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Abstract—The stream fetch engine is a high-performance fetch architecture based on the concept of an instruction stream. We call a
sequence of instructions from the target of a taken branch to the next taken branch, potentially containing multiple basic blocks, a
stream. The long length of instruction streams makes it possible for the stream fetch engine to provide a high fetch bandwidth and to
hide the branch predictor access latency, leading to performance results close to a trace cache at a lower implementation cost and
complexity. Therefore, enlarging instruction streams is an excellent way to improve the stream fetch engine. In this paper, we present
several hardware and software mechanisms focused on enlarging those streams that finalize at particular branch types. However, our
results point out that focusing on particular branch types is not a good strategy due to Amdahl’s law. Consequently, we propose the
multiple-stream predictor, a novel mechanism that deals with all branch types by combining single streams into long virtual streams.
This proposal tolerates the prediction table access latency without requiring the complexity caused by additional hardware
mechanisms like prediction overriding. Moreover, it provides high-performance results which are comparable to state-of-the-art fetch

architectures but with a simpler design that consumes less energy.

Index Terms—Superscalar processor design, instruction fetch, branch prediction, access latency, code optimization.

1 INTRODUCTION

HIGH-PERFORMANCE superscalar processors require effi-
cient fetch architectures to exploit all of the available
instruction-level parallelism. The development of accurate
branch prediction mechanisms has provided important
improvements in the fetch engine performance. However, it
has also increased the fetch architecture complexity. Our
approach to achieving high fetch performance while
maintaining the complexity under control is to use the
stream fetch engine [1], [2].

This fetch engine design is based on the next-stream
predictor, an accurate branch prediction mechanism that
uses instruction streams as the basic prediction unit. We call
a sequence of instructions from the target of a taken branch
to the next taken branch, potentially containing multiple
basic blocks, a stream. Fig. 1 shows an example control flow
graph from which we will find the possible streams. The
figure shows a loop containing an if-then-else structure. Let
us suppose that our profile data shows that A — B — D is
the most frequently followed path through the loop. Using
this information, we lay out the code so that path A — B
goes through a not-taken branch and falls through to D.
Basic block C' is mapped somewhere else and can only be
reached through a taken branch at the end of basic block A.

From the resulting code layout, we may encounter four
possible streams composed by basic blocks ABD, A, C, and
D. The first stream corresponds to the sequential path
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starting at basic block A and going through the frequent
path found by our profile. Basic block A is the target of a
taken branch and the next taken branch is found at the end
of basic block D. Neither sequence AB nor sequence BD can
be considered streams because the first one does not end in
a taken branch and the second one does not start in the
target of a taken branch. The infrequent case is a three-
stream sequence that follows the taken branch at the end of
A, goes through C, and jumps back into basic block D.

The stream fetch engine provides accurate predictions
that contain enough instructions to provide a high fetch
bandwidth. However, taking into account current technol-
ogy trends, accurate branch prediction and high fetch
bandwidth are not enough. The continuous increase in
processor clock frequency, as well as the larger wire delays
caused by modern technologies, prevents branch prediction
tables from being accessed in a single cycle [3], [4]. This fact
limits fetch engine performance because each branch
prediction depends on the previous one, that is, the target
address of a branch prediction is the starting address of the
following one.

A common solution for this problem is the prediction
overriding technique [4], [5]. A small and fast predictor is
used to obtain a first prediction in a single cycle. A slower
but more accurate predictor provides a new prediction
some cycles later, overriding the first prediction if they
differ. This mechanism partially hides the branch predictor
access latency. However, it also causes an increase in the
fetch architecture complexity since prediction overriding
requires a complex recovery mechanism to discard the
wrong speculative work based on overridden predictions.

An alternative to the overriding mechanism is using long
basic prediction units. A stream prediction contains enough
instructions to feed the execution engine during multiple
cycles [6]. Therefore, the longer a stream is, the more cycles
the execution engine will be busy without requiring a new
prediction. If streams are long enough, the execution engine
of the processor can be kept busy while a new prediction is
being generated. Overlapping the execution of a prediction
with the generation of the following prediction allows
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partially hiding the access delay of this second prediction,
removing the need for an overriding mechanism and thus
reducing the fetch engine complexity.

Since instruction streams are limited by taken branches, a
good way to obtain longer streams is by removing taken
branches. Code layout optimizations try to map together
those basic blocks that are frequently executed as a
sequence. Therefore, most conditional branches in opti-
mized codes are not taken, enlarging instruction streams
[1], [2]. However, code layout optimizations are not enough
for the stream fetch engine to completely overcome the need
for an overriding mechanism [6].

Looking for novel ways of enlarging streams, we present
several mechanisms focused on enlarging the instruction
streams that finalize in particular branch types. All of these
mechanisms have a similar objective: reducing the total
amount of taken branches of a certain type and thus
enlarging instruction streams.

We introduce two new versions of the next-stream
predictor aimed at removing taken conditional branches.
For dealing with forward conditional branches, we present
a version of the next-stream predictor that includes taken
conditional forward branches inside a stream when the
number of instructions skipped by the forward branch is
small. For removing backward conditional branches, we
present a loop-stream predictor, that is, a version of the
stream predictor that is able to predict high-level loop
structures, making it possible to combine all of the iterations
of simple loops into a single long virtual stream. Finally, in
order to remove function calls and returns, we apply
aggressive procedure inlining [7] to replace procedure calls
by the called procedures.

Unfortunately, these techniques do not provide good
performance results since they are not enlarging all streams
but just a subset of them. According to Amdahl’s law, the
streams that do not benefit from the previous techniques
severely limit the potential performance improvement they
can achieve. This fact leads to a clear conclusion: The correct
approach is not to focus on particular branch types but to
try to enlarge all dynamic streams. In order to achieve this,
we present the multiple-stream predictor [8], a novel
predictor that concatenates those streams that are fre-
quently executed as a sequence. This predictor does not
depend on the type of the branch terminating the stream,
making it possible to generate very long virtual streams.

Our results show that the multiple-stream predictor
provides long branch predictions with high accuracy,
allowing our proposal to achieve performance results
comparable to state-of-the-art fetch architectures. Further-
more, our predictor does not require hardware overriding
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to hide the prediction table access latency and, thus, it
requires less implementation cost and complexity than
previous proposals.

The remainder of this paper is organized as follows:
Section 2 describes previous related work. Section 3 pre-
sents our experimental methodology. Section 4 describes a
technique for including short forward branches (SFBs) in
instruction streams. Section 5 presents a novel loop-stream
predictor. Section 6 details the impact of aggressive
procedure inlining on the length of instruction streams.
Section 7 describes the multiple-stream predictor. Finally,
Section 8 presents our concluding remarks.

2 RELATED WORK

The prediction table access latency is becoming an
important limiting factor for current fetch architectures.
The processor front end must generate a fetch address in a
single cycle because this address is needed for fetching
instructions in the next cycle. However, the continuous
increase in processor clock frequency, as well as the slower
wires in modern technologies, causes branch prediction
tables to require multicycle accesses [3], [4].

A straightforward technique for overcoming this problem
is by using long basic prediction units. If a branch
prediction provides enough instructions, they will keep
the processor back end busy during the time required to
generate the next prediction, effectively hiding the branch
predictor access delay.

The trace predictor [9] is an efficient mechanism for
obtaining long basic prediction units since each trace
prediction is potentially a multiple-branch prediction. The
SEQ.n [10] fetch model defines a trace as a sequence of basic
blocks separated by not-taken branches. A trace predictor is
used to address an interleaved instruction cache and to
obtain instruction sequences that are potentially long
enough to feed the processor back end during multiple
cycles. This trace definition can be extended to any number
of nonsequential basic blocks, enlarging the basic prediction
unit at the cost of increasing the fetch architecture complex-
ity due to the need for a special-purpose trace cache [11] to
store together the nonsequential instructions.

Our instruction streams are conceptually similar to the
basic prediction unit defined by the SEQ.n model: dynamic
sequences of basic blocks containing just not-taken branches.
The main difference between these two approaches is that the
SEQ.nmodel predicts each basic block in a sequence, whereas
the stream fetch engine predicts the sequence as a whole.
Consequently, the stream fetch engine requires less data to
generate predictions and, thus, it requires less implementa-
tion complexity. Overall, instruction streams are not as long
as traces containing multiple nonsequential basic blocks [1],
[2]. However, they are long enough to partially hide the
prediction table access latency [6].

Using a fetch target queue (FTQ) [12] is helpful for taking
advantage of long basic prediction units. The FTQ decouples
the branch prediction mechanism and the instruction cache
access. In each cycle, the branch predictor generates the fetch
address for the next prediction and a fetch request that is
stored in the FTQ. Since the instruction cache is driven by the
requests stored in the FTQ, the fetch engine is less likely to
stay idle while the predictor is being accessed again.



1344

Besides, there are two different approaches for tolerating
the branch predictor access latency. On one hand, code
optimizations can be used to rearrange the code and to
increase the probability of overlapping branch predictor
accesses with the execution of useful work. On the other
hand, hardware mechanisms like prediction overriding can
be used to reduce the negative impact of the predictor
access latency. Both approaches are discussed in the
following paragraphs.

2.1 Code Optimization

In order to hide the prediction table access latency by
executing instructions from a previous prediction, it is
important to increase the amount of instructions provided
by each prediction, that is, to enlarge the prediction unit. In
the context of instruction streams, this can be achieved by
minimizing the amount of taken branches. Code layout
optimizations based on profile information change the static
mapping of basic blocks, making it possible to layout
together those basic blocks that are frequently executed as a
sequence. This technique leads to a code mapping where
most conditional branches are not taken. Therefore, using
code optimizers like Spike [13] allows increasing the length
of instruction streams and thus increasing the stream
predictor ability to tolerate the access latency.

Code replication optimizations can also be used to
enlarge streams by removing taken branches from the
critical path of the program execution. Trace scheduling [14]
is a technique that selects a sequence of frequently executed
basic blocks, with multiple entry and exit points, and
schedules the instructions to increase the available instruc-
tion-level parallelism. Loop unrolling and static branch
prediction allow enlarging these traces by replicating the
frequent part of the code. In addition, the compensation
code may also be required to deal with the nonfrequent
cases. Superblock scheduling [15] is similar to trace
scheduling, but, while traces may have several entry points,
superblocks must have a single entry point. Tail duplication
is used to create a copy of the superblock from any entry
point after the first one, effectively creating a separate
sequence of instructions.

The main limitation of trace and superblock scheduling
is that they contain instructions from a single control path.
Hyperblock scheduling [16] overcomes this limitation by
using predicated execution [17] to allow the grouping of
basic blocks from different control paths. Like superblocks,
hyperblocks must have a single entry point and, thus, they
require tail duplication to separate additional entries. Loop-
unrolling and loop-peeling techniques may also be used to
create larger and more efficient hyperblocks.

Procedure inlining is another code replication optimiza-
tion. This optimization replaces a procedure call by the
procedure itself, removing the call and return instructions.
In general, procedure inlining is a frequently used code
optimization. Allen and Johnson [18] describe a procedure
inliner for C programs. However, they consider that only
small procedures should be inlined to avoid an increase in
the number of instruction cache misses. Hwu and Chang
[19] present profile-driven algorithms for applying inlining
and code reordering. Profile information is used to decide
whether inlining a procedure will be beneficial for the
program execution, allowing the inlining of bigger proce-
dures. In addition, reordering the program code is an
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effective technique to alleviate the increase in the number of
instruction cache misses caused by inlining big procedures.
Ayers et al. [20] describe an aggressive inliner, based on
profile information, which is able to inline procedures
without restriction at almost any call site. Their results show
that aggressive inlining can provide important performance
improvements in some benchmarks. Likewise, the ALTO
[21] optimizer is able to aggressively inline procedures,
using profile-based code reordering to reduce the negative
effects of inlining on the instruction cache performance.
Aydin and Kaeli [22] take this technique one step further by
implementing cache line coloring algorithms. They use
ALTO to aggressively inline procedures, showing that
cache line coloring is beneficial for reducing the negative
impact of inlining on the instruction cache miss rate.
Although instruction streams may be enlarged using any
of these techniques, we mainly focus on code layout
optimizations. We have chosen them because they do not
involve a direct increase in the code size, which would have a
negative impact on the instruction cache performance. As an
example of the code replication techniques, we analyze the
impact of procedure inlining on the length of instruction
streams, showing that longer streams can be obtained at the
cost of increasing the total number of instruction cache
misses. It would be interesting future work to examine the
impact of other code replication techniques, especially
predication-based ones, on the length of instruction streams.

2.2 Hardware Mechanisms for Tolerating Access
Latency

A promising idea to tolerating the prediction table access
latency is to pipeline the branch predictor [23], [24]. Using a
pipelined predictor, a new prediction can be started in each
cycle. Nevertheless, this is not trivial since the outcome of a
branch prediction is needed to start the next prediction.
Therefore, each branch prediction can only use the
information available in the cycle it starts, which has a
negative impact on prediction accuracy. In-flight informa-
tion could be taken into account when a prediction is
generated, as described in [24], but this also involves an
increase in the fetch engine complexity. It is possible to
reduce this complexity in the fetch engine of a simultaneous
multithreaded processor [25] by pipelining the branch
predictor and interleaving prediction requests from differ-
ent threads [26]. Nevertheless, analyzing the accuracy and
performance of pipelined branch predictors is out of the
scope of this work.

A different approach is the use of the overriding
mechanism described by Jimenez et al. [4]. This mechanism
provides two predictions, a first prediction coming from a
fast branch predictor and a second prediction coming from
a slower but more accurate predictor. When a branch
instruction is predicted, the first prediction is used while
the second one is still being calculated. Once the second
prediction is obtained, it overrides the first one if they differ
since the second predictor is considered to be more
accurate. A similar mechanism is used in the Alpha EV6
[27] and EV8 [5] processor designs, where a multicycle
latency branch predictor overrides a faster but less accurate
cache line predictor [28].

The problem of prediction overriding is that it involves a
significant increase in the fetch engine complexity. An
overriding mechanism requires a fast branch predictor to
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TABLE 1
Configuration of the Simulated Processor

8 instructions
8 instructions
4 instructions

fetch/rename/commit width
int/fp issue width
load/store issue width

fetch target queue 8 entries

instruction fetch queue 32 entries
int/fp issue queues 64 entries
load/store issue queue 64 entries
reorder buffer 256 entries

integer/fp registers 160
64/32KB, 2-way, 128B-block, 3 cycles
64KB, 2-way, 64B-block, 3 cycles
IMB, 4-way, 128B-block, 16 cycles
350 cycles
32 instructions (10 branches)
128 traces, 4-way

L1 instruction cache

L1 data cache

L2 unified cache

main memory latency
maximum trace size

filter and main trace caches

obtain a prediction in each cycle. This prediction should be
stored for comparison with the main prediction. Some
cycles later, when the main prediction is generated, the
fetch engine should determine whether the first prediction
is the same or not. If the first prediction is not equal to the
main prediction, all of the speculative work done based on
it should be discarded. Therefore, the processor should
track which instructions depend on each prediction done in
order to allow the recovery process. This is the main source
of complexity of the overriding technique.

Moreover, a discarded first prediction does not involve
discarding all of the instructions fetched from it. Since both
the first and the main predictions start at the same fetch
address, they will partially coincide. Thus, the correct
instructions based on the first prediction should not be
squashed. This selective squash will increase the complexity
of the recovery mechanism. To avoid this complexity, a full
squash could be done when the first and the main
predictions differ, that is, all instructions depending on
the first prediction are squashed, even if they should be
executed again according to the main prediction. However,
a full squash will degrade the processor performance and
does not remove all of the complexity of the overriding
mechanism. Therefore, the challenge is to develop a
technique that is able to tolerate the predictor access latency
and to achieve the same performance as an overriding
mechanism while avoiding its additional complexity, which
is one of the objectives of this work.

3 EXPERIMENTAL METHODOLOGY

The results in this paper have been obtained using an
execution-driven simulation of a superscalar processor. Our
cycle-accurate simulation tool models a 10-stage processor
pipeline. This processor model is able to follow speculative
execution paths guided by the branch predictor, as well as
to correctly recover the processor state in case a mispredic-
tion is detected.

The first four stages constitute the in-order processor
front end: prediction, fetch, decode, and rename. The
branch predictor is a fully autonomous engine able to
generate predictions without further assistance. These
predictions guide the fetch engine, providing the data
required to drive the instruction cache and obtain instruc-
tions from the memory. The fetched instructions are
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TABLE 2
Simulated Benchmarks and the Corresponding Input Set
benchmark input input set
164.gzip input.random | minnespec
175.vpr place minnespec
176.gcc ccep.s test
186.crafty crafty.in test
197.parser red.in minnespec
253.perlbmk makerand.pl | minnespec
254.gap test.in test
255.vortex persons.lk test
256.bzip2 input.source | minnespec
300.twolf test test

decoded by the corresponding logic and later renamed to
resolve data dependencies.

The fifth stage, dispatch, is the interface between the
front end and the out-of-order execution back end, which is
constituted by the remaining five stages. Dispatched
instructions are stored in the reorder buffer and in the
corresponding issue queue: the integer queue, the floating-
point queue, or the load/store queue. The issue stage is
responsible for waking up the instructions in the issue
queues when they are ready and then selecting them for
execution. Issued instructions read their operands from the
register file (seventh stage), execute (eighth stage), and
write back their results (ninth stage). The last stage commits
the executed instructions in program order and updates the
architectural state of the processor.

We have configured our simulator to model an aggres-
sive eight-instruction-wide superscalar processor. The main
values of this setup are shown in Table 1. We simulate three
different state-of-the-art fetch architectures. Besides our
stream fetch engine, we model the fetch target buffer (FIB)
architecture [12] and the trace predictor architecture [9]. We
model two versions of the latter: one using a trace cache and
another one not using it. All of these architectures use an
eight-entry FTQ [12] to decouple the branch prediction
stage from the fetch stage. We have found that larger FTQs
do not provide additional performance improvements.

Our instruction cache setup has 64 Kbytes and uses wide
cache lines, that is, four times the processor fetch width [1].
The trace predictor architecture using a trace cache is
actually evaluated using a 32 Kbyte instruction cache,
whereas the remaining 32 Kbytes are devoted to the trace
cache. This hardware budget is equally divided into a filter
trace cache [29] and a main trace cache. In addition, we use
selective trace storage [30] to avoid trace redundancy
between the trace cache and the instruction cache.

3.1 Benchmark Simulation

Our results are average measures collected from the
simulation of 10 SPECint2000 benchmarks, which are listed
in Table 2. We excluded 181.mcf because its performance is
very limited by data cache misses, being insensitive to
changes in the fetch architecture. We have thoroughly
checked that including 181.mcf does not change the
conclusions of our work but makes the plots harder to
read. In addition, we excluded 252.eon because we were
unable to correctly optimize it.

The benchmarks were compiled on a DEC Alpha AXP
21264 processor with Digital Unix v4.0 using the standard
DEC C v5.9-011 and Compaq C++ v6.2-024 compilers. The
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optimization level is set to O2 and loop unrolling is
deactivated. Since previous work [1], [2] has shown that
code layout optimizations are able to enlarge instruction
streams, we present data for both a baseline and an
optimized code layout. The optimized code layout was
generated using the Spike tool [13] shipped with Compaq
Tru64 Unix 5.1. Optimized code generation is based on
profile information collected by the Pixie v5.2 tool using the
train input set.

In order to analyze the impact of inlining heuristics on
the length of instruction streams, we need to modify the
source code of the optimization tool. However, the source
code of our Spike version is not available for doing such
modifications. Therefore, we used the ALTO optimizer [21]
to generate optimized binaries with different levels of
inlining. ALTO still uses the same profile information
collected with the Pixie v5.2 tool and the train input set.

Regardless of the case, all benchmarks are always
simulated until completion. In order to explore a wide range
of setups and binaries, we chose the inputs for the benchmark
programs from the MinneSPEC [31] input set. This input set
has been especially designed to facilitate efficient simula-
tions, avoiding excessively large simulation times. However,
not all SPECint2000 benchmarks had a MinneSPEC input
available when we selected our inputset. Inaddition, we have
discarded MinneSPEC inputs derived from the train input set
to assure evaluation correctness. For those benchmarks that
did not have an adequate MinneSPEC input available, we
selected an input from the official test input set. The
benchmark input set used is shown in Table 2.

3.2 Fetch Models

The stream fetch engine model [1], [2] is shown in Fig. 2a.
The current fetch address is used to index the next-stream
predictor and generate a prediction. Every stream predic-
tion contains the stream length and the stream target. Both
the fetch address and the stream length form a fetch request
that is stored in the FTQ. This request will be used later to
drive the instruction cache, obtain a line from it, and select
which instructions from the line should be executed.
Regarding the stream target, it will be the fetch address
for the next prediction. Thus, fetch address generation
makes it possible for the stream predictor to follow any
speculative path without external assistance. A more
detailed explanation is provided in Section 7.

For comparison purposes, we simulate two other state-
of-the-art fetch architectures: the FTB and the trace cache.
Our FTB model is similar to the one described in [12]: an
FIB feeding the FTQ with prediction requests. Fig. 2b
shows a diagram representing this fetch architecture. The
main difference between our model and the original one is
that we use a perceptron predictor [32] to provide accurate
conditional branch predictions.

Our trace cache fetch model is similar to the one described
in [10] but uses an FTQ [12] to decouple the trace predictor
from the trace cache, as shown in Fig. 2¢c. Trace predictions are
stored in the FTQ, which feeds the trace cache with trace
identifiers. An interleaved branch target buffer (BTB) is used
tobuild traces in case of a trace cache miss. This BTB uses 2-bit
saturating counters to predict the direction of conditional
branches when a trace prediction is not available. In addition,
an aggressive two-way interleaved instruction cache is used
to allow traces to be built as fast as possible. This mechanism
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Fig. 2. Fetch models evaluated. (a) Stream fetch engine. (b) FTB fetch
engine. (c) Trace fetch engine (with a trace cache). (d) Trace fetch
engine (without a trace cache).

is able to obtain up to a full cache line in a cycle, independent
of PC alignment.

Nevertheless, as shown in [10], it is not strictly necessary
to implement the trace predictor coupled with a trace cache.
Fig. 2d shows a fetch model that uses a trace predictor
coupled with a conventional instruction cache. The trace
predictor provides multiple branch direction predictions,
that is, it provides the fetch PC of the first basic block in the
predicted trace followed by several 1-bit taken/not-taken
predictions. An interleaved BTB is used to provide the
information about the basic blocks beyond the first one that
are included in every multiple prediction. These data are
stored in the FTQ and then used to access the instruction
cache and obtain the corresponding instructions.

All of these fetch architectures use specialized structures to
predict return instructions. The FIB and the stream fetch
architecture use a return address stack (RAS) [33] to predict
the target address of return instructions. There are actually
two RASs: one updated speculatively in the prediction stage
and another one updated nonspeculatively in the commit
stage. The latter is used to restore the correct RAS state in case
of a branch misprediction. The FTB fetch architecture also
uses a cascaded structure [34] to improve the prediction
accuracy of the rest of the indirect branches. Both the stream
predictor and the trace predictor are able to correctly predict
them because they use a similar cascaded structure.
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TABLE 3
Configuration of the Simulated Branch Predictors

FTB fetch architecture (approx. S0KB)
perceptron predictor FTB 1-cycle predictor
256 perceptrons L1: 1024-entry, 4-way 64-entry gshare
4096x14 bit local and | L2: 4096-entry, 4-way 6-bit history
40 bit global history DOLC 14-2-4-10 32-entry BTB
Stream fetch architecture (approx. 32KB)
next stream predictor 1-cycle predictor
L1: 1024-entry, 4-way 32-entry spred
L2: 4096-entry, 4-way DOLC 0-0-0-5
DOLC 16-2-4-10
Trace fetch architecture (approx. 80KB)
next trace predictor interleaved BTB 1-cycle predictor
L1: 2048-entry, 4-way | L1: 1024-entry, 4-way 32-entry tpred
L2: 4096-entry, 4-way | L2: 4096-entry, 4-way DOLC 0-0-0-5
DOLC 10-4-7-9 DOLC 14-2-4-10 perfect BTB

The trace fetch engine uses a return history stack (RHS)
[9] instead of an RAS. This mechanism is more efficient than
an RAS in the context of trace prediction because the trace
predictor is indexed using a history of previous trace
identifiers instead of trace starting addresses. There are also
two RHSs: one updated speculatively in the prediction
stage and another one updated nonspeculatively in the
commit stage. The latter is used to restore the correct RHS
state in case of a branch misprediction. However, the RHS
in the trace fetch architecture is less accurate in predicting
return instructions than the RAS in the rest of the evaluated
architectures. Trying to alleviate this problem, we also use a
RAS to predict the target address of return instructions
during the trace-building process.

3.3 Branch Prediction Setup

We have evaluated the simulated branch predictors, varying
their size from small and fast tables to big and slow tables. We
use realistic prediction table access latencies calculated using
the CACTI 3.0 tool [35]. We modified CACTI to model tagless
branch predictors and to work with setups expressed in bits
instead of bytes. The data we have obtained corresponds to a
0.10pm technology. For translating the access time from
nanoseconds to cycles, we assume an aggressive 8-fan-out-of-
four-delay clock period, thatis, a 3.47 GHz clock frequency, as
reported in [3]. It has been claimed in [36] that eight fan-out-
of-four delays is the optimal clock period for integer bench-
marks in a high-performance processor implemented using a
0.10pm technology.

We have found that the best performance is achieved by
using three-cycle latency tables [6]. Although bigger
predictors are slightly more accurate, their increased access
delay harms processor performance. On the other hand,
predictors with a lower latency are too small and provide
poor performance. Therefore, we have chosen to simulate
all branch predictors using the bigger tables that can be
accessed in three cycles. Table 3 shows the configuration of
the simulated predictors. We have explored a wide range of
history lengths, as well as predictor index setups,’ and
selected the best one found for each configuration. Table 3
also shows the approximate hardware budget for each

1. We use the DOLC scheme presented in [9] to index the cascaded FTB,
the stream predictor, and the trace predictor.
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predictor. Since we simulate the larger three-cycle latency
tables,” the total hardware budget devoted to each predictor
is different. The stream fetch engine requires fewer hard-
ware resources because it uses a single prediction mechan-
ism, whereas the other evaluated fetch architectures use
some separate structures.

Our fetch models also use an overriding mechanism [4],
[5] to complete a branch prediction in each cycle. A small
branch predictor, supposed to be implemented using very
fast hardware, generates the next fetch address in a single
cycle. Although fast, this predictor has low accuracy, so the
main predictor is used to provide an accurate backup
prediction. This prediction is obtained three cycles later and
compared with the prediction provided by the single-cycle
predictor. If the predictions differ, the new prediction
overrides the previous one, discarding the speculative work
done based on it. The configuration of the single-cycle
predictors used is shown in Table 3.

4 INCLUDING SFBS IN INSTRUCTION STREAMS

On the average, 55 percent of dynamic streams are finished
by taken conditional branches. Enlarging streams beyond
these branches would allow improving fetch bandwidth,
increasing branch prediction accuracy, and reducing branch
predictor energy consumption. In this section, we describe a
technique that includes forward conditional branches in
instruction streams.

Including a forward conditional branch into a stream can
be understood as a type of hardware predication [17]. Our
technique nullifies the instructions skipped by the branch,
preventing them from modifying the processor state. If the
forward conditional branch is mispredicted, all of the
speculative work done after it is discarded. However, the
skipped instructions remain in the processor and, thus, it is
not necessary to fetch them again, saving fetch bandwidth.
There are several proposals in the literature that are close to
ours, like the Collapsing Buffer [37], Skipper [38], and some
optimizations proposed for trace cache architectures [39].
Wish Branches [40] is a more recent proposal that uses
predication for hard to predict branches and branch
prediction for easy to predict ones. The technique presented
in this section is similar in spirit to these works but uses a
next-stream predictor to guide the decision about when
predication should be applied.

41 SFBs

Our proposal is aimed at reducing the impact of a possible
misprediction without requiring an increase in the fetch
engine complexity. The idea is to select SFBs, that is, those
conditional branch instructions whose target is a few
instructions ahead in the code layout. When a taken SFB
is found, the instruction stream is not finished by it. Instead,
the SFB is included in the stream, which will be finished by
the next taken branch.

When such a stream is predicted, both the branch
terminating the stream and the included SFB are implicitly
predicted taken. The front end fetches all instructions
indicated by the stream prediction, but the instructions

2. The first level of the trace and stream predictors, as well as the first
level of the cascaded FTB, is actually smaller than the second one because
larger first-level tables do not provide significant improvements in
prediction accuracy.
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Fig. 3. Example of an instruction stream containing an SFB.

branched by the SFB are masked in order to avoid their
execution. In case of an SFB misprediction, the speculative
processor state should be squashed. However, the instruc-
tions from the correct path, that is, the instructions
branched by the SFB, have already been fetched. In this
way, we are reducing the impact of SFB mispredictions, also
avoiding the need for fetching the instructions again after
the SFB target.

Fig. 3 shows an example: a loop containing an if-then
structure, as well as its code layout. According to our
traditional stream definition, we may find three possible
streams composed by basic blocks ABC, A, and C. Let us now
suppose that the conditional branch terminating basic block
Ais an SFB. Let us also suppose that the processor knows (for
example, using profiling) that it has a high probability of
being mispredicted. In this case, basic blocks ABC form anew
stream that contains additional information indicating that
basic block B should not be executed. When this stream is
predicted, the three basic blocks will be fetched, although
only basic blocks A and C will be executed. This means that
the SFB terminating basic block A is predicted taken. If it is
mispredicted, the speculative work based on basic block C'is
discarded, but the processor does not need to fetch it again
since the correct path after the SFB, that is, basic block B, has
already been fetched.

The main drawback of this mechanism is that, if an SFB
is not mispredicted, useless instructions have been fetched,
wasting fetch bandwidth. Therefore, it is important to
choose those branches that branch over a small number of
instructions and are very likely to be mispredicted. In
addition, the instructions branched by an SFB should not
contain another branch instruction since such a branch will
be ignored, that is, it will be implicitly predicted not taken.
If it is taken, it will be mispredicted, not only reducing
prediction accuracy, but also preventing the processor from
taking advantage of the additional fetched instructions.

4.2 Viability Evaluation

The potential of our SFB technique depends on the amount of
branches that can take advantage of it. A branch can benefit
from our technique if it is a forward conditional branch with
no other branch instructions inside the static code from the
branch itself to its target, that is, the portion of the code
skipped when the branch is taken. Such a branch corresponds
to an if-then high-level structure. Fig. 4 shows an example of
this structure. The conditional branch terminating basic block
Ahasbasicblock C as its taken target. If basic block B does not
contain any branch instruction, the branch terminating basic
block A can take advantage of our SFB mechanism. Since
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Fig. 4. A hammock3 structure (if-then structure without an else clause)
and a hammock4 structure (if-then-else structure).

this structure is composed of three basic blocks, we call it a
hammock3 structure.

An if-then-else structure like the one shown in Fig. 4 can
also exploit our SFB mechanism. The main difference
between this structure and a hammock3 structure is that
the instruction terminating basic block B is an uncondi-
tional direct branch, which jumps over basic block C. If the
branch terminating basic block A is taken, then basic block
C will be executed; otherwise, basic block B will be
executed. This structure can take advantage of our SFB
mechanism by ignoring the unconditional branch terminat-
ing basic block B whenever basic block B does not contain
more branches and basic block C' does not contain any
branch instruction. Since this structure is composed of four
basic blocks, we call it a hammock4 structure.

We have analyzed the distribution of dynamic branch
instructions in nonoptimized codes to find hammock3 and
hammock4 structures [41]. We have omitted results using
optimized codes because code layout optimizations tend to
remove these structures. The optimization process could be
done by taking into account the needs of our SFB
mechanism, but this is left for future work. Overall, our
results show that 2.5 percent of dynamic branches corre-
spond to hammock3 structures and 2.7 percent of dynamic
branches correspond to hammock4 structures. This means
that only 5.2 percent of dynamic branches can benefit from
our SFB mechanism. We have also found that 6.4 percent of
dynamic mispredictions are caused by hammock3 branches
and 6.5 percent of mispredictions are caused by hammock4
branches. Therefore, this mechanism can only be used to
reduce the impact of 12.9 percent of dynamic branch
mispredictions and, thus, it has little potential to improve
processor performance.

5 LoorP-STREAM PREDICTION

The technique described in the previous section is only able
to enlarge streams finished by forward conditional
branches. Now, we present a technique aimed to enlarge
streams finished by backward conditional branches. In
particular, we try to enlarge loop streams, that is, instruc-
tion streams finalizing at a loop branch whose target is the
starting address of the stream itself.

Many mechanisms have been developed in the literature
to predict the behavior of loops. Joseph and Vajapeyam [42]
propose control-flow prediction to detect loop structures
and use this information to improve branch prediction
accuracy. Sherwood and Calder [43] use a Loop Termina-
tion Buffer (LTB) to predict patterns of loop branches
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(backward branches). The LTB stores the number of times
that a loop branch is taken and a loop iteration counter is
used to store the current iteration of the loop. De Alba and
Kaeli [44] use a mechanism to predict several loop
characteristics: the internal control flow, the number of
loop visits, the number of iterations per loop visit, the
dynamic loop body size, and the patterns leading up to the
loop visit. Nevertheless, to the best of our knowledge, our
proposal is the first one that uses loop prediction for
tolerating the prediction table access latency instead of for
improving prediction accuracy.

5.1 The Loop-Stream Predictor

Fig. 5 shows an example of a loop stream and its code
layout. The structure shown is a loop containing an if-then
structure. If the conditional branch finalizing basic block A
is not taken, then the whole loop body is covered by a single
instruction stream composed by basic blocks A and C. In
addition, when the loop iterates, the stream target is basic
block A, that is, the starting address of the stream itself. We
call this stream a loop stream.

The objective of our loop-stream predictor is to combine
the different iterations of a loop stream into a single long
virtual stream. Given basic block A as the fetch address, the
original next-stream predictor [1], [2] is able to predict the
stream AC and basic block A as its target address. If this
predictor is enhanced with the ability to predict the number of
iterations of the loop stream, the prediction achieved would
be longer. Let us suppose that the stream predictor indicates
that the loop composed by basic blocks A and C will be
executed four times. In this case, the stream predictor does not
need to predict AC four times since it can predict
ACACACAC. In addition, the loop stream can be enlarged
by taking into account the loop exit. When the loop branch is
not taken, the processor will execute the stream composed by
basic block D, whose target address is elsewhere out of the
loop (not shown in the figure). Therefore, given basic block A
as the fetch address, the loop-stream predictor is able to
predict stream ACACACACD, which is composed by nine
basic blocks.

In order to achieve it, we should add new fields to the
stream prediction tables, as shown in Fig. 6. Given a fetch
address, the original stream prediction table [1], [2] is
looked up to find an entry whose tag matches with the fetch
address. If an entry with the appropriate tag is found, it
contains a length field that indicates the number of
instructions that compose the stream starting at that
address. The entry also contains a target address field,
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Fig. 6. The loop-stream predictor.

which will be used as the fetch address in the next cycle,
and a hysteresis counter that is used to decide whether or
not a stream is replaced from the prediction table. A more
in-depth description of the stream prediction tables can be
found in Section 7.

In case of a loop stream, the length field indicates the
length of the loop stream, but the target address field is not
required to indicate the target of the loop since it is
implicitly predicted as the starting address of the stream.
The target address field will now be used to predict the
target address of the stream that appears after the last
iteration of the loop, which involves that an additional
length field is required to predict the length of this exit
stream. Finally, a counter is needed to keep the number of
iterations of the loop stream. This counter also indicates
when a loop stream should be predicted or not: A stream
prediction is a loop-stream prediction whenever the
number of iterations is not zero; otherwise, it is a normal
stream prediction.

Therefore, we only need to add an additional length field
and an iteration counter. We have measured, using CACTI
[35], that adding these fields has no negative impact on the
prediction table access latency. We should also add a small
set of registers to keep loop-stream predictions, as shown in
Fig. 6. When a loop stream is predicted, the FTQ is fed by
the loop-stream prediction registers. The tag and length
fields are used to form the loop stream, which has its own
starting address as target. The iteration counter states how
many times this loop stream should be introduced in the
FTQ. Finally, the exit length and the target address are used
to generate the stream that should be executed after the
loop stream, that is, when all iterations have been fetched.
The first instruction of this exit stream is the one following
the last instruction of the loop stream.

While the loop prediction is active, there is no need to
generate new stream predictions, reducing the overall branch
prediction energy consumption and avoiding problems with
the prediction table access latency. Once all of the data in the
loop-stream prediction registers have been used to feed the
FTQ, the stream predictor starts generating new predictions
again until the next loop-stream prediction is found.

5.2 Loop-Stream Prediction Evaluation

We have done an in-depth evaluation of the loop-stream
predictor using both the baseline codes and the codes
optimized using Spike [13]. As can be expected, there is a
larger percentage of loop streams in the optimized codes
since it is less likely that a taken branch appears inside a loop
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body, breaking the loop stream. Despite this, the average
percentage of loop streams is not too high: 7 percent using the
baseline code and 14 percent using the optimized code.

However, the main problem of our loop-stream predictor
is not the low portion of code covered by loop streams. Our
results show that, on average, loop streams contain around
30 instructions for both code layouts. For instance, combining
10 iterations of a 30-instruction loop stream would generate a
prediction containing 300 instructions. Such along prediction
makes possible a reduction in the branch predictor energy
consumption but will not improve the ability to tolerate the
prediction table access latency since a 30-instruction stream is
long enough to hide the predictor access latency during
several cycles, even for wide processors.

Consequently, loop streams do not need additional
mechanisms for tolerating the prediction table access latency
and, thus, little performance improvement should be ex-
pected from our loop-stream prediction technique. We have
evaluated a wide range of loop-stream predictor setups and
we have found that the best one achieves a prediction
accuracy that is very similar to the original stream predictor.
However, we have measured that, when loop-stream pre-
diction is enabled, a processor model suffering from a realistic
prediction delay achieves less than 1 percent of performance
speedup in most cases. Moreover, we have found, using
CACTI[35], that the reduction in the stream predictor activity
does not compensate for the increase in the prediction table
size caused by the new fields required. The loop-stream
predictor consumes 0.5 percent more energy than the original
stream predictor when using optimized codes and 8 percent
more energy when using baseline codes. These results
suggest that, in order to enlarge instructions streams,
different research lines should be examined.

6 AGGRESSIVE PROCEDURE INLINING

The ALTO [21] optimizer is able to perform aggressive
procedure inlining. This optimization is mainly controlled
by the maximum resultant code size (MRCS), that is, the
maximum number of instructions that an inlined portion of
code should have. A procedure is never inlined if the
resultant code size is higher than MRCS. If the inlined
procedure is called from a loop, then the number of
instructions belonging to the loop plus the number of
instructions belonging to the inlined procedure cannot be
higher than MRCS. Otherwise, the number of instructions
belonging to the caller procedure plus the number of
instructions belonging to the inlined procedure cannot be
higher than MRCS.

The higher the MRCS value is, the more aggressive is the
procedure inlining performed. As a measure of how
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effective procedure inlining is, Fig. 7 shows the average
number of return instructions. This number is equivalent to
the average number of executed procedures. We evaluate
the MRCS parameter, varying from 256 to 16,384 instruc-
tions, and compare it against the baseline code. Higher
values of MRCS involve a more aggressive inlining and,
thus, a higher reduction in the total number of return
instructions. The more aggressive inlining provides a
reduction of over 70 percent of return instructions against
the code optimized without inlining.

6.1 The Impact of Inlining on the Length of
Instruction Streams

The aggressiveness of procedure inlining has a direct
impact on the length of instruction streams, as shown in
Fig. 8. By definition, instruction streams are limited by
taken branches. Procedure inlining removes a large amount
of function calls and return instructions, that is, it removes a
large amount of taken branches, which involves an
enlargement of instruction streams. Although this enlarge-
ment is limited by the removal of instructions associated
with the procedure call overhead, the overall effect is that
the more aggressive the inlining is, the longer the instruc-
tion streams are.

However, this enlargement is not free. Aggressive inlining
duplicates large portions of the program code, increasing the
number of instruction cache misses. Fig. 9 shows the average
number of instruction cache misses, varying the MRCS value
from 256 to 16,384 instructions and the total instruction cache
hardware budget from 8 to 64 Kbytes. Although, in general,
more aggressive inlining involves a higher number of
instruction cache misses, it is not always a direct relationship.
For example, the 8 Kbyte instruction cache suffers from fewer
misses using a 1,024-instruction MRCS value than using a
512-instruction MRCS value.

This happens because increasing the code size is not the
only effect caused by procedure inlining. As mentioned
before, inlining eliminates the instructions associated with
the calling overhead. Aggressive inlining involves the
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removal of a higher number of these instructions, limiting
the increase in the number of instruction cache misses.
Moreover, inlining removes procedure boundaries, increas-
ing the visibility of the code to other optimizations
performed by ALTO, like dead code elimination or code
scheduling, and potentially reducing the number of
instruction cache misses. Nevertheless, it only happens for
intermediate values of the MRCS parameter, that is, when
the impact of the larger code size on the cache miss rate is
not too high. The higher values of MRCS always cause a
higher number of instruction cache misses.

To summarize, aggressive inlining involves enlarging
instruction streams, increasing the stream predictor ability
to tolerate the prediction table access latency, and thus
improving the processor performance. On the other hand,
aggressive inlining increases the number of instruction
cache misses, which degrades the processor performance. In
order to find the optimal setup, we explore this trade-off in
the next section.

6.2 Inlining Evaluation

Both the length of instruction streams and the number of
instruction cache misses have an important impact on the
overall processor performance. In this section, we evaluate
the processor performance, looking for a balance between the
average stream length and the instruction cache miss rate.

Fig. 10 shows the processor performance using a realistic
prediction table access latency (three cycles) without
prediction overriding. We vary the MRCS value from 256
to 16,384 instructions and the total instruction cache
hardware budget from 8 to 64 Kbytes. The bigger the cache
is, the more aggressive the inlining that can be performed is.
Thus, the optimal value of MRCS is higher for the bigger
cache sizes. Both the 8 Kbyte and 16 Kbyte instruction
caches achieve their optimal performance using a 1,024-
instruction MRCS value, whereas the 32 Kbyte and 64 Kbyte
instruction caches achieve their optimal performance using
a more aggressive 8,192-instruction MRCS value.

The best performance is achieved by the 64 Kbyte
instruction cache due to its lower miss rate. Using this
cache setup, the code inlined using the optimal MRCS value
achieves 8 percent performance improvement over the
noninlined code. However, this improvement is not
necessarily caused by the ability to tolerate the predictor
access latency. It can also be caused by the higher fetch
bandwidth provided by longer streams and the additional
code optimizations enabled by our aggressive inlining. In
order to provide more insight about this, we have measured
the performance achieved by a processor with an ideal
1-cycle latency predictor, where overriding has no impact
on performance.
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Using the ideal latency predictor, the code inlined using
the optimal MRCS value achieves 6 percent performance
improvement over the noninlined code. Since the predictor
delay is not a problem for the ideal latency predictor, this
improvement cannot be attributed to the ability to tolerate
the access delay but to the higher fetch bandwidth and the
additional code optimizations enabled by inlining. How-
ever, the performance improvement achieved by the
realistic latency predictor is higher. Consequently, the
additional 2 percent performance improvement is caused
by the ability of longer streams to hide the prediction table
access latency.

Fig. 11 shows the performance achieved using the
optimal MRCS value for each instruction cache size. As
mentioned before, these results correspond to a realistic
prediction table delay without overriding. These data are
compared against the performance achieved by a code
optimized without inlining but using a hardware prediction
overriding mechanism. The main observation is that, when
using aggressive procedure inlining, a processor using the
stream fetch engine without overriding is able to outper-
form a similar processor using a code optimized without
inlining, even if it uses prediction overriding.

However, using a 64 Kbyte instruction cache, the
processor without overriding executing an inlined code
achieves just 1.5 percent reduction in the total number of
execution cycles over the processor executing a noninlined
code using overriding. Although most improvement is due
to the better fetch bandwidth and the additional optimiza-
tions enabled, it is interesting to note that the processor
without overriding executing an inlined code would be
unable to outperform the processor with overriding execut-
ing noninlined code if the 2 percent improvement provided
by hiding the predictor latency is not taken into account.

7 MULTIPLE-STREAM PREDICTION

Previous techniques enlarge instruction streams, but they
are not able to achieve good performance results. These
numbers show that focusing on particular stream types is
not a correct approach to enlarge instruction streams due to
Amdahl’s law: Although these techniques enlarge a set of
instruction streams, there are other streams that are not
enlarged, limiting the achievable benefit. Therefore, we
must try to enlarge not particular stream types but all
instruction streams. Our approach to achieving this is the
multiple-stream predictor.
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7.1 The Stream-Predictor Design

The next stream predictor [1], [2] is organized like a set
associative cache using an LRU replacement policy. Each
predictor entry contains a tag, the stream length, the stream
target, and a hysteresis counter. The fetch address is used to
index the prediction table and the tag is checked to ensure a
predictor hit. The stream length is used to determine which
instructions should be executed from that point onward.
Finally, the stream target is the next fetch address, that is, it
will be used as the fetch address in the next cycle. If a
stream starting at the fetch address is not found in the
prediction table, sequential instructions will be fetched until
a predictor hit or a fetch redirection after a misprediction.

To accurately predict streams, our predictor uses
correlation with previously executed streams. The fetch
address and the contents of a history register with the
starting addresses of previous streams are hashed together
to obtain an index into the prediction table. The use of path
correlation makes it possible for the stream predictor to
store several different streams starting at the same address,
that is, overlapping streams, as well as multiple target
addresses for each of them.

In general, a longer history involves an improvement in
branch prediction accuracy. However, long histories also
involve more entries used by each stream and, thus, more
aliasing in the prediction table, preventing other streams
from staying in the table. In addition, long histories increase
the prediction table learning time. Although these effects
limit the gain achieved by long histories, profile information
has revealed that not all streams need path correlation to be
accurately predicted [2].

Fig. 12 shows a cascaded implementation of the next-
stream predictor that takes advantage of this fact. The
prediction table is divided in two: a first-level table indexed
only by the fetch address and a second-level table indexed
using path correlation. Those streams that do not need
correlation are kept in the first-level table, preventing them
from using correlation and therefore avoiding unnecessary
aliasing. The remainding streams are kept in the second-
level table, using path correlation. This design not only
avoids unnecessary aliasing but also allows partially hiding
the learning times caused by long histories because, while
the second-level table is being trained, the first-level one is
already able to generate stream predictions.

The cascaded stream predictor works as follows: The two
tables make their predictions in parallel. The second-level
table is supposed to be more accurate than the first-level
table due to the use of path correlation. Therefore, if the

IEEE TRANSACTIONS ON COMPUTERS,

VOL. 56, NO. 10, OCTOBER 2007

single stream 2-stream
predictor predictor
tag tag
length length
next stream next stream
hysteresis hysteresis
length 2

next stream 2

hysteresis 2

Fig. 13. Fields required by the original single-stream predictor and by a
multiple-stream predictor that is able to provide two streams per
prediction.

second-level table has information to make a prediction, it
will be used. Otherwise, the prediction of the first-level
table is used.

A stream is introduced in both tables the first time it
appears. The next time its starting address appears, the
first-level will provide a prediction, but, if the history is
different, the second-level will not be able to do it. If the
first-level prediction is correct, the stream is updated only
in the first-level table. Otherwise, it is introduced again in
the second-level table. Therefore, if the first-level table is not
able to provide accurate predictions, the second-level table
will be warmed up until it contains enough information to
generate predictions. On the contrary, the streams that do
not need correlation to be accurately predicted are intro-
duced only once in the second-level table, avoiding
unnecessary aliasing. The second-level entry assigned to a
stream that does not need correlation would be dynamically
replaced from the table by other streams without degrading
the prediction accuracy since the first-level will still be able
to correctly predict it.

The hysteresis counters are used to decide whether a
stream should be replaced from one of the prediction tables.
When a prediction table is updated with a new stream, the
corresponding counter is increased if the new stream
matches with the stream already stored in the selected
entry. The counters saturate at their maximum value.
However, if the new stream does not match with the
stream already stored in the entry, the counter is decreased.
If it reaches zero, the whole predictor entry is replaced with
the new data, setting the counter to one. If the decreased
counter does not reach zero, the new data is discarded.

7.2 The Multiple-Stream Predictor

The objective of our multiple-stream predictor is to predict
together those streams that are frequently executed as a
sequence. Unlike the trace cache, the instructions corre-
sponding to a sequence of streams are not stored together in
a special-purpose buffer. The instruction streams belonging
to a predicted sequence are still separate streams stored in
the instruction cache. Therefore, the multiple-stream pre-
dictor does not enable the ability of fetching instructions
beyond a taken branch in a single cycle. The benefit of our
technique comes from grouping predictions, making it
possible to tolerate the prediction table access latency.

Fig. 13 shows the additional fields required by a two-
stream predictor. A single tag field is enough to ensure
prediction table hits. The tag value corresponds to the
starting address of the stream sequence. The rest of the
fields should be duplicated: the stream length, the stream
target, and the hysteresis counter. The tag and the first



SANTANA ET AL.: ENLARGING INSTRUCTION STREAMS

length field determine the first stream that should be
executed. The target of this stream, determined by the first
target field, is the starting address of the second stream,
whose length is given by the second length field. The
second target field is the target of the second stream and,
thus, the actual next fetch address.

The main drawback of this technique is that providing
multiple streams per prediction involves increasing the
prediction table size. In order to avoid a negative impact on
the prediction table access latency, we only store multiple
streams in the first-level table of the cascaded stream
predictor, which is smaller than the second-level table.
Since the streams belonging to a sequence are supposed to
be frequently executed together, it is likely that, given a
fetch address, the executed sequence is always the same.
Consequently, stream sequences do not need correlation to
be correctly predicted and, thus, keeping them in the first-
level table does not limit the achievable benefit.

Since it is important to take maximum advantage of the
available space in the first-level table, we use the hysteresis
counters to detect frequently executed stream sequences.
Every stream in a sequence has a hysteresis counter
associated to it which behaves like the counter used by
the original stream predictor. We have found that 3-bit
hysteresis counters, increased by one and decreased by two,
provide the best results.

When the prediction table is looked up, the first stream is
always provided. The second stream is only provided if the
corresponding hysteresis counter is saturated. Therefore, if
no hysteresis counter is saturated, the multiple-stream
predictor provides a single-stream prediction as it would
be done by the original stream predictor. On the contrary, if
both hysteresis counters have saturated, then a frequently
executed sequence has been identified and it will be
provided by the multiple-stream predictor.

In this way, a single prediction table lookup may
provide two separate stream predictions which are sup-
posed to be executed sequentially. After a multiple-stream
prediction, both streams in the predicted sequence are
stored separately in the FTQ, which involves using the
multiple-stream predictor not requiring additional changes
in the processor front end. Extending this mechanism for
predicting three, four, or more streams per sequence is
straightforward, but we have found that predicting
sequences longer than two streams does not provide a
significant performance improvement.

7.3 Multiple-Stream Prediction Evaluation

In this section, we evaluate the multiple-stream predictor
and compare it with our baseline fetch models: the FIB
fetch architecture [12], the original stream predictor [1], [2],
and the trace predictor [9] both isolated and coupled with a
trace cache.

First of all, we analyze the amount of instructions
provided per prediction. Then, we evaluate the accuracy
of these predictions. We show later how these two factors
combine to hide the predictor access latency and thus to
improve processor performance. Finally, we analyze the
complexity of the fetch architectures evaluated both in
terms of chip area and energy consumption.
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Fig. 14. Average number of instructions per prediction provided by the
evaluated fetch architectures.

7.3.1 Instructions per Prediction

Increasing the total number of instructions per prediction
makes it possible to hide the branch predictor access latency,
improving processor performance. Fig. 14 shows the average
amount of instructions per prediction provided by all our
fetch models. Data is presented for both the baseline code
layout and the code layout optimized with Spike [13].

Using the baseline code, the higher amount of instruc-
tions per prediction is provided by the trace predictor.
Traces are formed by any basic block, regardless of whether
the branch terminating it is taken or not. Thus, they are
longer than streams or FIB fetch blocks, which contain just
one taken branch.

The trace predictor alone provides a higher amount of
instructions per prediction because the hardware imple-
mentation of the trace cache limits the maximum trace size.
However, the trace predictor alone provides just 12 percent
more instructions per prediction than the trace predictor
coupled with a trace cache because there are additional
trace size limitations. In order to provide accurate predic-
tions, traces must be finalized when one of these branch
types is found: a loop branch, a function call or return, and
any indirect branch [9], [45]. Not applying these heuristics
would involve poor prediction accuracy and, thus, severe
performance losses.

Our multiple-stream predictor is also able to provide a
high amount of instructions per prediction, which is compar-
able to the trace cache. In spite of being limited to two taken
branches, our multiple streams arejust 11 percent shorter that
the traces provided by the trace predictor alone. These results
show that although traces may have up to 10 taken branches
in our model, the average trace contains just two to three
taken branches due to the trace formation heuristics.

Code layout optimizations allow increasing the length of
instruction streams. These optimizations try to map
together those basic blocks that are frequently executed as
a sequence. Therefore, most dynamic conditional branches
in optimized codes are not taken, enlarging instruction
streams. The impact is lower on FIB fetch blocks and
instruction traces [2]. On one hand, FTB fetch blocks are
finalized by branches that have been taken at least once, so
reducing the number of times these branches are taken is
less relevant. On the other hand, instruction traces ignore
taken branches and, thus, they take little advantage from
these optimizations.

On the average, FIB fetch blocks and instruction traces
are just 6 percent longer when using code layout optimiza-
tions, whereas streams are 30 percent longer when using
them. Using optimized codes, the multiple-stream predictor
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Fig. 15. Distribution of dynamic predictions according to the amount of
instructions provided when using a single-stream predictor and a two-
stream predictor.

provides the highest number of instructions per prediction:
13 percent more instructions than the trace predictor alone
and 40 percent more instructions than the original stream
predictor.

However, having long average predictions does not
involve most multiple streams being long. Some streams
could be long, providing high fetch bandwidth, whereas
other streams could be short, degrading the potential
performance. Therefore, the distribution of dynamic stream
lengths should be analyzed.

Fig. 15 shows a histogram of the amount of instructions
provided per prediction using the optimized codes. It
shows the percentage of predictions that provide an amount
of instructions ranging from 1 to 30 instructions. The last
bar shows the percentage of predictions that provide more
than 30 instructions. The data presented are average results
collected from our 10 benchmarks optimized using Spike
[13]. These data are shown for both the original single-
stream predictor and the two-stream predictor.

Using the original stream predictor, most streams are
shorter than the average length: 70 percent of dynamic
streams have 16 or less instructions. These short streams are
the main limitation to performance. For example, 30 percent
of dynamic streams have less than eight instructions. If we
consider our 8-wide execution core, streams shorter than
eight instructions are wasting resources since they do not
provide enough instructions to take advantage of the whole
fetch bandwidth.

The multiple-stream predictor efficiently deals with the
most harmful problem, that is, the shorter streams. There is
an important reduction in the percentage of predictions that
provide a small number of instructions. Furthermore, there
is an impressive increase in the percentage of predictions
that provide more than 30 instructions. From these results,
we conclude that the multiple-stream predictor is a good
strategy to provide enough instructions to hide the
prediction delay, especially when using optimized codes.

7.3.2 Prediction Accuracy

Providing a high amount of instructions per prediction
would be useless if they do not belong to the correct
execution path. Therefore, it is also crucial to provide
accurate branch prediction. Fig. 16 shows the average
branch misprediction rate for the five evaluated fetch
architectures and for both code layouts.

Although the FTB fetch architecture is the one that
provides fewer instructions per prediction, it is the most
accurate due to the perceptron algorithm. Applying this
algorithm to the stream or trace predictors would improve

IEEE TRANSACTIONS ON COMPUTERS, VOL. 56, NO. 10, OCTOBER 2007

4,0%
3,5% -
3,0% -
2,5% -
2,0% -

B FTB & perceptron
B stream predictor

branch misprediction rate

1,5% - O multiple stream predictor
1,0% - M trace predictor alone
0’ 59 - H trace predictor & trace cache
'y (]
0,0% -
baseline  optimized
code code

Fig. 16. Branch misprediction rate for the evaluated fetch architectures.

their prediction accuracy, but this is out of the scope of this
paper. In addition, the perceptron implementation is more
complex since it requires a hardware adder-tree structure.

The stream predictor is a simpler design because it relies
just on prediction tables, not requiring a complex indexing
function. Although the perceptron has lower misprediction
rate, the stream predictor still provides good prediction
accuracy, suffering from less than 3 percent misprediction
rate. In addition, code layout optimizations improve the
stream prediction accuracy. Instruction streams are longer
in optimized codes, so most of the program execution is
held in a lower number of streams and, thus, aliasing is
reduced in the prediction tables.

Our multiple-stream predictor does not sacrifice accu-
racy to provide more instructions per prediction since it is
as accurate as the single-stream predictor. Moreover, both
the single and the multiple-stream predictors are more
accurate than the trace predictor: They have a 15 percent
lower misprediction rate than the trace cache using a trace
predictor and a 20 percent lower misprediction rate than the
trace predictor alone.

Trace prediction is less accurate than stream prediction
because trace limits are selected at arbitrary points in
program execution, whereas streams adapt to high-level
structures such as hammocks and loops. Consequently,
the multiple-stream predictor achieves a good balance
between prediction accuracy and instructions provided
per prediction.

7.3.3 Processor Performance

The branch prediction accuracy and the amount of instruc-
tions provided per prediction combine to determine the
ability to hide the branch predictor access latency, thus
increasing performance. Fig. 17 shows the average processor
performance achieved by the five evaluated fetch architec-
tures for both the baseline and the optimized code layout.
Besides the performance of the fetch engines using overriding
(stripped bars), Fig. 17 shows the performance achieved
when overriding is not used (full bars). Performance is
measured in execution cycles, so the lower, the better.

The trace predictor provides better performance than the
FTB fetch architecture and the original stream fetch engine
[1], [2]. The trace predictor achieves slightly better
performance when it is coupled with a trace cache since it
allows fetching instructions beyond a taken branch at a
faster rate, although this is done at the cost of increasing
complexity. Nevertheless, it is interesting to note that the
original stream fetch engine achieves almost the same
performance as the trace cache when using optimized codes
since streams are longer when using these codes.
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Our multiple-stream predictor is also able to provide good
performance results. Using the baseline codes and prediction
overriding, the multiple-stream predictor achieves a similar
performance to the original stream predictor, which is close to
the trace predictor performance. Furthermore, the most
important observation is that the multiple-stream predictor
provides the best performance when overriding is not used.
Optimized codes present a similar behavior: The multiple-
stream predictor provides performance close to the trace
predictor when overriding is used, whereas it is the best one
when prediction overriding is not used.

These great performance results are achieved because
our multiple-stream predictor is able to hide the prediction
delay as efficiently as overriding does. It can be seen in
Fig. 17 that the multiple-stream predictor achieves almost
the same performance regardless of whether overriding is
used or not, whereas all of the remainder fetch architectures
evaluated lose performance when overriding is not used.

7.3.4 Chip Area and Energy Consumption

We have used our modified CACTI tool [35], configured
with 0.10pum technology parameters, to model all of the
structures required by the five fetch architectures evaluated
in this section. This tool allows estimating the area and
energy consumption of all fetch structures, including the
prediction tables, the instruction and trace caches, the FTQ,
and so forth. Although our tool is not able to model
interconnection wires between these structures, we consider
that they would require less area and energy for the stream
fetch engine due to its lower design complexity.

Trace predictor complexity comes mainly from the need
for a second fetch engine to build traces. When there is a
miss in the trace cache, instructions must be fetched,
decoded, and packed into a trace from a secondary source.
This second fetch engine increases cost, complexity, and
area compared to a system that always fetches instructions
from the same location, like the FTB or the stream predictor.
The trace predictor alone is less complex than the trace
predictor coupled with the trace cache because it does not
need separate instruction and trace caches, but it still needs
the secondary fetch engine to provide basic-block data
according to the trace predictions.

Overall, our estimations indicate that the stream fetch
engine is the simplest fetch architecture evaluated. The
multiple-stream predictor requires higher complexity since
the size of the first-level table is increased. Fortunately, the
tag array is unmodified and no additional access port is
required. Therefore, the multiple-stream predictor requires
just 8 percent more area than the original one.
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The multiple-stream predictor also consumes more energy
than the original one since the first-level prediction table is
bigger. However, this is compensated for by the reduction in
the total number of prediction table accesses due to the fact
thateach prediction provides more instructions. The ability to
provide two streams per prediction causes a 28 percent
reduction in the total number of prediction table lookups and
updates, reducing the additional energy consumption to just
15 percent.

Despite this, the multiple-stream predictor requires less
area and consumes less energy than the other fetch
architectures evaluated since its design is simpler. The
multiple-stream predictor requires 7 percent less chip area
than the FTB fetch architecture, which uses a separate
conditional branch predictor. The multiple-stream predictor
also requires 20 percent less area than the trace predictor
alone and 29 percent less area than the trace predictor
coupled with the trace cache. Furthermore, the multiple-
stream predictor consumes 15 percent less energy than the
trace predictor alone, 19 percent less energy than the FIB
fetch architecture, and even 42 percent less energy than the
trace predictor coupled with the trace cache. These results
highlight that the multiple-stream predictor presents a
better balance between performance and complexity.

8 CONCLUSIONS

Current technology trends create new challenges for the
fetch architecture designers. Higher clock frequencies and
larger wire delays cause branch prediction tables to require
multiple cycles to be accessed [3], [4], limiting the fetch
engine performance. This fact has led to the development of
complex hardware mechanisms like prediction overriding
[4], [5] to hide the prediction table access delay.

In order to hide the prediction table access delay without
increasing the fetch engine complexity, we propose using
long instruction streams [1], [2] as the basic prediction and
fetch unit. If instruction streams are long enough, the
execution engine can be kept busy executing instructions
from a stream during multiple cycles while a new stream
prediction is being generated. Therefore, the prediction
table access delay can be hidden without requiring any
additional hardware mechanism.

In order to take maximum advantage of this fact, it is
important to have streams as long as possible. However,
our first attempts to enlarge instruction streams do not
provide good results. We present a technique for including
SFBs in instruction streams, but it is applicable to a small
percentage of existing branches and, thus, it would have
negligible impact on performance. We also present a loop-
stream predictor which enlarges streams by combining loop
iterations, but it tends to enlarge streams that are already
long enough to tolerate the prediction table access latency.
Finally, we show that aggressive procedure inlining
removes a high percentage of function calls and returns,
enlarging streams. However, the most benefit provided by
this technique is not due to the longer size of streams but to
the improved fetch bandwidth and the additional optimiza-
tions enabled.

Consequently, focusing on particular branch types is not
a correct approach for enlarging instruction streams. The
aforementioned techniques enlarge some streams, but the
remaining not-enlarged streams limit the achievable benefit
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according to Amdahl’s law. In order to overcome this
problem, we propose combining frequently executed
streams into long virtual streams using a multiple-stream
predictor. Streams are combined regardless the type of the
branch finalizing them, capturing the behavior of any
frequently executed code structure. The captured structures
may include SFBs, loop streams, and procedure calls.
Nevertheless, the multiple-stream predictor is not limited
to them and, thus, it is a more general approach.

Our novel predictor design provides predictions that
contain, on the average, more than 20 instructions. The high
amount of instructions per prediction provided by the
multiple-stream predictor combines with its high prediction
accuracy to allow our proposal to achieve performance
results that are comparable to state-of-the-art fetch archi-
tectures. In addition, the multiple-stream predictor does not
need a hardware overriding mechanism to hide the branch
prediction table access latency. As a consequence, our
design requires less chip area and consumes less energy
than the previous proposals evaluated in this paper. We
conclude from this that the multiple-stream predictor is a
worthwhile alternative for the design of latency-tolerant
fetch architectures due to its high performance and its
relatively low complexity.
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