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syntactic de�nition of the class NP and introduced the classes MAXNP and MAXSNP. Theyproved that any problem in MAXSNP/MAXNP class can be approximated in polynomialtime with constant ratio and many problems were shown to be MAXSNP-complete under L-reductions (for linear reductions). Later on, [KMSV94] proved that the class APX coincideswith the closure under E-reductions of MAXNP and MAXSNP, thus reconciling both views(syntactic and computational) of approximability.In the parallel setting we have an analogous situation. We consider the class of problemsthat are approximable within a constant ratio in NC that we denote NCX. Many propertiesare common for the classes NCX and APX. For example, in [DST93] it was shown thatMAXSNP is contained in NCX, to do so they introduced L-reductions under the logspacecriterion and proved that all known MAXSNP-complete problems proved in [PY91] are alsocomplete under this reducibility. For the inclusion MAXSNP � NCX [DST93] show thatthe proof of [PY91] can be achieved also in NC.We �rst consider the possibility, for the class NCX, of having complete problems. To thisaim we de�ne some kind of NC-reduction, called NCAS-reduction, that preserves the \rela-tive error" of approximations. This reduction generalizes the logspace L-reduction of [PY91]in the following sense: in order to preserve approximability L-reductions relate (linearly) theoptima of both problems, while NCAS-reduction relate only the errors of the approximatesolutions; in particular, NCAS-reduction has the property that constant approximations toone problem translates into constant approximations to the other. Our de�nition comesfrom the de�nition of PTAS-reduction [CP91]. We show that Max Bounded WeightedSAT is complete for NCX under NCAS-reductions, notice that this problem is also completefor the class APX under PTAS-reductions [CP91].One general approach when dealing with hard combinatorial problems is to use a localsearch algorithm. Starting from an initial solution, the algorithm moves to a better oneamong its neighbors, until a locally optimal solution is found. This approach was usedin [KMSV94] where they provided a characterization of MAXSNP in terms of a class ofproblems called Max kCSP (for Constraint Satisfaction Problem), and show that a sim-ple non-oblivious local search provides a polynomial time approximation algorithm for theproblems of the class. Thus every MAXSNP problem can be approximated within a con-stant factor by such algorithms, a fact that is in concordance with the (previously known)constant-approximability of MAXSNP, and furthermore the ratios achieved using this al-gorithms are comparable to the best-known ones. We analyze the parallel complexity ofsuch approach. Notice that for NPO problems that are polynomially bounded, a simpleobservation shows that local search algorithms run in polynomial time. We �rst de�newhat we call a local problem in which we are given an instance of the problem, a startingfeasible solution and we ask for the value of the local optimal solution attained accordinglyto a pre-speci�ed local search algorithm. We show that the problem corresponding to non-oblivious local search is P-complete, furthermore it cannot be approximated in NC for someratios, unless P=NC. Then, we use this result to show that there exists a threshold on theparallel approximation ratio of MAXSNP-complete problems, that is, there are constants"0, "1 such that the problem can be approximated in NC within "0, but not within "1,unless P=NC. In particular we show that the problem Max CUT can be approximated inNC within 1 but not within 1� ", for some ".Although this results means that we cannot achieve in NC the best ratios for MAXSNP-complete problems, we analyze the expected behavior of a general non-oblivious local searchalgorithm. We show that the expected number of iterations is polylogarithmic in theinstance size, when the search starts from a random initial solution and using a quitegeneral improvement model. 2



2 Preliminaries, Basic De�nitions and ProblemsAn NP Optimization problem is given by: (a) the set of instances, (b) the set of feasiblesolutions associated to any instance, (c) an objective function that maps feasible solutionsof a given instance to (non-negative) rationals, referred to as the cost of the solution, and(d) we seek for a feasible solution that optimizes (maximizes, minimizes) the objectivefunction.Let � be an NP Optimization problem, whose objective function is polynomially boundedwith respect to the input length. Let I� denote the set of instances and let Sol�(x) denotethe solution set to instance x. For any solution S, S 2 Sol�(x), let V (x; S) be the value ofthe objective function on S and let Opt(x) be the optimum value to instance x.De�nition 1 An algorithm A approximates the problem � with error " > 0 if it �nds afeasible solution S to instances x of � such that11 + " � V (x; S)Opt(x) � 1 + ": (1)In this case we say that S has relative error within " from the optimum solution and usethe notation E�(x; S) � ". The performance ratio of A is r (r � 1), if it always �nds asolution with error at most r � 1.Let � be a given problem such that for any instance x there is a unique solution to x, andlet �(x) denote the (unique) value corresponding to the solution, � is called a functionproblem.De�nition 2 Given an instance x of any function problem � and an " > 0, the "-�problem is: compute a value V (x) such that "�(x) � V (x) � �(x).Based on the de�nition of PTAS-reductions [CP91] we de�ne the error preserving reductionsin NC.De�nition 3 Let A and B be two NPO problems. We say that the problem A is NCAS-reducible to B (A �NCAS B) if three functions f; g; c exist such that the following conditionshold:(a) For any x 2 IA, f(x) 2 IB and the function f is computable in NC with respect to jxj.(b) For any x 2 IA and for any y 2 SolB(f(x)), g(x; y) 2 SolA(x) and the function g iscomputable in NC with respect to both jxj and jyj.(c) c : (0; 1)! (0; 1) is an invertible rational valued function.(d) For any x 2 IA and for any y 2 SolB(f(x)) and for any rational ", " 2 (0; 1), ifEB(f(x); y)� c(") then EA(x; g(x; y))� ".From this de�nition we have that NCAS-reduction preserves the relative error of approxi-mation that is, whenever A �NCAS B then if we can �nd in NC approximate solutions forB implies that we can �nd in NC also approximate solutions for A. On the other hand thiskind of reduction also \transmits" the non-approximability from A to B.We recall also the L-reduction as de�ned in [PY91]. Given two NPO problems � and�0, it is said that � L-reduces to �0, if there exist a pair of functions (f; g) computable inpolynomial time and two constants �; � > 0 such that (a) function f transforms a given3



instance x of � into an instance x0 of �0 satisfying Opt(x0) � �Opt(x) and (b) functiong maps solutions of instance x0 of cost C 0 into solutions of x of cost C in such way thatjC � Opt(x)j � �jC 0 � Opt(x0)j.If we put the additional condition for an L-reduction to be achievable in logspace thenclearly, we have that NCAS-reduction is a generalization of L-reduction (we choose c(") ="=��, where � and � are the constants of L-reduction).The following properties are immediate:Proposition 1 If A �NCAS B and B 2 NCX then A 2 NCX.Proposition 2 The reduction �NCAS is re
exive and transitive.Proposition 3 If a problem A NCAS-reduces to problem B and A cannot be approximatedin NC within some ", " � "0 then B cannot be approximated in NC within some "0, "0 � c("0)where c is the function given by the NCAS-reduction.De�nition 4 Let A be a problem in NCX. We say that A is complete for the class NCXunder NCAS-reduction i� for any B 2 NCX, B �NCAS A.Through the paper we will consider the following problems:Weighted Max CUTGiven a graph G = (V;E) with positive weights on the edges, �nd a partition of V intotwo sets V1 and V2, such that the sum of the weights of the edges between V1 and V2 ismaximized. When all the weights are unitary we have the unweighted Max CUT.Weighted Max kSATGiven a Boolean formula in CNF where each clause contains at most k literals and has apositive integer weight, �nd an assignment of 0=1 to all variables that maximizes the sumof the weights of the satis�ed clauses. When k = 3 we have the problem of Max 3SAT.Weighted Not All Equal kSATWe are given a set of weighted clauses with at most k literals of the form NAE(x1; : : : ; xk)where each xi is a literal or a constant 0=1. Such a clause is satis�ed if its constitutes donot have all the same value. We want to �nd an assignment to the variables such that thesum of the weights of the satis�ed clauses is maximized. When the clauses do not containnegated literals the problem is called POS NAE kSAT.Max Bounded Weighted SATGiven a set of clauses C over a set of variables fx1; x2; : : : ; xng and weights fw1; w2; : : : ; wngto the variables such that W � nXi=1wi � 2W; (2)�nd a truth assignment to the variables that maximizes the following measure function:V (C; �) = 8><>: max(W;Pni=1 wi�(xi)); if � satis�es all the clauses of C;W; otherwise. (3)Circuit True Gates (CTG) Given an encoding of a Boolean circuit C together with aninput assignment, compute the number of true gates to the given assignment, denoted byTG(C). 4



3 NCX-CompletenessIn order to prove the completeness result for NCX we will consider the Max BoundedWeighted SAT problem. Firstly, we observe that this problem is in NCX. For that, wenote that the assignment xi = 1; 1 � i � n, has measure either W orPni=1 wi and thereforefrom (2) it gives an approximation with factor 1=2, that is a 1-approximation according toour de�nition.Theorem 4 Max Bounded Weighted SAT is NCX-complete under NCAS-reductions.Proof: Let � be an optimization problem in NCX (suppose �rst that � is a maximizationone). In order to reduce � to Max Bounded Weighted SAT we �rst reduce it, using aNCAS-reduction, to another problem � and then reduce � toMax Bounded WeightedSAT. Our reduction is based in that given in [CP91] but extended to the parallel setting.Let T be the NC �-approximation algorithm for �. The problem � is as follows. Theinstances of � are those of � and its measure function, for instance x and solution y,V�(x; y) is: V�(x; y) = a(x; �) + maxfV�(x; y); t(x)g;where a(x; �) = 8><>: 2��11�� t(x); if � > 12 ;0; otherwise,and t(x) = V�(x; T (x)). Notice that in the new problem � is included the value T (x)delivered by the approximation algorithm T . The idea is to obtain a problem with boundedmeasure since we want to reduce it to a weighted problem of bounded measure. In fact,if we denote by l(x) = a(x; �) + t(x) then we have l(x) � V�(x; y) � 2l(x); which meansthat the measure function of � satis�es the same kind of constraint (2) asMax BoundedWeighted SAT.Now, the reduction from � toMax Bounded Weighted SAT goes as follows. Givenan instance x of �, we apply Cook's theorem (see, e.g., [GJ79]). Then we will have atransformation (in polynomial time) from the problem � to SAT. We observe that thistransformation ca be achieved also in logspace. Indeed, all the information we need eachstep of computation (in the work tape) for the variables in order to write the formula is:the step of the computation i, the index k of the actual state qk of the machine, the index jof the tape square where read-write head is scanning and the index l of the bit of the inputx, x = sk1sk2 : : : sl : : : skn that is scanning the machine. Therefore, the amount of the spacewe need in the work tape is logarithmic in the size of the input x since all these indices arebounded by a polynomial in the size of x. In other terms, the main need for the memoryin such construction is for counting up to a polynomial in the length of the input and thiscan be done in logarithmic space.Let 'x be the boolean formula obtained. Let us denote by y1; y2; : : : ; yr the variablesthat describe the solution y and by m1; m2; : : : ; ms the boolean variables that give thesolution V�(x; y). Now, we assign weights to the variables. The variables mi's receiveweights 2s�i and all other variables are assigned the weight 0. So, we have an instance ofWeighted Max SAT. Since the measure V�(x; y) is bounded then we have an instance ofMax Bounded Weighted SAT (the constant W depends on the bound of the problem�). Furthermore, for any truth assignment which satis�es the formula, to recover a solutiony is straightforward (we look at the values of yi's). On the other hand, this transformationguarantees the relative error because V�(x; y) is equal to the sum of the weights of the truevariables. 5



For the rest of the theorem we have to prove that � is NCX-reduced to �. The trans-formation is the following:� For any instances x we let f(x) = x.� For any instance x and any solution y that corresponds to instance f(x) we takeg(x; y) = 8><>: y; if t(x) � V�(x; y);T (x); otherwise.� For any rational ", " 2 (0; 1),c(") = 8><>: 1��� "; if � > 12 ;"; otherwise.This transformation preserves the relative error when passing from solutions of � to thoseof � (see details in [CP91]). Since NCAS-reductions compose we have that � �NCASMaxBounded Weighted SAT. The minimization case uses similar arguments. 24 The Parallel Complexity of Local Search ProblemsThe sequential complexity of local search algorithms has been extensively treated in [JPY88,SY91]. Here we deal with this issue in the parallel setting. Let us start by the de�nition ofsuch algorithms.De�nition 5 (Local Search Algorithm)Given a solution S of to a maximization (resp. minimization) NPO problem � and a � > o,the �-neighborhood of S, denoted by N(S; �), is the set of all solutions S 0 that have distanceat most � from S, N(S; �) = fS 0 j D(S; S 0) � �g;where D(S; S 0) is the Hamming distance between S and S 0. A solution S is locally optimali� 8S 0 2 N(S; �); V (x; S) � V (x; S 0); (resp. V (x; S) � V (x; S 0)):A local search algorithm starts from an initial solution S and each iteration moves in theneighborhood of S from the current solution Si to some solution Si+1 2 N(S; �) with bettercost, until it arrives at a locally optimal solution.The time needed by any local search algorithm to �nd a locally optimal solution dependson the neighborhood structure used. So, there are local search algorithms for which locallyoptimal solutions are not known to be computable in polynomial time. However, there is asubclass of problems for which local search algorithms run in polynomial time.De�nition 6 An NPO problem � is polynomially bounded if there is a polynomial p suchthat Opt(x) � p(jxj), for any instance x of �, where jxj is the instance size.Proposition 5 Local Search algorithms run in polynomial time for NPO problems that arepolynomially bounded. 6



The main observation of this (folklore) result is that in the case of polynomially boundedproblems the number of steps to achieve a local optimium is polynomially bounded sinceany step of local search improves the value of the solution by an integral amount.The local search de�ned above is also called Standard Local Search or Oblivious LocalSearch. A more generalized (astute) method for local search, Non-oblivious Local Searchis given in [KMSV94]. The Non-oblivious Local Search was shown to be more powerfulthan the oblivious one since it permits to explore in both directions: that of the objectivefunction and also that of the distance function. Non-oblivious local search algorithms wereused successfully to approximate within a constant factor all MAXSNP problems.De�nition 7 (Non-oblivious Local Search Algorithm) A Non-oblivious Local Searchalgorithm is a local search algorithm whose weight function is de�ned to beF(I; S) =X~x rXi=1 pi�(I; S; ~x);where r is a constant, �i's are quanti�er-free �rst-order formulas and the pro�ts pi are realconstants. The distance function D is any arbitrary polynomial time computable functionand both S; ~x are structures.Given a polynomially bounded NPO problem, we can de�ne a local problem in which we �xa starting solution and seek for the value of the local optimum achieved by a non-obliviouslocal search algorithm. First, we de�ne such a problem for Max CUT.De�nition 8 (Local Max CUT) Given an instance ofMax CUT and an initial solutionS, �nd a locally optimum solution, achieved through a local search, starting from S.We show that the Local Max CUT problem is non-approximable in NC, unless P=NC.Our results builts on the result of [SY91] where was shown that �nding a locally optimalsolution to the unweighted Max CUT is P-complete. Moreover, we do not refer to anyparticular method (standard local search, non-oblivious local search, etc.) used to �nd thelocally optimal solution, i.e. the non-aproximability result is independent of the methodused. Our proof uses a reduction from the Circuit True Gates, a problem that wasshown non-approximable in NC [Ser91], to Local Max CUT.Theorem 6 There is an "1 > 0 such that the "-Local Max CUT is P-complete for any" < "1.Proof: [Sketch] Given an instance of Circuit True Gates, let us consider the instanceof CVP corresponding to it, i.e., the encoding a of the circuit together with the inputassignment. Then, we use the reduction given in [SY91] to reduce the CVP to LocalMax CUT. This reduction goes through three stages. In the �rst stage, the instance ofCVP is reduced, in NC, to an instance of POS NAE 3SAT, in the second one POS NAE3SAT is reduced to Weighted Max CUT and, �nally, the last instance is transformedinto an instance of the (unweighted) Max CUT. Here we give the most relevant points ofthe reduction (the reduction is quite involved), the full details are found in [SY91]. Ourmain observation here is to relate the value of the CUT with the number of true gates ofthe circuit instance from which we deduce the non-approximability result.Having the instance of CVP, the variables for POS NAE 3SAT are as follows. For eachgate gi there is introduced a variable (denoted with the same symbol) gi with the propertythat in any locally optimal truth assignment, the value of gate variable gi is consistent with7



the corresponding value of the gate in the circuit. Further, there are introduced two groupsof variables. The �rst, control variables yi; zi (corresponding to the ith gate), where zi =:yi. The intended meaning of such variables is to force that in any truth assignment which islocally optimal the variable gates are consistent with the circuit. The second group are localvariables, associated to gate variable gi: �1i ; �2i ; �1i ; �2i ; �1i ; �2i ; �3i ; 
1i ; 
2i ; 
3i ; !i. The clausesof the instance POS NAE 3SAT are constructed from gate variables, control variablesand local variables. In order to assign positive weights to the clauses, there are assignedpositive weights to the variables and from them are computed (adequately) the weights forthe clauses. So, to each variable is associated a positive weight (the weight of the variablev is denoted by jvj, n the instance size), as given below.jgij = 100(2n+ 1� i) + 60jzij = jgij � 60; jyij = jgij+ 10j�ki j = jgij+ 10; j�ki j = jgij+ 10; k = 1; 2j�ki j = jgij; j
ki j = jgij; k = 1; 2; 3j!ij = j�1i j � jgij = 10: (4)The weights of the clauses for POS NAE 3SAT are computed from (4). The instance I ofPOS NAE 3SAT has the property that, if an assignment to variables is not consistent withthe circuit, then the local search will correct the value of those gate variables that violatethe consistency.In the second stage, from the instance I of POS NAE 3SAT is constructed the instanceof Weighted Max CUT as follows:� There is one vertex for each variable and two additional vertices labeled by 0 and 1;� For every clause NAE(x; y) with weight W in I , there is included an edge betweenthe vertices corresponding to the variables of the clause, with the same weight andfor each clause NAE(x; y; z), three edges (x; y), (x; z), (y; z) with weight W=2 each,are included.Regarding the weights of the clauses in the instance I (de�ned as function of the variable'sweights) and the weights of the edges of the graph, the following two properties hold:(1) an edge connecting two variable vertices u, v has weight equal to the product juj � jvj;(2) the weight of the edge connecting a variable vertex v to a constant vertex 0/1 is amultiple cjvj of the weight jvj.From these properties there is deduced that any locally optimal solution (locally optimalCUT) to Weighted Max CUT induces a truth assignment to the variables of POS NAE3SAT that is locally optimal.In the �nal stage is constructed the instance of (unweighted)Max CUT, obtained fromthe instance of Weighted Max CUT by replacing every variable vertex v by a set Nv ofjvj vertices, and any edge (u; v) connecting two variable vertices by a a complete bipartitegraph between Nu and Nv, and an edge connecting variable vertex v to a constant vertex0=1, by edges connecting any vertex of Nv to the constant vertex. This assures that the newgraph is unweighted and veri�es the above property for locally optimal solutions. Going8



back to CVP it means that the input variables and gate variables in such assignment areconsistent with the circuit. In other words, the values of the input variables coincide withthe given input of the circuit and the gate variables have the value that is computed by thecorresponding gates on that input.Now, let v be a vertex. From properties (1)-(2), the total weight of its incident edges isa multiple of jvj, denoted d(v) � jvj. Therefore the total weight of the cut (V1; V0) will beW (V1; V0) = Xv2V1 d(v) � jvj; (5)where V1 is the set of vertices corresponding to the true variables. Now, we express theweights of the variables (i.e. the weights of control and local variables) in terms of jgij asgiven in (4). Thus the weight of the cut given in (5) is written asW (V1; V0) = Xg2TG f(jgj); (6)where TG denotes the set of true gates (i.e. V1 = TG) and f is a linear function. But wecan always �nd constants m and M such thatm � TG(C) � Xg2TG f(jgj) �M � TG(C): (7)Therefore, from (6) and (7) it results that we cannot approximate in NC the value of alocally optimal CUT for any " < "1, for some "1 > 0 that is a function of m and M ,because it would imply that we can approximate in NC the number of true gates TG(C) ofthe circuit. 2We can de�ne in the same way as Local Max CUT, the Non-oblivious Local SearchProblem. Using arguments similar to those of Theorem 6 we can construct, instead of aMax CUT instance, an instance of Non-oblivious Local Search Problem. Therefore wehave the following:Corollary 7 There exists "1 > 0, such that approximating a Non-oblivious Local Searchproblem is P-complete for values of " < "1.Suppose we have a problem � and an algorithm A that approximates it for some "0 inpolynomial time (for example, Max CUT and the standard local search algorithm). Fur-thermore, suppose that the value given by this algorithm cannot be approximated in NCfor any " < "1. In this situation, we naturally may ask whether there is a threshold inthe approximation value such that the problem � itself cannot be approximated in NC,i.e. whether the NC non-approximability of the value given by the algorithm translates intoan NC non-approximability result for the problem itself.Theorem 8 Let x be an instance of an NPO problem � and suppose that the algorithm Aapproximates � within "0. If the value A(x) = V (x; S) computed by the algorithm cannotbe approximated in NC for " < "1, for some "1 > "0 then � cannot be approximated in NCfor " < "2, for some "2 that depends on "0 and "1.Proof: Since A approximates � within "0 we have that11 + "0 � A(x)Opt�(x) � 1 + "0: (8)9



Suppose the contrary, that there is an NC algorithm B that approximates � within some", 0 � " < "2, that is 11 + " � B(x)Opt�(x) � 1 + ": (9)Now, we can write B(x)A(x) = B(x)Opt�(x) � Opt�(x)A(x)and therefore from (8) and (9) we have1(1 + "0)(1 + ") � B(x)A(x) � (1 + "0)(1 + "): (10)If we chose "2 such that "0 + "0(1 + "2) = "1 then the inequalities (10) mean that we canapproximate A(x) within " < "1 and this contradicts the supposition. 2The following is another interpretation of the above result. Given an optimizationproblem �, if the values of its approximate solutions obtained through certain resources(e.g. polynomial ones) cannot be approximated for all values of error parameter " usingother resources (e.g. parallel ones), then there is a threshold in approximating the problem� itself in the second setting.The result of Theorem 8 has also the following two implications. First, since non-obliviouslocal search algorithm approximate Max CUT then, under the supposition that P 6= NPthere exist a positive constant " such thatMax CUT cannot approximated in NC for factorssmaller than ". Secondly, recall that Max CUT is MAXSNP-complete under logspace L-reductions [PY91], therefore from Theorem 6 and Theorem 8 we obtain:Theorem 9 For every MAXSNP-complete problem �, there exist "0, "1, "1 � "0, such that� can be approximated in NC for any " � "0 but cannot be approximated for any " < "1.Proving constant approximability in NC is an important issue. Many constant factor ap-proximation results in sequential can be translated also into parallel approximation results of(almost) the same factor. For example, Luby [Lub88] shows that a simple 1-approximationalgorithm for Max CUT that puts a vertex in one side of the cut with probability 1=2can be done also in parallel. In [ACP94] was given a sequential 1-approximation for Max3SAT, we give a di�erent and simple algorithm that achieves the same ratio in NC for thegeneral Max SAT.Proposition 10 There exists an NC algorithm that given an instance of Max SAT �ndsan assignment to the variables that satis�es at least 1=2 of the total number of clauses. Thealgorithms runs in O(logn) time and uses O(n) processors in an EREW parallel machine.Proof: We consider the following algorithm:� Let Vj be the set of clauses where the variable xj , 1 � j � n, or its negation appears,Vj = fCi j xj 2 Ci or :xj 2 Cig for j � 1;and let us denote by nj its cardinality, nj = jVj j.� Sort the sequence of the sets Vj , 1 � j � n in non-increasing order of their cardinali-ties.� Do a partition of the sets Vj that is, take Vj := Vj � [i<jVi:10



� For all Vj compute: n0j -the number of appearances of xj in clauses of Vj , and n00j -thenumber of appearances of :xj in clauses of Vj .� For all j, if n0j � n00j then assign xj := True else assign xj := False.We claim that the assignment found above satis�es at least m=2 clauses. Indeed, we notethat xj satis�es at least nj=2 clauses, therefore at least Pnj=1 nj=2 = m=2 clauses aresatis�ed. It is straightforward to see that this algorithm can be e�ciently implemented inEREW parallel machine using O(n) processors and in O(logn) time. 25 Expected performance of local search algorithmsRecall from the de�nition of local search that, given an instance of the problem and asolution to it, we must be able to determine in polynomial time whether the solution islocally optimal and, if not, to generate a neighboring solution of improved cost. That,on turn, means that we are considering NPO problems whose domain of feasible solutionshas cardinality polynomial in the input size. We are interested in the expected numberof iterations of any local improvement algorithm for such problems under any reasonableprobabilistic model.Let us give �rst some notations and considerations. Given an NPO problem �, we mayconsider the set of its feasible solutions as a q logn-hypercube, where n is the input sizeand q a constant that depends only on the instance. We can also suppose that the valuesof the objective function f for the problem at hand are distinct. Therefore, the verticesof the hypercube can be ordered from high to lower functional values and this is calledan ordering. Given a set S of vertices in the hypercube, B(S) denotes the boundary of Sconsisting of all vertices not in S that are adjacent to some vertex in S, that isB(S) = fy j 9x 2 S; x and y are adjacentg:We recall again a local improvement algorithm in its standard form:1. Start at some random vertex (i.e. feasible solution) x;2. Choose a vertex y adjacent to x such that f(y) > f(x). If no such y exist, then stop.3. Set x equal y and iterate Step 2.Given an optimization problem there are two possible cases. The �rst, the local and globaloptima coincides. In this case the problem is called local-global and the improvementalgorithm can be seen as a walk to the root of a tree whose vertices represent feasiblesolutions and the root represents the local optima. Secondly, the problem has multiplelocal optimas. In this case the improvement algorithm generates a forest with as manytrees as local optimas there are. When the problem is local-global, the height of the treegives us the maximum number of iterations done by the algorithm in order to �nd theoptima. In the later, the number of iterations is given by the forest's depth, i.e., themaximum depth of any tree in the forest.In order to evaluate the expected number of iterations done by the algorithm, we mustprecise how do we choose at step 2. Many reasonable probability distributions exist forthis choice [Tov86]. Here we will consider the boundary distribution, de�ned as follows.Let B(i) be the boundary of the vertices chosen until step i. Then, the (i+ 1)th vertex ischosen uniformly at random in the boundary B(i). In fact, an even more simpli�ed model11



will be considered. Instead of choosing randomly and uniformly from B(i), we consider themodel where the (i + 1)th vertex is chosen uniformly from a subset of B(i), namely thatof the deepest vertices generated so far. Here is some intuition behind this new choice. If,instead of choosing among all vertices we choose among, say, the half deepest ones, then wewould expect, at least intuitively, that the growth of the height would be \faster" than thatof the height if we choose among all the vertices. Indeed, it turns out the second processstochastically dominates the �rst one, in the sense that the expected height in the secondmodel is greater than or equal to that of the �rst one. So it su�ces to �nd an upper boundfor the expected height of the tree generated in the second model. A formal de�nition ofstochastic dominance (see, e.g., [Roh76]) follows.De�nition 9 If X and Y are two random variables with distribution functions Fx(t) andFy(t), then we say that X stochastically dominate Y (X � Y ), if Fx(t) � Fy(t), 8t.It is clear that if X stochastically dominates Y then E(X) � E(Y ). The de�nition givenabove is naturally extended to sequences of random variables.De�nition 10 Let X = X1; X2; : : : and Y = Y1; Y2; : : : be two sequences of random vari-ables. We say that X stochastically dominates Y if, 8i, Xi � Yi.Let r = q logn and Pk = Pkj=0 �rj�, for some integer k. The following lemma gives a lowerbound on the size of the boundary of a set of vertices in the r-hypercube.Lemma 11 Let S(i) be the size of the smallest boundary of a set of size i. Then,� S(i) = � rk+1�, if i = Pk;otherwise we have� � rk+1� � S(i), if Pk < i < Pk+1 and k � (n� 3)=2;� � rk+2� � S(i), if Pk < i < Pk+1 and k � (n� 3)=2.Proof: It is clear that, for the value of i as speci�ed above, the boundary of a set of ivertices in the q log n-hypercube has at least (q logn)k vertices. Then we apply Kruskal-Katona theorem [Kle81] that shows how to �nd a set of i vertices in a hypercube withminimal boundary size. From this theorem the bounds on S(i) follow. 2The stochastic process described below, will stochastically dominate the pathlengths ofthe vertices of the tree. This process is called the largest k-process and is denoted by Lk . Letk = k1; k2; : : : be a sequence of positive integers. The largest k-process is the the sequence ofrandom variables Lk = Lk1; Lk2; : : : whose values are generated as follows: Lk1 = 1; given thevalues of Lk1 ; Lk2; : : : ; Lki�1, we choose randomly and uniformly one of the ki largest valuesand set this value plus one to Lki .Lemma 12 Given a set of i vertices on the q log n-hypercube, let B(i) denote a lowerbound on its size. Let k = k1; k2; : : : ; knq be the sequence of integers where ki is de�ned aski = max(1; bB(i)=(q log n�1)c) and let H = fHig be the sequence of random variables suchthat Hi denotes the height of the vertex i in the tree generated by the local search algorithmunder boundary distribution. Then Lk � H.Proof: We observe that Lk is generated by choosing among the largest values, thatmeans choosing among the deepest vertices generated so far. This fact assures that Lkstochastically dominates the pathlength of the vertices. Furthermore, by choosing the12



value for ki, ki = max(1; bB(i)=(q log n� 1)c) it is guaranteed that the vertices are chosenaccordingly the boundary distribution. 2From this lemma, an upper bound for Lk is also an upper bound for the maximumpathlength on the tree. Let us denote by �k, the growth rate of Lk, i.e., its average increase.The key fact is the following theorem [AP81].Theorem 13 [AP81] Let m be a positive integer and let M be a sequence of m's. Then theexpected rate of growth, �m, of the sequence LM is less than or equal to e=m, for large m.Now, we are able to state the following result:Theorem 14 The expected number of iterations of any local improvement algorithm is lessthan:(a) e� log2 n log logn, if the problem is local-global and the probability distribution used isthe boundary distribution.(b) e� logn, if the problem has multiple local optimas and under any probability distribu-tion,where � and � are constants (that depend only on the problem).Proof: The idea is to see the largest k-process as formed of subsequences each of themsimulated for a �xedm. The rate growth for each subsequence is then given by Theorem 13.Let s = b(r � 1)=2c and let us divide the set of 2r vertices of the r-hypercube into thesegments: 1 � i � Ps; Ps < i � Ps+1; � � � ; P2s < i � P2s+1:The pathlengths of the vertices of the tree corresponding to each segment j, 1 � j � rare stochastically dominated by the subsequence of Lk with mj = kj , where kj is given inLemma 12. Thus, Lk = Lm1 ; Lm2 ; : : : ; Lmr . Therefore, the total expected height is lessthan PPsi=1 e(r� 1)=B(i) +P2rPs+1 e(r � 1)=B(i)1 + e(r � 1)Psk=1 �rk�=�rk�+ e(r � 1)Pr�1k=s �rk�=� rk+1�+ 1� 2 + e(r � 1)2 + e(r � 1)(r=2 + r log r=2)< eq2 log2 n log logn.So, this is an upper bound for the expected number of iterations of the algorithm.The proof for the case (b) uses similar arguments. We notice that in this case no matterhow do we choose the vertex but, however, the way we choose must assure that all theorderings are equally likely. 2Notice also that from this theorem we have that, in particular, oblivious and non-oblivious local search problems are in average NC, just use local improvement algorithmsunder any reasonable probabilistic model.6 AcknowledgementWe thank P. Crescenzi for many helpful comments on a draft of this paper.13
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