105 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Robotic Trajectory Tracking: Position- and Force-Control

    Get PDF
    This thesis employs a bottom-up approach to develop robust and adaptive learning algorithms for trajectory tracking: position and torque control. In a first phase, the focus is put on the following of a freeform surface in a discontinuous manner. Next to resulting switching constraints, disturbances and uncertainties, the case of unknown robot models is addressed. In a second phase, once contact has been established between surface and end effector and the freeform path is followed, a desired force is applied. In order to react to changing circumstances, the manipulator needs to show the features of an intelligent agent, i.e. it needs to learn and adapt its behaviour based on a combination of a constant interaction with its environment and preprogramed goals or preferences. The robotic manipulator mimics the human behaviour based on bio-inspired algorithms. In this way it is taken advantage of the know-how and experience of human operators as their knowledge is translated in robot skills. A selection of promising concepts is explored, developed and combined to extend the application areas of robotic manipulators from monotonous, basic tasks in stiff environments to complex constrained processes. Conventional concepts (Sliding Mode Control, PID) are combined with bio-inspired learning (BELBIC, reinforcement based learning) for robust and adaptive control. Independence of robot parameters is guaranteed through approximated robot functions using a Neural Network with online update laws and model-free algorithms. The performance of the concepts is evaluated through simulations and experiments. In complex freeform trajectory tracking applications, excellent absolute mean position errors (<0.3 rad) are achieved. Position and torque control are combined in a parallel concept with minimized absolute mean torque errors (<0.1 Nm)

    Particle Swarm Optimization

    Get PDF
    Particle swarm optimization (PSO) is a population based stochastic optimization technique influenced by the social behavior of bird flocking or fish schooling.PSO shares many similarities with evolutionary computation techniques such as Genetic Algorithms (GA). The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems

    A survey of artificial neural network in wind energy systems

    Get PDF
    © 2018 Elsevier Ltd Wind energy has become one of the most important forms of renewable energy. Wind energy conversion systems are more sophisticated and new approaches are required based on advance analytics. This paper presents an exhaustive review of artificial neural networks used in wind energy systems, identifying the methods most employed for different applications and demonstrating that Artificial Neural Networks can be an alternative to conventional methods in many cases. More than 85% of the 190 references employed in this paper have been published in the last 5 years. The methods are classified and analysed into four groups according to the application: forecasting and predictions; design optimization; fault detection and diagnosis; and optimal control. A statistical analysis of the current state and future trends in this field is carried out. An analysis of each application group about the strengths and weaknesses of each ANN structure is carried out. A quantitative analysis of the main references is carried out showing new statistical results of the current state and future trends of the topic. The paper describes the main challenges and technological gaps concerning the application of ANN to wind turbines, according to the literature review. An overall table is provided to summarize the most important references according to the application groups and case studies

    Handling Class Imbalance Using Swarm Intelligence Techniques, Hybrid Data and Algorithmic Level Solutions

    Get PDF
    This research focuses mainly on the binary class imbalance problem in data mining. It investigates the use of combined approaches of data and algorithmic level solutions. Moreover, it examines the use of swarm intelligence and population-based techniques to combat the class imbalance problem at all levels, including at the data, algorithmic, and feature level. It also introduces various solutions to the class imbalance problem, in which swarm intelligence techniques like Stochastic Diffusion Search (SDS) and Dispersive Flies Optimisation (DFO) are used. The algorithms were evaluated using experiments on imbalanced datasets, in which the Support Vector Machine (SVM) was used as a classifier. SDS was used to perform informed undersampling of the majority class to balance the dataset. The results indicate that this algorithm improves the classifier performance and can be used on imbalanced datasets. Moreover, SDS was extended further to perform feature selection on high dimensional datasets. Experimental results show that SDS can be used to perform feature selection and improve the classifier performance on imbalanced datasets. Further experiments evaluated DFO as an algorithmic level solution to optimise the SVM kernel parameters when learning from imbalanced datasets. Based on the promising results of DFO in these experiments, the novel approach was extended further to provide a hybrid algorithm that simultaneously optimises the kernel parameters and performs feature selection

    A Survey of Artificial Neural Network in Wind Energy Systems

    Get PDF
    Wind energy has become one of the most important forms of renewable energy. Wind energy conversion systems are more sophisticated and new approaches are required based on advance analytics. This paper presents an exhaustive review of artificial neural networks used in wind energy systems, identifying the methods most employed for different applications and demonstrating that Artificial Neural Networks can be an alternative to conventional methods in many cases. More than 85% of the 190 references employed in this paper have been published in the last 5 years. The methods are classified and analysed into four groups according to the application: forecasting and predictions; design optimization; fault detection and diagnosis; and optimal control. A statistical analysis of the current state and future trends in this field is carried out. An analysis of each application group about the strengths and weaknesses of each ANN structure is carried out. A quantitative analysis of the main references is carried out showing new statistical results of the current state and future trends of the topic. The paper describes the main challenges and technological gaps concerning the application of ANN to wind turbines, according to the literature review. An overall table is provided to summarize the most important references according to the application groups and case studies
    • …
    corecore