4,693 research outputs found

    On parallel versus sequential approximation

    Get PDF
    In this paper we deal with the class NCX of NP Optimization problems that are approximable within constant ratio in NC. This class is the parallel counterpart of the class APX. Our main motivation here is to reduce the study of sequential and parallel approximability to the same framework. To this aim, we first introduce a new kind of NC-reduction that preserves the relative error of the approximate solutions and show that the class NCX has {em complete} problems under this reducibility. An important subset of NCX is the class MAXSNP, we show that MAXSNP-complete problems have a threshold on the parallel approximation ratio that is, there are positive constants epsilon1epsilon_1, epsilon2epsilon_2 such that although the problem can be approximated in P within epsilon1epsilon_1 it cannot be approximated in NC within epsilon_2$, unless P=NC. This result is attained by showing that the problem of approximating the value obtained through a non-oblivious local search algorithm is P-complete, for some values of the approximation ratio. Finally, we show that approximating through non-oblivious local search is in average NC.Postprint (published version

    On the Complexity of Making a Distinguished Vertex Minimum or Maximum Degree by Vertex Deletion

    Full text link
    In this paper, we investigate the approximability of two node deletion problems. Given a vertex weighted graph G=(V,E)G=(V,E) and a specified, or "distinguished" vertex pVp \in V, MDD(min) is the problem of finding a minimum weight vertex set SV{p}S \subseteq V\setminus \{p\} such that pp becomes the minimum degree vertex in G[VS]G[V \setminus S]; and MDD(max) is the problem of finding a minimum weight vertex set SV{p}S \subseteq V\setminus \{p\} such that pp becomes the maximum degree vertex in G[VS]G[V \setminus S]. These are known NPNP-complete problems and have been studied from the parameterized complexity point of view in previous work. Here, we prove that for any ϵ>0\epsilon > 0, both the problems cannot be approximated within a factor (1ϵ)logn(1 - \epsilon)\log n, unless NPDTIME(nloglogn)NP \subseteq DTIME(n^{\log\log n}). We also show that for any ϵ>0\epsilon > 0, MDD(min) cannot be approximated within a factor (1ϵ)logn(1 -\epsilon)\log n on bipartite graphs, unless NPDTIME(nloglogn)NP \subseteq DTIME(n^{\log\log n}), and that for any ϵ>0\epsilon > 0, MDD(max) cannot be approximated within a factor (1/2ϵ)logn(1/2 - \epsilon)\log n on bipartite graphs, unless NPDTIME(nloglogn)NP \subseteq DTIME(n^{\log\log n}). We give an O(logn)O(\log n) factor approximation algorithm for MDD(max) on general graphs, provided the degree of pp is O(logn)O(\log n). We then show that if the degree of pp is nO(logn)n-O(\log n), a similar result holds for MDD(min). We prove that MDD(max) is APXAPX-complete on 3-regular unweighted graphs and provide an approximation algorithm with ratio 1.5831.583 when GG is a 3-regular unweighted graph. In addition, we show that MDD(min) can be solved in polynomial time when GG is a regular graph of constant degree.Comment: 16 pages, 4 figures, submitted to Elsevier's Journal of Discrete Algorithm

    Parameterized (in)approximability of subset problems

    Full text link
    We discuss approximability and inapproximability in FPT-time for a large class of subset problems where a feasible solution SS is a subset of the input data and the value of SS is S|S|. The class handled encompasses many well-known graph, set, or satisfiability problems such as Dominating Set, Vertex Cover, Set Cover, Independent Set, Feedback Vertex Set, etc. In a first time, we introduce the notion of intersective approximability that generalizes the one of safe approximability and show strong parameterized inapproximability results for many of the subset problems handled. Then, we study approximability of these problems with respect to the dual parameter nkn-k where nn is the size of the instance and kk the standard parameter. More precisely, we show that under such a parameterization, many of these problems, while W[\cdot]-hard, admit parameterized approximation schemata.Comment: 7 page

    On the Size and the Approximability of Minimum Temporally Connected Subgraphs

    Get PDF
    We consider temporal graphs with discrete time labels and investigate the size and the approximability of minimum temporally connected spanning subgraphs. We present a family of minimally connected temporal graphs with nn vertices and Ω(n2)\Omega(n^2) edges, thus resolving an open question of (Kempe, Kleinberg, Kumar, JCSS 64, 2002) about the existence of sparse temporal connectivity certificates. Next, we consider the problem of computing a minimum weight subset of temporal edges that preserve connectivity of a given temporal graph either from a given vertex r (r-MTC problem) or among all vertex pairs (MTC problem). We show that the approximability of r-MTC is closely related to the approximability of Directed Steiner Tree and that r-MTC can be solved in polynomial time if the underlying graph has bounded treewidth. We also show that the best approximation ratio for MTC is at least O(2log1ϵn)O(2^{\log^{1-\epsilon} n}) and at most O(min{n1+ϵ,(ΔM)2/3+ϵ})O(\min\{n^{1+\epsilon}, (\Delta M)^{2/3+\epsilon}\}), for any constant ϵ>0\epsilon > 0, where MM is the number of temporal edges and Δ\Delta is the maximum degree of the underlying graph. Furthermore, we prove that the unweighted version of MTC is APX-hard and that MTC is efficiently solvable in trees and 22-approximable in cycles

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems
    corecore