21 research outputs found

    The AutoI approach for the orchestration of autonomic networks

    No full text
    Existing services require assurable end to-end quality of service, security and reliability constraints. Therefore, the networks involved in the transport of the data must cooperate to satisfy those constraints. In a next generation Internet, each of those networks may be managed by different entities. Fur thermore, their policies and service level agreements (SLAs) will differ, as well as the autonomic management systems controlling them. In this context, we in the Autonomic Internet (AutoI) consortium propose the Orchestration Plane (OP), which promotes the interaction among different Autonomic Management Systems (AMSs). The OP mediates the communication and negotiation amongAMSs, ensuring that their SLAs and policies meet the requirement needed for the provisioning of the services. It also simplifies the federation of domains and the distribution of new services in virtualised network environments.Peer ReviewedPostprint (author’s final draft

    Manageability of Future Internet Virtual Networks from a Practical Viewpoint

    Get PDF
    International audienceThe Autonomic Internet project approach relies on abstractions and distributed systems of a five plane solution for the provision of Future Internet Services (OSKMV): Orchestration, Service Enablers, Knowledge, Management and Virtualisation Planes. This paper presents a practical viewpoint of the manageability of virtual networks, exercising the components and systems that integrate this approach and that are being validated. This paper positions the distributed systems and networking services that integrate this solution, focusing on the provision of Future Internet services for self-configuration and self- performance management scenes

    Platforms and software systems for an autonomic internet

    Get PDF
    The current Internet does not enable easy introduction and deployment of new network technologies and services. This paper aims to progress the Future Internet (FI) by introduction of a service composition and execution environment that re-use existing components of access and core networks. This paper presents essential service-centric platforms and software systems that have been developed with the aim to create a flexible environment for an Autonomic Internet.Peer ReviewedPostprint (published version

    Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements

    Get PDF
    Future Internet (FI) research and development threads have recently been gaining momentum all over the world and as such the international race to create a new generation Internet is in full swing: GENI, Asia Future Internet, Future Internet Forum Korea, European Union Future Internet Assembly (FIA). This is a position paper identifying the research orientation with a time horizon of 10 years, together with the key challenges for the capabilities in the Management and Service-aware Networking Architectures (MANA) part of the Future Internet (FI) allowing for parallel and federated Internet(s)

    A Modelling and Reasoning Framework for Representing and Orchestrating Service Level Agreement Behaviour

    Get PDF
    This paper describes a new electronic Service Level Agreement model that is part of the DEN-ng information model. A new knowledge representation method is used to extract knowledge from the model and associate it with knowledge from ontologies, enabling a system to reason about how to best orchestrate behaviour to meet the terms and conditions of the Service Level Agreement, even if business, user, and/or environmental conditions change. Such intelligent automation can save significant operational expenditures and ensure that customers receive the services that they have contracted for, thereby reducing customer churn

    A flexible information service for management of virtualized software-defined infrastructures

    Get PDF
    Summary There is a major shift in the Internet towards using programmable and virtualized network devices, offering significant flexibility and adaptability. New networking paradigms such as software-defined networking and network function virtualization bring networks and IT domains closer together using appropriate architectural abstractions. In this context, new and novel information management features need to be introduced. The deployed management and control entities in these environments should have a clear, and often global, view of the network environment and should exchange information in alternative ways (e.g. some may have real-time constraints, while others may be throughput sensitive). Our work addresses these two network management features. In this paper, we define the research challenges in information management for virtualized highly dynamic environments. Along these lines, we introduce and present the design details of the virtual infrastructure information service, a new management information handling framework that (i) provides logically centralized information flow establishment, optimization, coordination, synchronization and management with respect to the diverse management and control entity demands; (ii) is designed according to the characteristics and requirements of software-defined networking and network function virtualization; and (iii) inter-operates with our own virtualized infrastructure framework. Evaluation results demonstrating the flexible and adaptable behaviour of the virtual infrastructure information service and its main operations are included in the paper. Copyright © 2016 John Wiley & Sons, Ltd

    Federated and autonomic management of multimedia services

    Get PDF

    A mid-level framework for independent network services configuration management

    Get PDF
    Tese doutoramento do Programa Doutoral em TelecomunicaçõesDecades of evolution in communication network’s resulted in a high diversity of solutions, not only in terms of network elements but also in terms of the way they are managed. From a management perspective, having heterogeneous elements was a feasible scenario over the last decades, where management activities were mostly considered as additional features. However, with the most recent advances on network technology, that includes proposals for future Internet as well as requirements for automation, scale and efficiency, new management methods are required and integrated network management became an essential issue. Most recent solutions aiming to integrate the management of heterogeneous network elements, rely on the application of semantic data translations to obtain a common representation between heterogeneous managed elements, thus enabling their management integration. However, the realization of semantic translations is very complex to be effectively achieved, requiring extensive processing of data to find equivalent representation, besides requiring the administrator’s intervention to create and validate conversions, since contemporary data models lack a formal semantic representation. From these constrains a research question arose: Is it possible to integrate the con g- uration management of heterogeneous network elements overcoming the use of manage- ment translations? In this thesis the author uses a network service abstraction to propose a framework for network service management, which comprehends the two essential management operations: monitoring and configuring. This thesis focus on describing and experimenting the subsystem responsible for the network services configurations management, named Mid-level Network Service Configuration (MiNSC), being the thesis most important contribution. The MiNSC subsystem proposes a new configuration management interface for integrated network service management based on standard technologies that includes an universal information model implemented on unique data models. This overcomes the use of management translations while providing advanced management functionalities, only available in more advanced research projects, that includes scalability and resilience improvement methods. Such functionalities are provided by using a two-layer distributed architecture, as well as over-provisioning of network elements. To demonstrate MiNSC’s management capabilities, a group of experiments was conducted, that included, configuration deployment, instance migration and expansion using a DNS management system as test bed. Since MiNSC represents a new architectural approach, with no direct reference for a quantitative evaluation, a theoretical analysis was conducted in order to evaluate it against important integrated network management perspectives. It was concluded that there is a tendency to apply management translations, being the most straightforward solution when integrating the management of heterogeneous management interfaces and/or data models. However, management translations are very complex to be realized, being its effectiveness questionable for highly heterogeneous environments. The implementation of MiNSC’s standard configuration management interface provides a simplified perspective that, by using universal configurations, removes translations from the management system. Its distributed architecture uses independent/universal configurations and over-provisioning of network elements to improve the service’s resilience and scalability, enabling as well a more efficient resource management by dynamically allocating resources as needed

    On the Selection of Management/Monitoring Nodes in Highly Dynamic Networks

    Get PDF
    This paper addresses the problem of provisioning management/monitoring nodes within highly dynamic network environments, particularly virtual networks. In a network, where nodes and links may be spontaneously created and destroyed (perhaps rapidly) there is a need for stable and responsive management and monitoring, which does not create a large load (in terms of traffic or processing) for the system. A subset of nodes has to be chosen for management/monitoring, each of which will manage a subset of the nodes in the network. A new, simple, and locally optimal greedy algorithm called Pressure is provided for choice of node position to minimize traffic. This algorithm is combined with a system for predicting the lifespan of nodes, and a tunable parameter is also given so that a system operator could express a preference for elected nodes to be chosen to reduce traffic, to be "stable,” or some compromise between these positions. The combined algorithm called PressureTime is lightweight and could be run in a distributed manner. The resulting algorithms are tested both in simulation and in a testbed environment of virtual routers. They perform well, both at reducing traffic and at choosing long lifespan nodes
    corecore