
N91-20700

PARALLEL PROCESSING AND EXPERT SYSTEMS

Jerry C. Yan

Sterling Federal Systems Inc.,

NASA Ames Research Center,

MS 244-4, Moffett Field, CA 94035

(415) 604-4381

jerry@pluto.arc.nasa.gov

Sonie Lau

Information Sciences Division,

NASA Ames Research Center,

MS 244-4, Moffett Field, CA 94035

(415) 604-4944

lau@pluto.arc.nasa.gov

AI)stract

Whether it be monitoring the thermal sub-system of Space

Station Freedom, or controlling thc navigation of the

autonomous rover on Mars, NASA missions in the 90's cannot

enjoy an increased level of autonomy without the efficient

implementation of expert systems. Merely increasing the

computational speed of uniprocessors may not be able to

guarantee that real-time demands are met for large expert

systems. Speed-up via parallel processing must be pursued

alongside the optimization of sequential implementations.

Prototypes of parallel expert systems have been built at

universities and industrial laboratories in the US and Japan.

This paper surveys the state-of-the-art research in progress

related to parallel execution of expert systems. The survey is

divided into three major sections: (i.) multiprocessors for

parallel expert systems, (ii.) parallel languages for symbolic

computations and (iii.) measurements of parallelism of expert

systems. Results to date indicate that the parallelism achieved

for these systems is small. The main reasons are: (i.) the body

of knowledge applicable in any given situation and amount of

computation executed by each role firing are small; (ii.) dividing

the problem solving process into relatively independent

partitions is difficult; and (iii.) implementation decisions that

enable expert systems to be incrementally refined hamper

compile-time optimization. In order to obtain greater speed-

ups, data parallelism and application parallelism must be

exploited.

1. Introduction

The science and engineering objectives of NASA missions in

the 90's cannot be met without an increased level of autonomy

for both onboard and ground-based systems. For example, with

Mars Rover Sample Return, the long delays associated with

signal transmission between Mars and Earth require the Rover

to make intelligent decisions and operate autonomously in real-

time. The day-to-day operation of Space Station Freedom also

depends critically on real-time expert systems -- whether it be

operating the thermal control sub-system, or flight tele-robotic

servicers. Current implementations of expert systems run too

slow. Merely increasing the computational speed of uniproces-

sors may not be able to guarantee that real-time demands be met

for large systems. Speed-up via parallel processing must be

pursued alongside the optimization of sequential implementa-

tions.

Parallel expert systems has been investigated at universities

and industrial laboratories in the US and Japan. Prototypes of

multiprocessors specifically designed for expert systems have

been built. Results to date indicate that only certain applications

are amenable to parallelization. In most cases, the degree of

parallelism achieved is less than 10. In order to obtain higher

speed-up values, we must understand why expert systems are

difficult to parallelize, how they should be written and parti-

tioned to obtain maximum parallelism, and how they can be ef-

fectively mapped onto parallel architectures.

In order to address these issues adequately, a survey of current

state-of-the-art in parallel processing for expert systems has

been carded out. Section 2 begins with a description of well

known symbolic computation paradigms and state-of-the-art se-

quential implementation for them. Section 3 surveys four paral-

lel hardware architectures specifically proposed for symbolic

computation: DADO, NETL, the connection machine, and PIM.

Section 4 surveys various parallel extensions to existing sym-

bolic programming languages -- parallel LISPs, CParaOPS5,

concurrent PROLOG, and object-oriented languages. Section 5

reports the inherent parallelism observed in expert systems to-

day and suggests why parallelizing expert systems is difficult.

Finally, section 6 discusses how expert systems might be paral-

lelized and what reasonable research directions might be.

k
469

https://ntrs.nasa.gov/search.jsp?R=19910011387 2020-03-19T19:05:36+00:00Z



2. Sequential Expert System Imnlementation

2.1 Software and Hardware Requirements

Unlike conventional software, expert systems operate on sym-

bols, as well as numbers. Problem state information and prob-

lem solving knowledge are represented by data structures (or

shapes) as well as values. As the problem solving process pro-

ceeds, arithmetic operations as well as pointer manipulation are

performed by the hardware -- creating new data structures, dis-

carding old ones and changing the values, sizes and shapes of

existent structures. Many paradigms have been proposed to rep-

resent problem solving knowledge and state information for this

kind of computation. For example, knowledge may be repre-

sented declaratively (e.g. using predicate calculus) and pro-

cessed based on resolution, simple rules of inference, backward

and forward chaining. Knowledge may also be encoded proce-

durally (as programs) or structurally (as semantic nets).

Frames and objects combine both representation techniques by

attaching procedures to structured data.

Languages proposed for symbolic computations include list

processing languages (e.g. Common Lisp), object-oriented lan-

guages (such as SMALL-TALK), and logic programming lan-

guages (e.g. Prolog). In order to implement these languages

efficiently, new requirements are placed on compilers, operating

systems and hardware architectures originally optimized to sup-

port arithmetic operations on data cells. Perhaps the most de-

manding language feature is the ability to construct, modify and

access complex data structures dynamically during run-time. In

order to support dynamic data structures, storage must also be

allocated/reclaimed efficiently and transparently at run-time.

The Von-Neumann computer does not support this kind of

(symbolic) computation directly. Hardware features supporting

run-time type checking, garbage collection and pointer manipu-

lation/arithmetic have been incorporated into Lisp and Prolog

machines to facilitate the efficient implementation of expert sys-

tems.

Lisp and object-oriented languages have been efficiently im-

plemented on Lisp machines (such as Symbolics 3600 TM,

XEROX 1100 TM and TI Explorer_). Hardware features de-

signed specifically to enhance the performance of symbolic

computations include: tagged memory architecture and process-

ing hardware and hardware stacks. Lists are efficiently repre-

sented using cdr-coding schemes. Object-oriented programs

also execute efficiently because slot value access, message pro-

cessing, and class inheritance and mixing are implemented with

very low overhead.

2.3 Prolog Maehin_

Sequential execution of logic programs such as Prolog have

been greatly improved by the concept of the Warren Abstract

Machine (WAM) [I]. Many of these ideas were studied and in-

corporated by the Japanese Fifth Generation Computer System

(FGCS) project -- the initial stage of which resulted in the de-

velopment of the Personal Sequential Inference (PSI) machine

rated at 30K LIPS (logical inferences per second). It incorpo-

rated UNIRED [2], a hardware accelerator, to increase the speed

of unification and reduction.

3. Multiorocessors for Exnert Systems

Given all these "state-of-the-art" enhancements mentioned in

section 2, execution of large expert systems is still unable to

meet the requirements of many applications such as air-traffic

control, pilot's associate and real-time speech understanding.

Multiprocessing must be pursued, together with innovations in

software implementation, sequential hardware architecture and

device technology, in order to speed-up expert systems. The

next two sections summarizes the major developments in hard-

ware and programming languages for parallel symbolic comput-

ing. Four machines are described in this section: DADO,

NETL, the connection machine, and PIM.

3.1 DADO

The processing elements (PEs) of DADO [3] are connected as

a binary tree. Matches and updates are processed in parallel

based on simple broadcasts up and down the tree. Each PE has

a special I/O device that performs three global operations

(BROADCAST, REPORT, and MAX-RESOLVE) efficiently. A PE

may execute instructions in its local memory and enlists its de-

scendents by BROADCASTing to them. Each descendent exe-

cutes instructions received and REPORTs back. The final solu-

tion may have to be determined by performing the MAX-

RESOLVE function on the parent node's result and the two re-

turned from its descendents.

Production systems were mapped onto DADO by dividing

the binary tree into three logical layers. The top layer serves as a

"decision maker"; it performs synchronization, conflict-resolu-

tion and the act phases. Productions are distributed across the

next layer where the match phase and instantiations take place.

The bottom layer holds the working memory elements. In order

to reduce the communication bottleneck between peer nodcs on

different halves of the tree, data was duplicated wherever

needed; this introduced consistency problems. Two prototypes

470



were proposed [4] -- the first of which, DADO1, consists of 15

PEs rated at 4 MIPS each. The speed up obtained on DADO1

was limited mainly because different tasks on different nodes

require different processing times.

3.2 NETL

NETL [5] is a fine-grain SIMD machine. Its PEs can be logi-

cally interconnected as nodes in a semantic net. Parallel reason-

ing on NETL was performed via marker passing [6]. Tokens

are sent through nodes (i.e. PEs) that lead to the solution. When

a token goes through a node, a bit at the node is set. When the

goal is reached, the node with the bit set constitutes the search

space. For example, a node satisfying all the preconditions of a

production could be located by propagating the preconditions

concurrently through the network. The node with a bit set for

each precondition would be the one that satisfies the rule.

3.3 Connection Maehin_

The PEs of the Connection Machine [7] are connected as a

hypercube. All PEs execute in a lock-step manner based on an

external clock and instructions from a front-end host computer.

A set of flags on each PE can be selectively set -- thereby giving

more flexibility and expressiveness in the host computer's con-

trol. The performance of CM depends on the size and interde-

pendencies of the data. Because the PES have small local mem-

ories, data can be spread out over several PEs; thereby, requiring

several communication steps to process a single piece of data.

3.4 Parallel Inference Machine

As specified by Japan's FGCS project overview [8], the

overall target performance of the Parallel Inference Machine

(PIM) is 10 to 20 million reductions per second (RPS). The

pilot machine PIM/P, with 128 PEs connected as a hypercube,

executes 50ns cycles in a four stage pipeline. Multiple PSIs

have been networked together forming multiprocessors to test

parallel system software eventually to be executed on PIM [9].

These include (i.) Kernel Language Version 1 (KL1) -- a paral-

lel Prolog-like language based onflat guarded horn clauses, (ii.)

a multiple reference bit scheme for local garbage collection, (iii.)

a weighted export count to support inter-PE garbage collection.,

and (iv.) a weighted throw count scheme for terminating remote

processes. Dynamic load balancing strategies on PIM are cur-

rently being researched.

4, Parallel Lan_uaees for Experl_ Systems

The parallel symbolic languages surveyed in this section

(parallel LISPs, PROLOG, and object-oriented languages) aug-

ment existent languages with parallel constructs.

4.12atalle.tl,IS_

QLISP [10] (queue-based multiprocessing Lisp) was de-

signed to execute on shared-memory architectures. A scheduler

assigns new processes on a global queue to the least busy pro-

cessor in a round-robin fashion. The degree of muhiprocessing

can be controlled explicitly at run-time. Very few extensions are

made to Lisp although some existent constructs take on new

meanings in a multiprocessing setting. Processes are created

using two constructs: QLET and QLAMBDA. QLET ex-

presses parallelism that has regularity, for example, over an un-

derlying data structure. QLAMBDA creates closures dynami-

cally for expressing less regular parallel computations. QLISP

runs currently on Encore multiprocessors.

MULTILISP [11] is an extension to Scheme with constructs

supporting parallel execution. It provides lexical scoping as well

as "first-class citizenship" for Lisp functions -- which enables

functions to be passed and returned as values (to other functions

which may reside on other processors), or stored as part of a

data-structure. The construct "(future body)", creates a process

to evaluate body and returns a future which acts as a place

holder for (or a promise to deliver) the result of the evaluation.

While the evaluation proceeds, the future can be used for con-

structing data structures or passed around as arguments. Any

process which actually requires the value of the future will be

suspended unless the evaluation process has completed. A

"delay" construct is also provided to support lazy-evaluation --

allowing a future to be evaluated only on demand. MultiLisp is

implemented on the Butterfly and Concert [12].

A fine-gain version of parallel LISP called *LISP (previously

known as CmLisp) is implemented on the Connection Machine.

Operations can be performed simultaneously over each element

of a large data structure. Some of the concurrent operations

available are: combine, create, modify, and reduce. New SIMD-

parallel operations can also be defined based on these concepts.

4.2 Parallel PROLOGs

Four sources of parallelism (and combinations of these) can

be exploited in Prolog:

• Or-parallelism: Each rule, whose head unifies with a

fact, can be solved in parallel.

• And-parallelism: Processes execute in parallel to solve

each clause of the body.

• Stream-parallelism is a pipelined form of AND-paral-

lelism. Unifications for the first sub-goal are forwarded

to the process working on the next one as soon as it be-

comes available and so forth.

471



• Search-parallelism: Assertions are grouped so that

search may proceed in parallel without contention to a

single resource.

Two models which exploit some of these sources of parallelism

have been proposed.

The AND/OR parallel execution model [13] provides a

method for partitioning a logic program into small asyn-

chronous and logically independent processes. A tree of pro-

cesses is built as computation proceeds. Start, redo, and cancel

messages are sent from parents to children who reply either with

success or fail messages. In this model, an OR-process replaces

the backtracking in sequential computation by acting as a mes-

sage center 1. It also filters out duplicate solutions by maintain-

ing a list of successful messages from its children and messages

sent to its parent. A parallel AND-process is more complicated

because distributing literals across PEs has its problems 2 -- the

solutions to some of which were presented elsewhere [14].

The second model, RAP-WAM [15], was based on

DeGroors Restricted-And-Parallelism (RAP) work [161 and

parallel extensions to WAM. RAP reduces the overhead asso-

ciated with managing variable binding conflicts between goals.

Previous approaches were unsatisfactory -- compile-time ap-

proaches required user input on the variables while run-time ap-

proaches, such as the AND/OR model, were complex and expen-

sive. RAP analyzed the clauses at compile-time and performed

simple checks on the variables at run-time [171. RAP-WAM

also performed search with minimal backtracking by represent-

ing the problem as a condition graph to evaluate/analyze possible

paths to select the best solution. This analysis also provided de-

pendency information among goals.

4.3 Parallel Object-Oriented Languages

The performance of two object-oriented languages for dis-

tributed-memory architectures were studied by simulation by re-

searchers at Stanford University. CAOS [18] computations

consists of large grained asynchronous multiprocessing objects.

Various message-sending primitives were defined, including

1 it distributes work among its own children and sends the first

successful tuple received back to its parent. Meanwhile, its other

children continue working and success messages collected are only sent

up to the parent if a redo message is received. Eager evaluation is

implemented by sending redo messages to successful children so that

more solutions are computed if the parent should require it. If no child

succeeds, a fail message is returned to the parent.

2 e.g. resolving binding conflicts among the literals, idle time waiting

for literals to be bound; and some literals fail if attempts are made to

solve them before certain variables are instaotiated

synchronous and asynchronous SENDs, and SENDs which re-

turned futures. LAMINA [19] provided extensions to LISP to

support functional, object oriented, and shared variable styles of

programming. Its implementation was based stream -- a data

type used to express pipelined operations by representing the

promise of a (potentially infinite) sequence of values. These

languages supported two concurrent problem solving frame-

works developed based on the blackboard problem solving

model. Cage and Poligon, were proposed for shared- and dis-

tributed-memory architectures respectively [20, 21].

5. Measuring, Parallelism in Exoert Systems

Parallel implementation of production systems (based on

OPS5) have been extensively studied at Carnegie-Mellon

University. Besides obtaining speed-up via parallel implemen-

tations of each phase, further speed-up may be obtained by al-

lowing execution between phases to overlap (i.e. occur simulta-

neously). Nevertheless, because of the observation that 90% of

processing time is spent in the match phase, their efforts focused

on parallel implementations of the RETE-match algorithms [22].

Three parallel implementations were proposed [231:

• production parallelism -- rules fired concurrently;

• node parallelism -- each node of the RETE-network fired

concurrently;

• intra-node parallelism -- the processing of each token to

a two-input node of the RETE-network occurred concur-

rently;

These implementations, of decreasing granularities, subsumed

one another and produced increasing levels of speed-up. Further

speed-ups were obtained when changes to working memory are

allowed to occur concurrently. Speed-up values of 6.3 to 12.4

were observed depending on the application.

5.1 Parallelism in Production Systems and Flat

Concurrent Prolog Systems

Based on detailed measurements on six expert systems con-

taining up to 1100 rules (written in OPS5) [231, three important

observations were made:

A. Very few changes were made to working memory per

recognize-act cycle. The number of RETE network nodes

affected by changes to the working memory was small.

B. The total number of node activations per change was

quite independent of the number of productions in the

production-system program.

C. Variation in processing requirements for the (few) af-

fected productions was large.

472



These observations were explained as follows:

A. Firstly, an expert system contains a large body of

knowledge about many different types of objects and di-

verse situations. The amount of knowledge (therefore,

number of rules) associated with any specific situation is

expected to be small. Secondly, most working-memory

elements only describe a few aspects of a single object or

situation; therefore, they could only be of interest to a

few rules.

B. Programmers recursively divide problems into sub-

problems when writing large programs. The size of

these subproblems are independent of the size of the

original problem; it depends only on the complexity that

the programmer can deal with at one time.

C. Rules accounting for different situations, formulated

based on different heuristics, obviously exhibit different

complexity and require different amount of processing.

These observations (and explanations) are not only specific to

systems written in OPS5; they transcend all expert systems.

For example, measurements on flat concurrent prolog systems

also revealed that although the number of goals which exist at

some point during execution may exceed 1000s, the average

number of goals available for concurrent processing for most of

the time is much smaller (< 12) [24]. These observations sug-

gest major obstacles as far as obtaining speed-up for expert

systems from parallel processing.

5.2 Obtaining Speed-up via Parallel Processing is

Observation A (presented in section 5.1) suggests that the in-

herent parallelism available in expert systems is small.

Observation B further suggests that:

i.) smaller production systems do not necessarily run

faster than larger ones;

ii.) allocating one processing element to each RETE node

(or production) is not a good idea because most of them

will be idle most of the time; furthermore,

iii.) there is no reason to expect that larger production sys-

tems will exhibit more speed-up from parallelism.

Observation C suggests that scheduling is critical towards ob-

taining whatever (small) speed-up is available in the system.

Unfortunately, dividing production systems into partitions

which require similar amount of processing is difficult because

good models are not available for estimating the processing re-

quired by productions and it varies over time.

Compile-time analysis/optimization on expert systems cannot

be performed effectively because their run-time behavior is

highly data dependent. An expert system contains a large body

of knowledge capable of dealing with different situations. The

actual situation to be tackled is not known until program execu-

tion time. Therefore, program behavior (such as frequency of

procedure calls, amount of storage/communication require-

ments) is highly data dependent. Compile-time optimization

techniques cannot be applied directly to such computations.

Synchronizations take place frequently in search problems. At

the heart of many expert systems is a heuristic search problem:

given an initial state, apply knowledge to prune the search tree

to arrive at the goal state. This 2-phase cycle of knowledge

application and problem state modification can be parallelized in

many ways -- each of which requires frequent synchronization.

Consider the following examples:

• The RETE algorithm (OPS5): the conflict-resolution

phase must complete before the act phase can begin.

Even though the conflict-resolution phase could begin as

soon as each rule successfully enters the conflict set, the

best rule to be applied next cannot be determined until all

candidates (including the slowest ones) have arrived.

• The Soar algorithm [25]: Computation is divided into an

elaboration phase and a decision phase. Within each

phase all productions satisfied may be fired concurrently.

However, the elaboration phase must finish completely

before the decision phase may proceed and vice versa.

• And-parallelism in Prolog: Common terms which occur

in two clauses being worked on simultaneously must be

share identical bindings. This requires tasks working

concurrently on two sub-goals to communicate when-

ever such bindings are changed.

6. Conclusions

Many "building blocks" developed to enable parallel execution

of expert systems have been surveyed in sections 3 and 4.

Measurement results presented in section 5, however, seem to

indicate that the inherent parallelism available in expert systems

is small. Can expert system be formulation as highly parallel

computations? Can these "building blocks" be put together ef-

fectively to support parallel computations? We do not have an-

swers to these important questions. However, we would like to

draw on some fundamental results concerning speed-up and

parallel processing in section 6.1 and put forth some "fruit for

thought" regarding future directions for research in section 6.2.

6.1 Soeed-uv and Parallel Proeessin_

A small section of sequential code in an application can signif-

icantly limit its speed-up. Recall Amdahl's Law which states

473



that the maximum speed-up S for a computation obtainable on a

multiprocessor with p processors is governed by:

1
S-<--

f+ (1-f)/p

where f is the fraction of the computation that has to be executed

sequentially. A simple application of this result suggests that

parallel RETE-match algorithms can give at most a 10-fold im-

provement because only speeds-up the match phase which takes

90% of the execution time is affected.

When partitioning a single application into tasks, the grain-

size of the tasks should be chosen such that: (i.) there is enough

parallelism to exercise the PES of the parallel processor and (ii.)

communication and process management overhead must not

outweigh the speed-up obtained from parallel processing. With

production systems, it seems that extremely fine-grained tasks

(of the order of 100 machine instructions) are needed for effec-

tive parallel execution [23]. Minimizing the scheduling over-

head for such fine grain tasks is a major obstacle for achieving

higher degree of speed-up.

A number of effective software organization structures have

been proposed for multiprocessors. These include software

pipelines, systolic algorithms, divide-and-conquer (tree-of-pro-

cesses), and relaxed or asynchronott_ processes [261. Speed-up

could only be obtained, however, if certain criteria are met for

each proposed organization. For example, temporally decom-

posable computations can also be arranged as software pipelines

(which process data items incrementally from one stage to an-

other). Processing at each stage may be carried out concurrently

if data items can be spatially decomposed into (relatively inde-

pendent) subsets. With divide-and-conquer, maximum speed-

up is obtained when:

(i.) the set-up (task creation) and trail-off (recombination

of results) times are small compared to the computation

performed by each task;

(ii.) the number of tasks created is appropriate for the mul-

tiprocessor (given its task creation and management

overhead); and

(iii.) tasks are effectively scheduled (mapped) onto the

multiprocessor.

Whether an expert system can be spatially or temporally de-

composed is application dependent. Decomposition boundaries

can be identified based on a careful analysis of the nature of the

input data-set and the reasoning process. Sometimes, these

boundaries may not be obvious from first inspection. For ex-

ample, KATE is an expert system for controlling the flow of

conditioned air to maintain required temperatures, pressure and

humidity levels within four compartments of the Space Shuttle

while it resides in the Orbiter Modification and Refurbishment

Facility at Kennedy Space Center. Parallelism can only be ex-

tracted by rethinking the problems KATE is trying to solve:

• monitoring sensors -- data from different sensors can be

processed in parallel;

• problem diagnosis -- multiple fault theories and consis-

tency checks can be pursued in parallel;

• control -- alternative methods (i.e. set of commands re-

quired) for attaining a desired goal can be pursued in

parallel; and

• multiple faults and complex control operations are spa-

tially decomposable.

Researchers at the Intelligent Systems Technology Branch,

Information Sciences Division of NASA's Ames Research

Center are working towards a parallel version of KATE based

on these dimensions of parallelism. Results should be available

for publication next year.

6.2 Conclusions

WHAT IS THE BEST STRATEGY FOR BUILDING PARALLEL

EXPERT SYSTEMS? Should we:

i.) define a specific class of hardware architecture, then

study the mapping of programs to these architectures

(e.g. *LISP for the connection machine, marker passing

on NETL, and MultiLisp for the BBN Butterfly)? or

ii.) focus on a specific class of software architecture, con-

struct a multiprocessor that best matches the program

(e.g. DADO for RETE, PIM for concurrent Prolog)? or

iii.) establish a unified model to construct hardware and

software architectures such that subsequent mapping

between them can be easy and effective (e.g.

CParaOPS5 for the Encore Multimax)?

We do not have an answer to this question yet. Nevertheless,

we would like to suggest some research directions which seem

most promising to us.

Requirements for parallel implementation should begin at the

top of the software hierarchy and driven top-down -- from

problem solving paradigm design, to programming language

implementation, to operating system, to machine architecture.

We should decide the (macro) software organization most likely

to extract parallelism from the knowledge-based application, be-

fore choosing concurrent objects vs. parallel Lisp, or shared-

memory vs. distributed-memory architectures. In many cases,

speeding up the "knowledge-based" portion itself may not pro-

duce the overall speed-up value we require. Bottom-up ap-

proaches produce machines that could exhibit orders of magni-

tude speed-up if suitable applications can be found.

474



The most efficient parallel execution model for expert systems

may not look and work anything like the way they are specified.

AI programming paradigms (whether it be knowledge sources

with blackboards or productions on working memory) are de-

signed to enable knowledge to be encoded and processed in a

way similar to that carded out by human beings. They are not

necessarily efficient for execution on a computer. However,

when we stop asking "how computers can be modified to exe-

cute these paradigms directly", efficient execution models may

follow. The RETE algorithm for sequential execution is a very

good example.

In conclusion, we suggests that speed-up cannot come from

parallelizing one particular existent paradigm or language or op-

erating system. We must:

(i.) understand how to break up the problem with

minimal contention for accessing shared resources

and reduced dependencies; this could probably come

about by considering (macro and micro) data dependen-

cies in the system when designing its parallel implemen-

tation;

(ii.) re-examine problem solving and representation

schemes (such as rules, blackboards, procedures, or

logic programming) and be open-minded about effi-

cient parallel execution models that may not resem-

ble the human problem solving process; and

(ii.) explore parallelism at the application level; the na-

ture of the application may suggest temporal or spacial

decompositions; do not the portion of the application that

is not knowledge-based (e.g. re-organizing the I/O pro-

cedures may save more time than merely replacing the

sequential inference engine with a parallel one).

References

1. David H. Warren, "An Abstract Prolog Instruction Set",

Technical Note 309, Artificial Intelligence Center, SRI

International, October 1983.

2. Tohru Moto-oka, Hidehio Tanaka, Hitoshi Aida, and

Tsutomu Maruyama, "The Architecture of a Parallel

Inference Engine - PIE -", Proceedings of the International

Conference on Fifth Generation Computer Systems, pp. 479

- 488, 1984.

3. Salvatore J. Stolfo, Daniel P. Miranker, and David Elliot

Shaw, "Architectures and Applications of DADO: A Large-

Scale Parallel Computer for Artificial Intelligence",

Columbia University, January 18, 1983.

4. Salvatore J. Stolfo and Daniel P. Miranker, "DADO: A

Parallel Processor for Expert Systems", In IEEE, pp. 74 -

82, 1984.

5. Scott E. Fahlman, "Design Sketch For a Million-Element

NETL Machine", Carnegie-Mellon University, Department

of Computer Science, In AAAI-80, August 80.

6. James A. Hendler, Integrating Marker-Passing and

Problem-Solving: A Spreading Activation Approach to

Improved Choice in Planning, Department of Computer

Science, The University of Maryland, Lawrence Erlbaum

Associates, Inc., Hillsdale, New Jersey, 1988.

7. W. Daniel Hillis, The Connection Machine, The MIT Press,

Cambridge, MA, 1985.

8. Atsuhiro Goto, "Research and Development of the Parallel

Inference Machine in the Fifth Generation Computer System

Project", Technical Report: TR-473, Institute for New

Generation Computer Technology (ICOT), Minato-Ku,

Tokyo, Japan, April 89.

9. K. Fuchi (ICOT, Japan) and M. Nivat (INRIA, France), edi-

tors, "Programming of Future Generation Computers", in

the Proceedings of the First Franco-Japanese Symposium

on Programming of Future Generation Computers, Tokyo,

Japan, 6 - 8 October, 1986, Elsevier Science Publishers

B.V., The Netherlands, 1988.

10. Richard P. Gabriel and John McCarthy, "Queue-Based

MultiProcessor Lisp", Conference Record of the 1984 ACM

Symposium on Lisp and Functional Programming, ACM,

Austin, Texas, August 84.

11. Robert H. Halstead, Jr., "Parallel Symbolic Computer",

Computer Magazine, 19:8, pp. 35 - 43, August 86.

12. R. Halstead, T. Anderson, R. Osborne, and T. Sterling,

"Concept: Design of a Multiprocessor Development

System", 13 th International Symposium on Computer

Architecture, Tokyo, pp. 40 - 48, June 86.

13. John S. Conery and Dennis F. Kibler, "Parallel

Interpretation of Logic Programs", Communications of the

ACM, May 81.

14. John S. Conery, The AND�OR Process Model for

Parallel Interpretation of Logic Programs, Dissertation for

Ph.D in Information and Computer Science at University of

California at Irvine, University Microfilms International,

Ann Arbor, Michigan, 1983.

475



15. M.V. Hermenegildo, "An Abstract Machine for

Restricted AND-Parallel Execution of Logic Programs",

University of Texas at Austin, Austin, Texas, 1985.

16. Doug DeGroot, "Restricted AND-Parallelism."

Proceedings of the International Conference on Fifth

Generation Computer Systems, OHMSHA, Tokyo, pp.

471 - 478, 1984.

17. M. Hermenegildo and Evan Tick, "Memory

Performance of AND-parallel Prolog on Shared-Memory

Architectures", Proceedings of the 1988 International

Conference on Parallel Processing, August 15 - 19, 1988,

Volume II Software, pp. 17-21, August 88.

18. Harold D. Brown, Eric Schoen and Bruce A. Delagi,

"An Experiment in Knowledge-based Signal Understanding

Using Parallel Architectures", Knowledge Systems

Laboratory, Report Number KSL 86-69, Computer Science

Department, Stanford University, October 86.

19. Bruce A. Delagi, Nakul P. Saraiya and Gregory T. Byrd,

"LAMINA: CARE Applications Interface", Knowledge

Systems Laboratory, Report Number KSL 86-67, Computer

Science Department, Stanford University, November 87.

20. H. Penny Nii, Nelleke Aiello and James Rice,

"Frameworks for Concurrent Problem Solving: A Report

on Cage and Poligon", Knowledge Systems Laboratory,

Report Number KSL 88-02, Computer Science Department,

Stanford University, February 88.

21. James P. Rice, "Problems with Problem-Solving in

Parallel: The Poligon System 1.0", Knowledge Systems

Laboratory, Report Number KSL 88-04, Computer Science

Department, Stanford University, January 88.

22. Charles L. Forgy, "RETE: A Fast Algorithm for the

Many Pattern/Many Object Pattern Match Problem",

Artificial Intelligence, 19:17 - 37, 1982.

23. Anoop Gupta, "Parallelism in Production Systems",

Ph.D Thesis, CMU-CS-86-122, Department of C.S.,

Carnegie-Mellon University, March 1986.

24. Leon Alkalaj, "Architectural Support for Concurrent

Logic Programming Languages", PhD Thesis, Computer

Science Department, University of California, Los Angeles,

August 1989.

25. John E. Laird, Soar User's Manual, 4th Eidition, Xerox

PARC, 1986.

26. Michael J. Quinn, Designing Efficient Algorithms for

Parallel Computers. University of New Hampshire,

McGraw-Hill Book Company, 1987.

476


