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Abstract

In this paper we deal with the class NCX of NP Optimization problems that are
approximable within constant ratio in NC. This class is the parallel counterpart of the
class APX. Our main motivation here is to reduce the study of sequential and parallel
approximability to the same framework. To this aim, we first introduce a new kind of
NC-reduction that preserves the relative error of the approximate solutions and show
that the class NCX has complete problems under this reducibility.

An important subset of NCX is the class MAXSNP, we show that MAXSNP-complete
problems have a threshold on the parallel approximation ratio that is, there are positive
constants €1, €5 such that although the problem can be approximated in P within &,
it cannot be approximated in NC within g5, unless P=NC. This result is attained
by showing that the problem of approximating the value obtained through a non-
oblivious local search algorithm is P-complete, for some values of the approximation
ratio. Finally, we show that approximating through non-oblivious local search is in

average NC.

1 Introduction

It is already well known that there are no polynomial time algorithms for NP-hard problems,
unless P=NP, therefore for such problems the attention have been focused in finding (in
polynomial time) approximate solutions. In this paper we consider NP Optimization (NPO)
problems with polynomially bounded, in the input’s length, objective function. The class
APX consists of those NPO problems whose solutions can be approximated in polynomial
time, with relative error bounded by a constant. This class is computationally defined, in
that, to prove membership of a problem to this class we should give a polynomial time
algorithm that finds a feasible solution to the problem whose measure is within a constant
factor of the optimum or reduce it to an APX problem under a certain approximation
preserving reduction. A natural question in this direction was whether there is a subclass
of problems in APX which could be proved constant approximable in a generic way, or,
alternatively, is there any complexity class (included in APX) whose members do not accept,
Polynomial Time Approximation Schemes? In order to give a precise characterization
of such (possible) complexity classes, Papadimitriou and Yannakakis [PY91] used Fagin’s
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syntactic definition of the class NP and introduced the classes MAXNP and MAXSNP. They
proved that any problem in MAXSNP/MAXNP class can be approximated in polynomial
time with constant ratio and many problems were shown to be MAXSNP-complete under I.-
reductions (for linear reductions). Later on, [KMSV94] proved that the class APX coincides
with the closure under E-reductions of MAXNP and MAXSNP, thus reconciling both views
(syntactic and computational) of approximability.

In the parallel setting we have an analogous situation. We consider the class of problems
that are approximable within a constant ratio in NC that we denote NCX. Many properties
are common for the classes NCX and APX. For example, in [DST93] it was shown that
MAXSNP is contained in NCX, to do so they introduced I.-reductions under the logspace
criterion and proved that all known MAXSNP-complete problems proved in [PY91] are also
complete under this reducibility. For the inclusion MAXSNP C NCX [DST93] show that
the proof of [PY91] can be achieved also in NC.

We first consider the possibility, for the class NCX, of having complete problems. To this
aim we define some kind of NC-reduction, called NCAS-reduction, that preserves the “rela-
tive error” of approximations. This reduction generalizes the logspace T.-reduction of [PY91]
in the following sense: in order to preserve approximability [.-reductions relate (linearly) the
optima of both problems, while NCAS-reduction relate only the errors of the approximate
solutions; in particular, NCAS-reduction has the property that constant approximations to
one problem translates into constant approximations to the other. Our definition comes
from the definition of PTAS-reduction [CP91]. We show that Max BounneEn WRIGHTED
SAT is complete for NCX under NCAS-reductions, notice that this problem is also complete
for the class APX under PTAS-reductions [CP91].

One general approach when dealing with hard combinatorial problems is to use a local
search algorithm. Starting from an initial solution, the algorithm moves to a better one
among its neighbors, until a locally optimal solution is found. This approach was used
in [KMSV94] where they provided a characterization of MAXSNP in terms of a class of
problems called Max kCSP (for Constraint Satisfaction Problem), and show that a sim-
ple non-oblivious local search provides a polynomial time approximation algorithm for the
problems of the class. Thus every MAXSNP problem can be approximated within a con-
stant factor by such algorithms, a fact that is in concordance with the (previously known)
constant-approximability of MAXSNP, and furthermore the ratios achieved using this al-
gorithms are comparable to the best-known ones. We analyze the parallel complexity of
such approach. Notice that for NPO problems that are polynomially bounded, a simple
observation shows that local search algorithms run in polynomial time. We first define
what we call a local problem in which we are given an instance of the problem, a starting
feasible solution and we ask for the value of the local optimal solution attained accordingly
to a pre-specified local search algorithm. We show that the problem corresponding to non-
oblivious local search is P-complete, furthermore it cannot be approximated in NC for some
ratios, unless P=NC. Then, we use this result to show that there exists a threshold on the
parallel approximation ratio of MAXSNP-complete problems, that is, there are constants
£o, €1 such that the problem can be approximated in NC within g, but not within &y,
unless P=NC. In particular we show that the problem Max CU'T can be approximated in
NC within 1 but not within 1 — ¢, for some <.

Although this results means that we cannot achieve in NC the best ratios for MAXSNP-
complete problems, we analyze the expected behavior of a general non-oblivious local search
algorithm. We show that the expected number of iterations is polylogarithmic in the
instance size, when the search starts from a random initial solution and using a quite
general improvement model.



2 Preliminaries, Basic Definitions and Problems

An NP Optimization problem is given by: (a) the set of instances, (b) the set of feasible
solutions associated to any instance, (¢) an objective function that maps feasible solutions
of a given instance to (non-negative) rationals, referred to as the cost of the solution, and
(d) we seek for a feasible solution that optimizes (maximizes, minimizes) the objective
function.

Let TT be an NP Optimization problem, whose objective function is polynomially bounded
with respect to the input length. Let It1 denote the set of instances and let Solr(2) denote
the solution set to instance 2. For any solution S, S € Solr(), let V(x,5) be the value of
the objective function on S and let Opt(2) be the optimum value to instance x.

Definition 1 An algorithm A approzimates the problem 11 with error ¢ > 0 if it finds a
feasible solution S to instances x of 1l such that
1 < Vi(z,9)

T4+e¢ = Opt(z)

<1+e. (1

In this case we say that S has relative error within € from the optimum solution and use
the notation Fri(xz,95) < e. The performance ratio of A isr (r > 1), if it always finds a
solution with error at most r — 1.

et TT be a given problem such that for any instance z there is a unique solution to z, and
let TI(2:) denote the (unique) value corresponding to the solution, T is called a function
problem.

Definition 2 Given an instance x of any function problem 11 and an ¢ > 0, the -1
problem is: compute a value V() such that e1l(x) < V(z) < Tl(z).

Based on the definition of PTAS-reductions [CP91] we define the error preserving reductions
in NC.

Definition 3 let A and B be two NPO problems. We say that the problem A is NCAS-
reducible to B (A <ncas B) if three functions f, g, ¢ exist such that the following conditions
hold:

(a) For any x € 14, f(x) € Ig and the function f is computable in NC with respect to |x|.

(b) For any x € T4 and for any y € Solg(f(x)), g(x,y) € Sola(x) and the function g is
computable in NC with respect to both || and |y].

(¢) c:(0,1) = (0,1) is an invertible rational valued function.

(d) For any x € T4 and for any y € Solg(f(x)) and for any rational £, ¢ € (0,1), if
Es(f(z),y) <c(e) then Ea(x,g(x,y)) <e.

From this definition we have that NCAS-reduction preserves the relative error of approxi-
mation that is, whenever A <ycas B then if we can find in NC approximate solutions for
B implies that we can find in NC also approximate solutions for A. On the other hand this
kind of reduction also “transmits” the non-approximability from A to B.

We recall also the I.-reduction as defined in [PY91]. Given two NPO problems IT and
I, it is said that TT T-reduces to I1', if there exist a pair of functions (f, ¢g) computable in
polynomial time and two constants «, 5 > 0 such that (a) function f transforms a given



instance 2 of I1 into an instance 2’ of 11’ satisfying Opt(z’) < aOpt(z) and (b) function
g maps solutions of instance 2’ of cost '’ into solutions of z of cost (7 in such way that,
¢ Opt(x)| < BIC" — Opt(s")].

If we put the additional condition for an I.-reduction to be achievable in logspace then

clearly, we have that NCAS-reduction is a generalization of [.-reduction (we choose ¢(¢) =

e/af, where « and 3 are the constants of [-reduction).
The following properties are immediate:

Proposition 1 If A <ycas B and B € NCX then A € NCX.
Proposition 2 The reduction <ycas is reflexive and transitive.

Proposition 3 If a problem A NCAS-reduces to problem B and A cannot be approximated
in NC within some £, e < g then B cannot be approximated in NC within some &', &' < ¢(gq)
where ¢ is the function given by the NCAS-reduction.

Definition 4 let A be a problem in NCX. We say that A is complete for the class NCX
under NCAS-reduction iff for any B € NCX, B <ncas A.

Through the paper we will consider the following problems:

WEIGHTED Max CUT

Given a graph G = (V, F) with positive weights on the edges, find a partition of V into
two sets Vi and Vy, such that the sum of the weights of the edges between Vi and Vs, is
mazimized. When all the weights are unitary we have the unweighted Max CUT.
WEIGHTED MAX ESAT

Given a Boolean formula in CNF where each clause contains at most k literals and has a
positive integer weight, find an assignment of 0/1 to all variables that mazximizes the sum
of the weights of the satisfied clauses. When k = 3 we have the problem of Max 3SAT.
WEIGHTED NoT ALL FEQUAT kSAT

We are given a set of weighted clauses with at most k literals of the form NAE(xq, ..., 2p)
where each x; is a literal or a constant 0/1. Such a clause is satisfied if its constitutes do
not have all the same value. We want to find an assignment to the variables such that the
sum of the weights of the satisfied clauses is maximized. When the clauses do not contain
negated literals the problem is called POS NAFE ESAT.

MAX BoUNDED WERIGHTED SAT

Given a set of clauses C' over a set of variables {xy, xa, ..., 2, } and weights {wq,wy, ..., w,}
to the variables such that

W < Zmi < 2W, (2)
=1

find a truth assignment to the variables that maximizes the following measure function:

max(W, 5" wiT(x5)), if T satisfies all the clauses of (U,
V(C, )= (3)

W, otherwise.

Crreurt TrRUR GATEs (CTG) Given an encoding of a Boolean circuit C' together with an
input assignment, compute the number of true gates to the given assignment, denoted by

TG(C).



3 NCX-Completeness

In order to prove the completeness result for NCX we will consider the Max BoUNDED
WEIGHTED SAT problem. Firstly, we observe that this problem is in NCX. For that, we
note that the assignment 2; = 1, 1 < i < n, has measure either W or 3.7, w; and therefore
from (2) it gives an approximation with factor 1/2, that is a T-approximation according to
our definition.

Theorem 4 Max Bounnepd WEIGHTED SAT is NCX-complete under NCAS-reductions.

ProoOF: Let IT be an optimization problem in NCX (suppose first that IT is a maximization
one). In order to reduce T to Max BouNnED WEIGHTED SAT we first reduce it, using a
NCAS-reduction, to another problem A and then reduce A to MAx BounneEn WEIGHTED
SAT. Our reduction is based in that given in [CP91] but extended to the parallel setting.

let T be the NC §-approximation algorithm for II. The problem A is as follows. The
instances of A are those of Tl and its measure function, for instance z and solution y,
Va(z,y) is:

Va(o,9) = a2, ) + max{Vin(z, ), 1)},

where

261y(z), i 5> 1,

a(z,0) =

0, otherwise,

and t(z) = Vir(2,T(2)). Notice that in the new problem A is included the value T'(x)
delivered by the approximation algorithm T'. The idea is to obtain a problem with bounded
measure since we want to reduce it to a weighted problem of bounded measure. In fact,
if we denote by [(2) = a(x,d) + t(2) then we have [(2) < Va(x,y) < 2[(2), which means
that the measure function of A satisfies the same kind of constraint (2) as MAx BOUNDED
WEIGHTED SAT.

Now, the reduction from A to MAX BOUNDED WEIGHTED SAT goes as follows. Given
an instance 2 of A, we apply Cook’s theorem (see, e.g., [GJ79]). Then we will have a
transformation (in polynomial time) from the problem A to SAT. We observe that this
transformation ca be achieved also in logspace. Indeed, all the information we need each
step of computation (in the work tape) for the variables in order to write the formula is:
the step of the computation 7, the index k of the actual state ¢; of the machine, the index j
of the tape square where read-write head is scanning and the index [ of the bit of the input
%, & = Sk, Sk, ---S1...5, that is scanning the machine. Therefore, the amount of the space
we need in the work tape is logarithmic in the size of the input z since all these indices are
bounded by a polynomial in the size of z. In other terms, the main need for the memory
in such construction is for counting up to a polynomial in the length of the input and this
can be done in logarithmic space.

l.et ¢, be the boolean formula obtained. let us denote by y1,92,...,y,. the variables
that describe the solution y and by my,msg,..., ms the boolean variables that give the
solution Va(z,y). Now, we assign weights to the variables. The variables m;’s receive
weights 2°7" and all other variables are assigned the weight 0. So, we have an instance of
WEIGHTED MAX SAT. Since the measure Va(2,y) is bounded then we have an instance of
Max BounpED WEIGHTED SAT (the constant W depends on the bound of the problem
A). Furthermore, for any truth assignment which satisfies the formula, to recover a solution
y is straightforward (we look at the values of y;’s). On the other hand, this transformation
guarantees the relative error because Va (2, 1) is equal to the sum of the weights of the frue
variables.



For the rest of the theorem we have to prove that Il is NCX-reduced to A. The trans-
formation is the following:

e For any instances x we let f(2) = =.

e For any instance x and any solution y that corresponds to instance f(x) we take

gz, y) =
T(x), otherwise.

e For any rational €, ¢ € (0, 1),
%5, if § > 15,
cle) =

£, otherwise.

This transformation preserves the relative error when passing from solutions of A to those
of TT (see details in [CP91]). Since NCAS-reductions compose we have that 11 <ycasMAax
Bounnen WEIGHTED SAT. The minimization case uses similar arguments. O

4 The Parallel Complexity of Local Search Problems

The sequential complexity of local search algorithms has been extensively treated in [JPYS8S,
SY91]. Here we deal with this issue in the parallel setting. T.et us start by the definition of
such algorithms.

Definition 5 (Local Search Algorithm)

Given a solution S of to a mazimization (resp. minimization) NPO problem 11 and a & > o,
the 5-neighborhood of S, denoted by N (S, 8), is the set of all solutions S’ that have distance
at most & from S,

N(S,8) = {S"| D(S.5") < 6},

where D(S,S”) is the Hamming distance between S and S’. A solution S is locally optimal

if
VS e N(S,8), V(z,8) > V(x,8"), (resp. V(z,5) < V(x,5").

A local search algorithm starts from an initial solution S and each iteration moves in the
neighborhood of S from the current solution S; to some solution S;y1 € N(S,8) with better
cost, until it arrives at a locally optimal solution.

The time needed by any local search algorithm to find a locally optimal solution depends
on the neighborhood structure used. So, there are local search algorithms for which locally
optimal solutions are not known to be computable in polynomial time. However, there is a
subclass of problems for which local search algorithms run in polynomial time.

Definition 6 An NPO problem 11 is polynomially bounded if there is a polynomial p such
that Opt(2) < p(|2|), for any instance x: of 11, where |x| is the instance size.

Proposition 5 lLocal Search algorithms run in polynomial time for NPO problems that are
polynomially bounded.



The main observation of this (folklore) result is that in the case of polynomially bounded
problems the number of steps to achieve a local optimium is polynomially bounded since
any step of local search improves the value of the solution by an integral amount.

The local search defined above is also called Standard Local Search or Oblivious Local
Search. A more generalized (astute) method for local search, Non-oblivious Local Search
is given in [KMSV94]. The Non-oblivious Local Search was shown to be more powerful
than the oblivious one since it permits to explore in both directions: that of the objective
function and also that of the distance function. Non-oblivious local search algorithms were
used successfully to approximate within a constant factor all MAXSNP problems.

Definition 7 (Non-oblivious Local Search Algorithm) A Non-oblivious Local Search
algorithm is a local search algorithm whose weight function is defined to be

‘7:([75) = Zzpiqj([v*gv 77)7
e

r

where r is a constant, ®;’s are quantifier-free first-order formulas and the profits p; are real
constants. The distance function D is any arbitrary polynomial time computable function
and both S, T are structures.

Given a polynomially bounded NPO problem, we can define a local problem in which we fix
a starting solution and seek for the value of the local optimum achieved by a non-oblivious
local search algorithm. First, we define such a problem for Max CUT.

Definition 8 (l.ocar, Max CUT) Given an instance of Max CUT and an initial solution
S, find a locally optimum solution, achieved through a local search, starting from S.

We show that the L.ocat, Max CUT problem is non-approximable in NC, unless P=NC.
Our results builts on the result of [SY91] where was shown that finding a locally optimal
solution to the unweighted Max CUT is P-complete. Moreover, we do not refer to any
particular method (standard local search, non-oblivious local search, etc.) used to find the
locally optimal solution, i.e. the non-aproximability result is independent of the method
used. Qur proof uses a reduction from the CircuiT TRUE (GATES, a problem that was
shown non-approximable in NC [Ser91], to T.ocar, Max CUT.

Theorem 6 There is an €1 > 0 such that the e-T.ocat, Max CUT is P-complete for any
e<ey.

ProoF: [Sketch] Given an instance of CIRcUTT TRUE GATES, let us consider the instance
of CVP corresponding to it, i.e., the encoding a of the circuit together with the input
assignment. Then, we use the reduction given in [SY91] to reduce the CVP to Locar
Max CUT. This reduction goes through three stages. In the first stage, the instance of
CVP is reduced, in NC, to an instance of POS NAE 3SAT, in the second one POS NAE
3SAT is reduced to WrIGHTED Max CUT and, finally, the last instance is transformed
into an instance of the (unweighted) Max CUT. Here we give the most relevant points of
the reduction (the reduction is quite involved), the full details are found in [SY91]. Our
main observation here is to relate the value of the CUT with the number of true gates of
the circuit instance from which we deduce the non-approximability result.

Having the instance of CVP, the variables for POS NAE 3SAT are as follows. For each
gate g; there is introduced a variable (denoted with the same symbol) g; with the property
that in any locally optimal truth assignment, the value of gate variable g¢; is consistent with



the corresponding value of the gate in the circuit. Further, there are introduced two groups
of variables. The first, control variables y;, z; (corresponding to the ith gate), where z; =
—7;. The intended meaning of such variables is to force that in any truth assignment which is
locally optimal the variable gates are consistent with the circuit. The second group are local
variables, associated to gate variable g;: a!, a2 8! 62 31, 82 32 41 42,42, w;. The clauses
of the instance POS NAE 3SAT are constructed from gate variables, control variables
and local variables. Tn order to assign positive weights to the clauses, there are assigned
positive weights to the variables and from them are computed (adequately) the weights for
the clauses. So, to each variable is associated a positive weight (the weight of the variable

v is denoted by |v], n the instance size), as given below.

lg:] = 100(2n 41 — i) + 60
|z;| = lg:] — 60, |y| = |gi| + 10
laf| = [g;| + 10, [6F] = |gs| +10, k=1,2 (4)

185 =g, W =lail, k=1,2,3
|wi| = 16| = |gs| = 10.

The weights of the clauses for POS NAE 3SAT are computed from (4). The instance I of
POS NAE 3SAT has the property that, if an assignment to variables is not consistent with
the circuit, then the local search will correct the value of those gate variables that violate
the consistency.

In the second stage, from the instance T of POS NAE 35AT is constructed the instance
of WEIGHTED MaAX CUT as follows:

e There is one vertex for each variable and two additional vertices labeled by 0 and 1;

e For every clause NAE(z,y) with weight W in I, there is included an edge between
the vertices corresponding to the variables of the clause, with the same weight and
for each clause NAE(x,y, z), three edges (2,y), (2, 2), (y, z) with weight W/2 each,
are included.

Regarding the weights of the clauses in the instance I (defined as function of the variable’s
weights) and the weights of the edges of the graph, the following two properties hold:

(1) an edge connecting two variable vertices u, v has weight equal to the product |u] - |v];

(2) the weight of the edge connecting a variable vertex v to a constant vertex 0/1 is a
multiple ¢|v| of the weight |v|.

From these properties there is deduced that any locally optimal solution (locally optimal
CUT) to WrIGHTED MaAx CUT induces a truth assignment to the variables of POS NAE
3SAT that is locally optimal.

In the final stage is constructed the instance of (unweighted) Max CUT, obtained from
the instance of WrIGHTED Max CUT by replacing every variable vertex v by a set N, of
|v| vertices, and any edge (u,v) connecting two variable vertices by a a complete bipartite
graph between N, and N,, and an edge connecting variable vertex v to a constant vertex
0/1, by edges connecting any vertex of N, to the constant vertex. This assures that the new
graph is unweighted and verifies the above property for locally optimal solutions. (Going



back to CVP it means that the input variables and gate variables in such assignment are
consistent with the circuit. In other words, the values of the input variables coincide with
the given input of the circuit and the gate variables have the value that is computed by the
corresponding gates on that input.

Now, let v be a vertex. From properties (1)-(2), the total weight of its incident edges is
a multiple of |v|, denoted d(v) - |v|. Therefore the total weight of the cut (Vi, V) will be

W Vi, Vy) = Z d(v) - |v], (5)
veV;

where V; is the set of vertices corresponding to the true variables. Now, we express the
weights of the variables (i.e. the weights of control and local variables) in terms of |g;| as
given in (4). Thus the weight of the cut given in (5) is written as

Wi, Vo) = > flal), (6)

geTG

where T'GG denotes the set of true gates (i.e. Vi = T'G) and f is a linear function. But we
can always find constants m and M such that

m-TG(C)< Y f(lgl) < M -TG(C). (7)
geTq

Therefore, from (6) and (7) it results that we cannot approximate in NC the value of a
locally optimal CUT for any £ < £q, for some g1 > 0 that is a function of m and M,
because it would imply that we can approximate in NC the number of true gates TG/(C') of
the circuit. O

We can define in the same way as .ocat, Max CUT, the Non-oblivious Local Search
Problem. Using arguments similar to those of Theorem 6 we can construct, instead of a
Max CUT instance, an instance of Non-oblivious l.ocal Search Problem. Therefore we
have the following:

Corollary 7 There exists 1 > 0, such that approzimating a Non-oblivious Local Search
problem is P-complete for values of ¢ < 7.

Suppose we have a problem Il and an algorithm A that approximates it for some gq in
polynomial time (for example, Max CUT and the standard local search algorithm). Fur-
thermore, suppose that the value given by this algorithm cannot be approximated in NC
for any € < gy. In this situation, we naturally may ask whether there is a threshold in
the approximation value such that the problem II itself cannot be approximated in NC,
i.e. whether the NC non-approximability of the value given by the algorithm translates into
an NC non-approximability result for the problem itself.

Theorem 8 let x be an instance of an NPO problem 11 and suppose that the algorithm A
approximates 11 within eqo. If the value A(x) = V(2,5) computed by the algorithm cannot
be approximated in NC for ¢ < g1, for some g1 > gq then Il cannot be approzimated in NC
for e < g9, for some g9 that depends on g and £1.

ProoF: Since A approximates Il within gy we have that

1 A(x)
<
1+e0 ~ Optp(z)

< 1 —|—€() (8)



Suppose the contrary, that there is an NC algorithm B that approximates Il within some
g, 0 < e < egq, that is

1 B(x)
1+4¢ < Optp(2) shhe ®)

Now, we can write
Ba) _ B(x)  Optn(x)
A(@)  Opty(s)  Alx)

and therefore from (8) and (9) we have

1 < B(x)
(e 48 = AW

< (14 20)(1+¢). (10)

If we chose g9 such that gg 4+ e¢(1 + £2) = &1 then the inequalities (10) mean that we can
approximate A(x) within € < £y and this contradicts the supposition. |
The following is another interpretation of the above result. Given an optimization
problem TI, if the values of its approximate solutions obtained through certain resources
(e.g. polynomial ones) cannot be approximated for all values of error parameter ¢ using
other resources (e.g. parallel ones), then there is a threshold in approximating the problem
IT itself in the second setting.
The result of Theorem 8 has also the following two implications. First, since non-oblivious
local search algorithm approximate Max CUT then, under the supposition that P #£ NP
there exist a positive constant e such that Max CUT cannot approximated in NC for factors
smaller than . Secondly, recall that Max CUT is MAXSNP-complete under logspace I.-
reductions [PY91], therefore from Theorem 6 and Theorem 8 we obtain:

Theorem 9 For every MAXSNP-complete problem 11, there exist g, €1, &1 < £q, such that
IT can be approximated in NC for any € > gq but cannot be approvimated for any e < £4.

Proving constant approximability in NC is an important issue. Many constant factor ap-
proximation results in sequential can be translated also into parallel approximation results of
(almost) the same factor. For example, Luby [lLub88] shows that a simple 1-approximation
algorithm for Max CUT that puts a vertex in one side of the cut with probability 1/2
can be done also in parallel. Tn [ACP94] was given a sequential 1-approximation for MAX

3SAT, we give a different and simple algorithm that achieves the same ratio in NC for the
general Max SAT.

Proposition 10 There exists an NC algorithm that given an instance of Max SAT finds
an assignment to the variables that satisfies at least 1/2 of the total number of clauses. The
algorithms runs in O(logn) time and uses O(n) processors in an ERFEW parallel machine.

ProoOF: We consider the following algorithm:

o Let V; be the set of clauses where the variable 2:;, 1 < j <n, or its negation appears,
Vi=A{C; | z; € Cior —z; € C;} for j>1,
and let us denote by n; its cardinality, n; = |V}].

e Sort the sequence of the sets V;, 1 < 7 < n in non-increasing order of their cardinali-
ties.

e Do a partition of the sets V; that is, take V; :=V, — U;,; V..

10



e For all V; compute: n'j—the number of appearances of z; in clauses of V,, and n'j'—the
number of appearances of =2, in clauses of V.

e Forall j,if n’, > n” then assign x; := True else assign x; := False.

We claim that the assignment found above satisfies at least m/2 clauses. Indeed, we note
that z; satisfies at least n;/2 clauses, therefore at least 377 n;/2 = m/2 clauses are
satisfied. Tt is straightforward to see that this algorithm can be efficiently implemented in
EREW parallel machine using O(n) processors and in O(logn) time. O

5 Expected performance of local search algorithms

Recall from the definition of local search that, given an instance of the problem and a
solution to it, we must be able to determine in polynomial time whether the solution is
locally optimal and, if not, to generate a neighboring solution of improved cost. That,
on turn, means that we are considering NPO problems whose domain of feasible solutions
has cardinality polynomial in the input size. We are interested in the expected number
of iterations of any local improvement algorithm for such problems under any reasonable
probabilistic model.

et us give first some notations and considerations. Given an NPO problem [II, we may
consider the set of its feasible solutions as a ¢log n-hypercube, where n is the input size
and ¢ a constant that depends only on the instance. We can also suppose that the values
of the objective function f for the problem at hand are distinct. Therefore, the vertices
of the hypercube can be ordered from high to lower functional values and this is called
an ordering. Given a set S of vertices in the hypercube, B(S) denotes the boundary of S
consisting of all vertices not in S that are adjacent to some vertex in .S, that is

B(S)=A{y | 3= € 5, = and y are adjacent}.

We recall again a local improvement algorithm in its standard form:
1. Start at some random vertex (i.e. feasible solution) x;
2. Choose a vertex y adjacent to x such that f(y) > f(x). If no such y exist, then stop.
3. Set z equal y and iterate Step 2.

GGiven an optimization problem there are two possible cases. The first, the local and global
optima coincides. In this case the problem is called local-global and the improvement
algorithm can be seen as a walk to the root of a tree whose vertices represent feasible
solutions and the root represents the local optima. Secondly, the problem has multiple
local optimas. In this case the improvement algorithm generates a forest with as many
trees as local optimas there are. When the problem is local-global, the height of the tree
gives us the maximum number of iterations done by the algorithm in order to find the
optima. In the later, the number of iterations is given by the forest’s depth, i.e., the
maximum depth of any tree in the forest.

In order to evaluate the expected number of iterations done by the algorithm, we must
precise how do we choose at step 2. Many reasonable probability distributions exist for
this choice [Tov86]. Here we will consider the boundary distribution, defined as follows.
Let B(i) be the boundary of the vertices chosen until step i. Then, the (i + 1)th vertex is
chosen uniformly at random in the boundary B(i). In fact, an even more simplified model
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will be considered. Instead of choosing randomly and uniformly from B(i), we consider the
model where the (i + 1)th vertex is chosen uniformly from a subset of B(i), namely that
of the deepest vertices generated so far. Here is some intuition behind this new choice. If,
instead of choosing among all vertices we choose among, say, the half deepest ones, then we
would expect, at least intuitively, that the growth of the height would be “faster” than that
of the height if we choose among all the vertices. Indeed, it turns out the second process
stochastically dominates the first one, in the sense that the expected height in the second
model is greater than or equal to that of the first one. So it suffices to find an upper bound
for the expected height of the tree generated in the second model. A formal definition of
stochastic dominance (see, e.g., [Roh76]) follows.

Definition 9 If X and Y are two random variables with distribution functions F,(t) and
F,(t), then we say that X stochastically dominate Y (X »=Y ), if F,.(t) < F,(t), Vt.

It is clear that if X stochastically dominates ¥ then E(X) > F(Y). The definition given
above is naturally extended to sequences of random variables.

Definition 10 let X = X, Xqg,... and Y = Y1, Y,, ... be two sequences of random vari-
ables. We say that X stochastically dominates Y if, ¥i, X; = V;.

let r = glogn and P, = Z,I;:() (:), for some integer k. The following lemma gives a lower
bound on the size of the boundary of a set of vertices in the r-hypercube.

Lemma 11 Let S(i) be the size of the smallest boundary of a set of size i. Then,

e S(i) = (k:—1>’ if 1 = Py,
otherwise we have

° <k:—1> < SO, if P <i< Peyy and k< (n—3)/2;

° (k:_Q) < S, if P <i< Pryy and k> (n— 3)/2.

ProoF: It is clear that, for the value of i as specified above, the boundary of a set of 2
vertices in the ¢log n-hypercube has at least (qlog n)k vertices. Then we apply Kruskal-
Katona theorem [Kle81] that shows how to find a set of i vertices in a hypercube with
minimal boundary size. From this theorem the bounds on S(i) follow. O

The stochastic process described below, will stochastically dominate the pathlengths of
the vertices of the tree. This process is called the largest k-process and is denoted by LF. Tet

k = ky, kq,...be asequence of positive integers. The largest k-processis the the sequence of
random variables IL* = IL¥ Ik . whose values are generated as follows: L% = 1; given the
values of LF, LE ... L¥ | we choose randomly and uniformly one of the k; largest values

and set this value plus one to Lf

Lemma 12 Given a set of i vertices on the qlogn-hypercube, let B(i) denote a lower
bound on its size. Let k = ky, ko, ..., ke be the sequence of integers where k; is defined as
k; = maz(1, | B(i)/(qlogn—1)]) and let H = {H;} be the sequence of random variables such
that H; denotes the height of the vertex v in the tree generated by the local search algorithm
under boundary distribution. Then L* > H.

ProOR: We observe that ¥ is generated by choosing among the largest values, that
means choosing among the deepest vertices generated so far. This fact assures that L*
stochastically dominates the pathlength of the vertices. Furthermore, by choosing the
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value for k;, k; = max(1,|B(i)/(glogn — 1)]) it is guaranteed that the vertices are chosen
accordingly the boundary distribution. |

From this lemma, an upper bound for L* is also an upper bound for the maximum
pathlength on the tree. Let us denote by uy, the growth rate of ¥, i.e., its average increase.
The key fact is the following theorem [APS&1].

Theorem 13 [APS8I1] Let m be a positive integer and let M be a sequence of m’s. Then the
expected rate of growth, (i, , of the sequence LM is less than or equal to e/m, for large m.

Now, we are able to state the following result:

Theorem 14 The expected number of iterations of any local improvement algorithm is less
than:

(a) ealog? nloglogn, if the problem is local-global and the probability distribution used is
the boundary distribution.

(b) efBlogn, if the problem has multiple local optimas and under any probability distribu-
tion,

where o and 3 are constants (that depend only on the problem).

PrRoOF: The idea is to see the largest k-process as formed of subsequences each of them
simulated for a fixed m. The rate growth for each subsequence is then given by Theorem 13.
Let s = |(r — 1)/2] and let us divide the set of 2" vertices of the r-hypercube into the
segments:

1<i< P, Po<i < Py, Pag <1< Pogyqy.

The pathlengths of the vertices of the tree corresponding to each segment j, 1 < 5 < r
are stochastically dominated by the subsequence of IL* with m; = k;, where k; is given in
Lemma 12. Thus, LF = L™, 1™ ... L™ . Therefore, the total expected height is less

than

S e ) B+ S h e~ 1)/B(0)
Tte(r = 1) (/G +e(r = 1) 202, 0/ (5) +1
~24e(r— ])2 +e(r—1)(r/2 +rlogr/2)

< eq?log? nloglogn.

So, this is an upper bound for the expected number of iterations of the algorithm.

The proof for the case (b) uses similar arguments. We notice that in this case no matter
how do we choose the vertex but, however, the way we choose must assure that all the
orderings are equally likely. |

Notice also that from this theorem we have that, in particular, oblivious and non-
oblivious local search problems are in average NC, just use local improvement algorithms
under any reasonable probabilistic model.
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