36 research outputs found

    Applications of deep neural networks to protein structure prediction

    Get PDF
    Professor Yi Shang, Dissertation Advisor; Professor Dong Xu, Dissertation Co-advisor.Includes vita.Field of Study: Computer science."July 2018."Protein secondary structure, backbone torsion angle and other secondary structure features can provide useful information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this dissertation, several new deep neural network architectures are proposed for protein secondary structure prediction: deep inception-inside-inception (Deep3I) networks and deep neighbor residual (DeepNRN) networks for secondary structure prediction; deep residual inception networks (DeepRIN) for backbone torsion angle prediction; deep dense inception networks (DeepDIN) for beta turn prediction; deep inception capsule networks (DeepICN) for gamma turn prediction. Every tool was then implemented as a standalone tool integrated into MUFold package and freely available to research community. A webserver called MUFold-SS-Angle is also developed for protein property prediction. The input feature to those deep neural networks is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, HHBlits profile and/or predicted shape string. The deep architecture enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, the proposed deep neural architectures outperformed the best existing methods and other deep neural networks significantly: The proposed DeepNRN achieved highest Q8 75.33, 72.9, 70.8 on CASP 10, 11, 12 higher than previous state-of-the-art DeepCNF-SS with 71.8, 72.3, and 69.76. The proposed MUFold-SS (Deep3I) achieved highest Q8 76.47, 74.51, 72.1 on CASP 10, 11, 12. Compared to the recently released state-of-the-art tool, SPIDER3, DeepRIN reduced the Psi angle prediction error by more than 5 degrees and the Phi angle prediction error by more than 2 degrees on average. DeepDIN outperformed significantly BetaTPred3 in both two-class and nine-class beta turn prediction on benchmark BT426 and BT6376. DeepICN is the first application of using capsule network to biological sequence analysis and outperformed all previous gamma-turn predictors on benchmark GT320.Includes bibliographical references (pages 114-131)

    A Few-Shot Learning-Based Siamese Capsule Network for Intrusion Detection with Imbalanced Training Data

    Get PDF
    Network intrusion detection remains one of the major challenges in cybersecurity. In recent years, many machine-learning-based methods have been designed to capture the dynamic and complex intrusion patterns to improve the performance of intrusion detection systems. However, two issues, including imbalanced training data and new unknown attacks, still hinder the development of a reliable network intrusion detection system. In this paper, we propose a novel few-shot learning-based Siamese capsule network to tackle the scarcity of abnormal network traffic training data and enhance the detection of unknown attacks. In specific, the well-designed deep learning network excels at capturing dynamic relationships across traffic features. In addition, an unsupervised subtype sampling scheme is seamlessly integrated with the Siamese network to improve the detection of network intrusion attacks under the circumstance of imbalanced training data. Experimental results have demonstrated that the metric learning framework is more suitable to extract subtle and distinctive features to identify both known and unknown attacks after the sampling scheme compared to other supervised learning methods. Compared to the state-of-the-art methods, our proposed method achieves superior performance to effectively detect both types of attacks

    Machine Learning in Medical Image Analysis

    Get PDF
    Machine learning is playing a pivotal role in medical image analysis. Many algorithms based on machine learning have been applied in medical imaging to solve classification, detection, and segmentation problems. Particularly, with the wide application of deep learning approaches, the performance of medical image analysis has been significantly improved. In this thesis, we investigate machine learning methods for two key challenges in medical image analysis: The first one is segmentation of medical images. The second one is learning with weak supervision in the context of medical imaging. The first main contribution of the thesis is a series of novel approaches for image segmentation. First, we propose a framework based on multi-scale image patches and random forests to segment small vessel disease (SVD) lesions on computed tomography (CT) images. This framework is validated in terms of spatial similarity, estimated lesion volumes, visual score ratings and was compared with human experts. The results showed that the proposed framework performs as well as human experts. Second, we propose a generic convolutional neural network (CNN) architecture called the DRINet for medical image segmentation. The DRINet approach is robust in three different types of segmentation tasks, which are multi-class cerebrospinal fluid (CSF) segmentation on brain CT images, multi-organ segmentation on abdomen CT images, and multi-class tumour segmentation on brain magnetic resonance (MR) images. Finally, we propose a CNN-based framework to segment acute ischemic lesions on diffusion weighted (DW)-MR images, where the lesions are highly variable in terms of position, shape, and size. Promising results were achieved on a large clinical dataset. The second main contribution of the thesis is two novel strategies for learning with weak supervision. First, we propose a novel strategy called context restoration to make use of the images without annotations. The context restoration strategy is a proxy learning process based on the CNN, which extracts semantic features from images without using annotations. It was validated on classification, localization, and segmentation problems and was superior to existing strategies. Second, we propose a patch-based framework using multi-instance learning to distinguish normal and abnormal SVD on CT images, where there are only coarse-grained labels available. Our framework was observed to work better than classic methods and clinical practice.Open Acces
    corecore