32,130 research outputs found

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 90's cannot enjoy an increased level of autonomy without the efficient use of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real time demands are met for large expert systems. Speed-up via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial labs in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems was surveyed. The survey is divided into three major sections: (1) multiprocessors for parallel expert systems; (2) parallel languages for symbolic computations; and (3) measurements of parallelism of expert system. Results to date indicate that the parallelism achieved for these systems is small. In order to obtain greater speed-ups, data parallelism and application parallelism must be exploited

    Reconfigurable Mobile Multimedia Systems

    Get PDF
    This paper discusses reconfigurability issues in lowpower hand-held multimedia systems, with particular emphasis on energy conservation. We claim that a radical new approach has to be taken in order to fulfill the requirements - in terms of processing power and energy consumption - of future mobile applications. A reconfigurable systems-architecture in combination with a QoS driven operating system is introduced that can deal with the inherent dynamics of a mobile system. We present the preliminary results of studies we have done on reconfiguration in hand-held mobile computers: by having reconfigurable media streams, by using reconfigurable processing modules and by migrating functions

    Parallel processing and expert systems

    Get PDF
    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited

    Enlarging instruction streams

    Get PDF
    The stream fetch engine is a high-performance fetch architecture based on the concept of an instruction stream. We call a sequence of instructions from the target of a taken branch to the next taken branch, potentially containing multiple basic blocks, a stream. The long length of instruction streams makes it possible for the stream fetch engine to provide a high fetch bandwidth and to hide the branch predictor access latency, leading to performance results close to a trace cache at a lower implementation cost and complexity. Therefore, enlarging instruction streams is an excellent way to improve the stream fetch engine. In this paper, we present several hardware and software mechanisms focused on enlarging those streams that finalize at particular branch types. However, our results point out that focusing on particular branch types is not a good strategy due to Amdahl's law. Consequently, we propose the multiple-stream predictor, a novel mechanism that deals with all branch types by combining single streams into long virtual streams. This proposal tolerates the prediction table access latency without requiring the complexity caused by additional hardware mechanisms like prediction overriding. Moreover, it provides high-performance results which are comparable to state-of-the-art fetch architectures but with a simpler design that consumes less energy.Peer ReviewedPostprint (published version

    Towards a Holistic CAD Platform for Nanotechnologies

    Get PDF
    Silicon-based CMOS technologies are predicted to reach their ultimate limits by the middle of the next decade. Research on nanotechnologies is actively conducted, in a world-wide effort to develop new technologies able to maintain the Moore's law. They promise revolutionizing the computing systems by integrating tremendous numbers of devices at low cost. These trends will have a profound impact on the architectures of computing systems and will require a new paradigm of CAD. The paper presents a work in progress on this direction. It is aimed at fitting requirements and constraints of nanotechnologies, in an effort to achieve efficient use of the huge computing power promised by them. To achieve this goal we are developing CAD tools able to exploit efficiently these huge computing capabilities promised by nanotechnologies in the domain of simulation of complex systems composed by huge numbers of relatively simple elements.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER
    • …
    corecore