170 research outputs found

    A Survey on Natural Inspired Computing (NIC): Algorithms and Challenges

    Get PDF
    Nature employs interactive images to incorporate end users2019; awareness and implication aptitude form inspirations into statistical/algorithmic information investigation procedures. Nature-inspired Computing (NIC) is an energetic research exploration field that has appliances in various areas, like as optimization, computational intelligence, evolutionary computation, multi-objective optimization, data mining, resource management, robotics, transportation and vehicle routing. The promising playing field of NIC focal point on managing substantial, assorted and self-motivated dimensions of information all the way through the incorporation of individual opinion by means of inspiration as well as communication methods in the study practices. In addition, it is the permutation of correlated study parts together with Bio-inspired computing, Artificial Intelligence and Machine learning that revolves efficient diagnostics interested in a competent pasture of study. This article intend at given that a summary of Nature-inspired Computing, its capacity and concepts and particulars the most significant scientific study algorithms in the field

    Managing Epistemic Uncertainty in Design Models through Type-2 Fuzzy Logic Multidisciplinary Optimization

    Full text link
    Humans have a natural ability to operate in dynamic environments and perform complex tasks with little perceived effort. An experienced ship designer can intuitively understand the general consequences of design choices and the general attributes of a good vessel. A person's knowledge is often ill-structured, subjective, and imprecise, but still incredibly effective at capturing general patterns of the real-world or of a design space. Computers on the other hand, can rapidly perform a large number of precise computations using well-structured, objective mathematical models, providing detailed analyses and formal evaluations of a specfic set of design candidates. In ship design, which involves generating knowledge for decision-making through time, engineers interactively use their own mental models and information gathered from computer-based optimization tools to make decisions which steer a vessel's design. In recent decades, the belief that large synthesis codes can help achieve cutting-edge ship performance has led to an increased popularity of optimization methods, potentially leading to rewarding results. And while optimization has proven fruitful to structural engineering and the aerospace industry, its applicability to early-stage design is more limited for three main reasons. First, mathematical models are by definition a reduction which cannot properly describe all aspects of the ship design problem. Second, in multidisciplinary optimization, a low-fidelity model may incorrectly drive a design, biasing the system level solution. Finally, early-stage design is plagued with limited information, limiting the designer's ability to develop models to inform decisions. This research extends previously done work by incorporating type-2 fuzzy logic into a human-centric multidisciplinary optimization framework. The original framework used type-1 fuzzy logic to incorporate human expertise into optimization models through linguistic variables. However, a type-1 system does not properly account for the uncertainty associated with linguistic terms, and thus does not properly represent the uncertainty associated with a human mental model. This limitation is corrected with the type-2 fuzzy logic multidisciplinary optimization presented in this work, which more accurately models a designer's ability to "communicate, reason and make rational decisions in an environment of imprecision, uncertainty, incompleteness of information and partiality of truth" (Mendel et al., 2010). It uses fuzzy definitions of linguistic variables and rule banks to incorporate "human intelligence" into design models, and better handles the linguistic uncertainty inherent to human knowledge and communication. A general mathematical optimization proof of concept and a planing craft case study are presented in this dissertation to show how mathematical models can be enhanced by incorporating expert opinion into them. Additionally, the planing craft case study shows how human mental models can be leveraged to quickly estimate plausible values of ship parameters when no model exists, increasing the designer's ability to run optimization methods when information is limited.PHDNaval Architecture & Marine EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145891/1/doriancb_1.pd

    A Consolidated Review of Path Planning and Optimization Techniques: Technical Perspectives and Future Directions

    Get PDF
    In this paper, a review on the three most important communication techniques (ground, aerial, and underwater vehicles) has been presented that throws light on trajectory planning, its optimization, and various issues in a summarized way. This kind of extensive research is not often seen in the literature, so an effort has been made for readers interested in path planning to fill the gap. Moreover, optimization techniques suitable for implementing ground, aerial, and underwater vehicles are also a part of this review. This paper covers the numerical, bio-inspired techniques and their hybridization with each other for each of the dimensions mentioned. The paper provides a consolidated platform, where plenty of available research on-ground autonomous vehicle and their trajectory optimization with the extension for aerial and underwater vehicles are documented

    Multiphase Stirred Tank Bioreactors – New Geometrical Concepts and Scale‐up Approaches

    Get PDF
    Mainly with respect to biotechnological cases, current developments in the field of impeller geometries and findings for multistage configurations with a specific view on aerated stirred tanks are reviewed. Although often the first choice, in the given case the 6‐straight blade disc turbine is usually not the best option. Furthermore, quantities usable for scale‐up, specifically applicable in this field are discussed. Only quantities taking local conditions into account appear to be able to actually compare different stirrer types and scales.DFG, 56091768, TRR 63: Integrierte chemische Prozesse in flüssigen MehrphasensystemenDFG, 315464571, Interaktion der mechanischen Beanspruchung und der Produktivität von biologischen Agglomeraten in RührfermenternDFG, 256647858, Stoffübergang von aufsteigenden Blasen in reagierenden FlüssigphasenTU Berlin, Open-Access-Mittel - 201

    A Survey on Natural Inspired Computing (NIC): Algorithms and Challenges

    Get PDF
    Nature employs interactive images to incorporate end users’ awareness and implication aptitude form inspirations into statistical/algorithmic information investigation procedures. Nature-inspired Computing (NIC) is an energetic research exploration field that has appliances in various areas, like as optimization, computational intelligence, evolutionary computation, multi-objective optimization, data mining, resource management, robotics, transportation and vehicle routing. The promising playing field of NIC focal point on managing substantial, assorted and self-motivated dimensions of information all the way through the incorporation of individual opinion by means of inspiration as well as communication methods in the study practices. In addition, it is the permutation of correlated study parts together with Bio-inspired computing, Artificial Intelligence and Machine learning that revolves efficient diagnostics interested in a competent pasture of study. This article intend at given that a summary of Nature-inspired Computing, its capacity and concepts and particulars the most significant scientific study algorithms in the field

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels

    Big Data Analysis application in the renewable energy market: wind power

    Get PDF
    Entre as enerxías renovables, a enerxía eólica e unha das tecnoloxías mundiais de rápido crecemento. Non obstante, esta incerteza debería minimizarse para programar e xestionar mellor os activos de xeración tradicionais para compensar a falta de electricidade nas redes electricas. A aparición de técnicas baseadas en datos ou aprendizaxe automática deu a capacidade de proporcionar predicións espaciais e temporais de alta resolución da velocidade e potencia do vento. Neste traballo desenvólvense tres modelos diferentes de ANN, abordando tres grandes problemas na predición de series de datos con esta técnica: garantía de calidade de datos e imputación de datos non válidos, asignación de hiperparámetros e selección de funcións. Os modelos desenvolvidos baséanse en técnicas de agrupación, optimización e procesamento de sinais para proporcionar predicións de velocidade e potencia do vento a curto e medio prazo (de minutos a horas)
    corecore