by reformulations. In Levy, AddNayak, P., editors,
Proceedings of the 2nd Symposium on Abstraction, Refotionjand Approxima-
tion. Ville d’Estérel, Canada.

[Huet, 1975] Huet, G. (1975). A unification algorithm for ggbA-calculus. Theoret-
ical Computer Sciencd.:27-57.

[Huet, 1991] Huet, G. (1991). The Gilbreath card trick: A easudy in axiomati-
zation and proof development in the COQ proof assistant. MlieahReport 1511,
INRIA.

[Huet et al., 1997] Huet, G., Kahn, G., and Paulin-Mohring(X®97). The Coq proof
assistant — A tutorial, version 6.1. Technical Report 20RIAL

[Hummel, 1990] Hummel, B. (1990)Generation of induction axioms and generali-
sation PhD thesis, Universit Karlsruhe.

[Hutter, 1990] Hutter, D. (1990). Guiding inductive proois [Stickel, 1990], pages
147-161.

[Hutter, 1994] Hutter, D. (1994). Synthesis of inductiorderngs for existence
proofs. In [Bundy, 1994], pages 29-41.

[Hutter, 1997] Hutter, D. (1997). Colouring terms to contegjuational reasoning.
Journal of Automated Reasonint:399-442.

[Hutter, 2000] Hutter, D. (2000). Annotated reasonirignals of Mathematics and
Artificial Intelligence 29:183-222.

[Hutter and Kohlhase, 1997] Hutter, D. and Kohlhase, M. @)9®8anaging structural
information by higher-order colored unificatiodournal of Automated Reasoning
18(3):399-442.

[Hutter and Sengler, 1996] Hutter, D. and Sengler, C. (1996 A: the next genera-
tion. In [McRobbie and Slaney, 1996], pages 288-292.

[Ireland, 1992] Ireland, A. (1992). The use of planningicgtin mechanizing induc-
tive proof. In [Voronkov, 1992], pages 178-189.

[Ireland and Bundy, 1996] Ireland, A. and Bundy, A. (1996).dRrctive use of failure
in inductive proof.Journal of Automated Reasonintp:79-111.

Bibliography 309

[Ireland and Bundy, 1999] Ireland, A. and Bundy, A. (1999). dwgtic verication
of functions with accumulating parameterdournal of Functional Programming
9:225-245.

[Ireland et al., 1999] Ireland, A., Jackson, M., and Reid, I290). Interactive Proof
Critics. Formal Aspects of Computing: The International Journal ofrral Meth-
ods 11(3):302—-325. Longer version available from Dept. of Catmg and Elec-
trical Engineering, Heriot-Watt University, Research MeR/98/15.

[Jackson, 1999] Jackson, M. (1999)Interacting with Semi-automated Theorem
Provers via Interactive Proof Critics PhD thesis, School of Computing, Napier
University.

[Jamnik et al., 2002] Jamnik, M., Kerber, M., and Pollet, BDQ2). Automatic learn-
ing in proof planning. In van Harmelen, F., edit®roceedings of the 15th Eure-
opean Conference on Artificial Intelligence, ECAI 2002, Lyenance pages 282—
286. 10S Press.

[Joshi, 1985] Joshi, A. K., editor (1985Rroceedings of the 9th International Joint
Conference on Artificial Intelligence, Los Angeles, CA, U8Argan Kaufmann.

[Jouannaud and Kounalis, 1989] Jouannaud, J.-P. and KieuBa(1989). Automatic
proofs by induction in theories without constructdrgormation and Computatign
82(1):1-33.

[Kapur and Sakhanenko, 2003] Kapur, D. and Sakhanenko, K2003). Automatic
generation of generalization lemmas for proving propsntietail-recursive defini-
tions. In Basin, D. A. and Wolff, B., editor§heorem Proving in Higher Order Log-
ics, 16th International Conference, TPHOLs 2003, Romey,lt&eptember 2003,
Proceedingsvolume 2758 oL ecture Notes in Computer Scienpages 136—-154.
Springer.

[Kapur and Subramaniam, 1996] Kapur, D. and Subramaniam(18D6). Lemma
discovery in automating induction. In [McRobbie and Slari®g6], pages 538-
552.

[Kapur and Zhang, 1995] Kapur, D. and Zhang, H. (1995). Anraesv of rewrite
rule laboratory (RRL). Journal of Computer Mathematics with Applications
29(2):91-114.

[Kaufmann and Moore, 1996] Kaufmann, M. and Moore, J. S. §)99ACL2: An
industrial strength version of Ngthm. Froceedings of the Eleventh Annual Con-
ference on Computer Assurance, 1996. COMPASY&fes 23—34, Gaithersburg,
Maryland. National Institute of Standards and Technology.

Bibliography 310

[Kerber, 1998] Kerber, M. (1998). Proof planning — A praatiapproach to mecha-
nised reasoning in mathematics. In Bibel, P. H. S. W., edtotpmated Deduction
— A Basis for Applicationschapter Vol. 111, pages 77-95. Kluwer.

[Knuth and Bendix, 1970] Knuth, D. and Bendix, P. (1970). Senpbrd problems
in universal algebra. In Leech, J., edit@omputational Problems in Abstract Al-
gebras pages 263-297. Pergamon Press.

[Kraan, 1994] Kraan, I. (1994)Proof Planning for Logic Program Synthesi®hD
thesis, Univeristy of Edinburgh.

[Kraan et al., 1996] Kraan, I., Basin, D., and Bundy, A. (199djddle-out reasoning
for synthesis and inductiodournal of Automated Reasonintp(1-2):113-145.

[Kreisel, 1965] Kreisel, G. (1965).ectures on Modern Mathematjcslume 3, chap-
ter Mathematical Logic, pages 95-195. John Wiley and Sons.

[Lusk and Overbeek, 1988] Lusk, E. L. and Overbeek, R. A.cedli{1988) 9th Inter-
national Conference on Automated Deduction, Argonne,diinUSA, May 1988,
Proceedingsvolume 310 ol_ecture Notes in Computer Scien&pringer.

[Maclean, 1999] Maclean, E. (1999). Generalisation astecd¢a the induction strat-
egy. Master’s thesis, Department of Artificial Intelligendniversity of Edinburgh.

[McAllester and Arkoudas, 1996] McAllester, D. and Arkosd&. (1996). Walther
recursion. In [McRobbie and Slaney, 1996], pages 643—657.

[McCarthy, 1963] McCarthy, J. (1963). A basis for a mathenadtibeory of com-
putation. In Braffort, P. and Hirschberg, D., edito@mputer Programming and
Formal Systemspages 33-70. North-Holland, Amsterdam. Available onfnoen
http://www-formal.stanford.edu/jmc/basis.html

[McCune, 1990] McCune, W. (1990). The Otter user’s guide. Texl Report
ANL/90/9, Argonne National Laboratory.

[McRobbie and Slaney, 1996] McRobbie, M. A. and Slaney, J. #itpes (1996) Au-
tomated Deduction — CADE-13: 13th International Conferenté&otomated De-
duction, New Brunswick, NJ, USA, August 1996, Proceedimgjsme 1104 ot.ec-
ture Notes in Artificial IntelligenceSpringer.

[Melis and Meier, 2000] Melis, E. and Meier, A. (2000). Prq@&nning with mul-
tiple strategies. In Lloyd, J. W., Dahl, V., Furbach, U., Ker, M., Lau, K.-K.,
Palamidessi, C., Pereira, L. M., Sagiv, Y., and Stuckey,, Rditors,Proceedings
of the First International Conference on Computational Lo@it. 2000) volume
1861 ofLecture Notes in Computer Scienpages 644—659. Springer.

Bibliography 311

[Melis et al., 2000] Melis, E., Zimmer, J., andiMer, T. (2000). Extensions of con-
straint solving for proof planning. In Horn, W., editdeCAl 2000, Proceedings
of the 14th European Conference on Artificial Intelligencetlid, Germany pages
229-233. 10S Press.

[Monroy, 2000] Monroy, R. (2000). The use of abduction andireon-editor tech-
niques for the correction of faulty conjectures. In Alexand. and Flener, P., edi-
tors,Proceedings of ASE-2000: The 15th IEEE Conference on Aussh&ftware
Engineering, Grenoble, Fran¢gpages 91-100. IEEE CS Press.

[Nadathur and Miller, 1998] Nadathur, G. and Miller, D. (B)9 Higher-order logic
programming. In Gabbay, D. M., Hogger, C. J., and Robinson,,kditors Hand-
book of Logics for Atrtificial Intelligence and Logic Programmg volume 5, pages
499-590. Clarendon Press, Oxford.

[Nederpelt et al., 1994] Nederpelt, R. P., Geuvers, J. H.,daW¥Trijer, R. C., editors
(1994). Selected Papers on Automattolume 133 ofStudies in Logic and the
Foundations of MathematicNorth-Holland.

[Newell et al., 1956] Newell, A., Shaw, C., and Simon, H. (1@5%he logic theory
machine.IRE Transactions Information Theqr®(3):61-79.

[Owre et al., 1996] Owre, S., Rajan, S., Rushby, J. M., Shaihkagnd Srivas, M. K.
(1996). PVS: Combining specification, proof checking, andleta@hecking. In
Alur, R. and Henzinger, T. A., editor§omputer Aided Verification, 8th Interna-
tional Conference, CAV '96, New Brunswick, NJ, USA, August 19@@eRdings
volume 1102 of_ecture Notes in Computer Scienpages 411-414. Springer.

[Pascal, 1665] Pascal, B. (1663)aité du triangle arithnetique avec quelques autres
petits traiés sur la me magre In Brunschvicg, L., Boutroux, P. and Gazier, F,
editors,Oeuvres de Blaise Pascdl978.

[Paulson, 1989] Paulson, L. C. (1989). The foundation of aegertheorem prover.
Journal of Automated Reasonirg363—397.

[Paulson, 1991] Paulson, L. C. (199ML for the Working ProgrammerCambridge
University Press, Cambridge, UK.

[Pientka and Kreitz, 1999] Pientka, B. and Kreitz, C. (1999ut@gating inductive
specification proofsFundamenta Informatica&9(1-2):189-208.

[Protzen, 1994] Protzen, M. (1994). Lazy generation of ctdun hypotheses. In
[Bundy, 1994], pages 42-56.

Bibliography 312

[Protzen, 1995] Protzen, M. (1995).azy Generation of Induction Hypotheses and
Patching Faulty ConjecturesPhD thesis, Technical University of Darmstadt, Ger-
many.

[Rashed, 1994] Rashed, R. (199%he development of Arabic mathematics : between
arithmetic and algebraLondon.

[Richardson et al., 2000] Richardson, J., Dennis, L., Govand,Jackson, M. (2000).
User/programmer manual for theClam proof planner (version 2.0.0Mathemat-
ical Reasoning Group, Division of Informatics, UniversityEdinburgh.

[Richardson and Smaill, 2001] Richardson, J. and Smaill, A013. Continuations
of proof strategies. In Gér R., Leitsch, A., and Nipkow, T., editorslCAR 2001
— Short Papers, International Joint Conference on Autom&edsoning pages
130-139.

[Richardson et al., 1998] Richardson, J., Smaill, A., and Grée(1998). System
description: Proof planning in higher-order logic wiClam In Kirchner, C.
and Kirchner, H., editorsAutomated Deduction — CADE-15: 15th International
Conference on Automated Deduction, Lindau, Germany, Ju)8,1Broceedings
volume 1421 ot ecture Notes in Atrtificial Intelligen¢g@ages 129-133. Springer.

[Schreye and Decorte, 1994] Schreye, D. D. and Decorte, 241 Termination of
logic programs: The never ending stadgurnal of Logic Programmingl9/20:199—
260.

[Sengler, 1996] Sengler, C. (1996). Termination of algongiover non-freely gener-
ated datatypes. In [McRobbie and Slaney, 1996], pages 1851-13

[Shankar, 1994] Shankar, N. (1994)etamathematics, Machines, and Godel’s Proof
Cambridge University Press.

[Smaill and Green, 1996] Smaill, A. and Green, |. (1996). héigorder annotated
terms for proof search. In von Wright, J., Grundy, J., and idarr, J., editorsThe-
orem Proving in Higher Order Logics, 9th International Corgiece, TPHOLS'96,
Turku, Finland, August 1996, Proceedingslume 1125 ot.ecture Notes in Com-
puter Sciencgpages 399-413. Springer.

[Steinbach, 1995] Steinbach, J. (1995). Automatic tertrongproofs with transfor-
mation orderings. In [Hsiang, 1995], pages 11-25.

[Stevens, 1988] Stevens, A. (1988). A rational reconsimncdf Boyer & Moore’s
technique for constructing induction formulas. In Kodfgtd., editor, 8th Eu-
ropean Conference on Artificial Intelligence, ECAI 88, MuniGermany, August
1988, Proceedinggages 565-570. Pitmann.

Bibliography 313

[Stevens, 1990] Stevens, A. (1990An Improved Method for the Mechanisation of
Inductive Proof PhD thesis, Department of Artificial Intelligence, Unisity of
Edinburgh.

[Stickel, 1990] Stickel, M. E., editor (1990)1.0th International Conference on Auto-
mated Deduction, Kaiserslautern, Germany, July 1990, Rrdtegs volume 449
of Lecture Notes in Artificial Intelligenc&pringer.

[Trybulec and Blair, 1985] Trybulec, A. and Blair, H. (1985). i@puter assisted rea-
soning with Mizar. In [Joshi, 1985], pages 26—28.

[van der Waerden, 1961] van der Waerden, B. L. (1963¢ience AwakeningNew
York.

[van Harmelen, 1996] van Harmelen, F. (1998)e Clam proof planner: user manual
and programmer manual (version 2.5Mathematical Reasoning Group, Division
of Informatics, University of Edinburgh.

[Voronkov, 1992] Voronkov, A., editor (1992)Logic Programming and Automated
Reasoning, International Conference, LPAR’92, St. PetegstRussia, July 1992,
Proceedingsvolume 624 ol_ecture Notes in Atrtificial Intelligencé&pringer.

[Walsh, 1996] Walsh, T. (1996). A divergence critic for irdive proof. Journal of
Atrtificial Intelligence Researgh:209-235.

[Walther, 1988] Walther, C. (1988). Argument-bounded altyons as a basis for au-
tomated termination proofs. In [Lusk and Overbeek, 198883 602—621.

[Walther, 1992] Walther, C. (1992). Computing induction am® In
[Voronkov, 1992], pages 381-392.

[Walther, 1993] Walther, C. (1993). Combining induction ar® by machine. In
[Bajcsy, 1993], pages 95-101.

[Walther, 1994a] Walther, C. (1994a). Mathematical indueti In Gabbay, D. M.,
Hogger, C. J., and Robinson, J. A., editddgndbook of Logic in A.l. and Logic
Programming volume 2, pages 127-228. Oxford University Press.

[Walther, 1994b] Walther, C. (1994b). On proving terminataf algorithms by ma-
chine. Artificial Intelligence 71(1):101-157.

[Yoshida et al., 1994] Yoshida, T., Bundy, A., Green, |., al$., and Basin, D. A.
(1994). Coloured rippling: an extension of a theorem proviegristic. In Cohn,
A. G., editor,Proceedings of the Eleventh European Conference on Artifitiel-
ligence, Amsterdam, The Netherlandages 85—-89. John Wiley and Sons.

