69 research outputs found

    Domination parameters with number 2: Interrelations and algorithmic consequences

    Get PDF
    In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total {2}-domination number, γt{2}(G), and the total double domination number, γt×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G), and two classical parameters, the domination number, γ(G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Brešar, Boštjan. Institute of Mathematics, Physics and Mechanics; Eslovenia. University of Maribor; EsloveniaFil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Milanič, Martin. University of Primorska; EsloveniaFil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentin

    Domination parameters with number 2: interrelations and algorithmic consequences

    Full text link
    In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 22-domination number, γw2(G)\gamma_{w2}(G), the 22-domination number, γ2(G)\gamma_2(G), the {2}\{2\}-domination number, γ{2}(G)\gamma_{\{2\}}(G), the double domination number, γ×2(G)\gamma_{\times 2}(G), the total {2}\{2\}-domination number, γt{2}(G)\gamma_{t\{2\}}(G), and the total double domination number, γt×2(G)\gamma_{t\times 2}(G), where GG is a graph in which a corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G)\gamma_R(G), and two classical parameters, the domination number, γ(G)\gamma(G), and the total domination number, γt(G)\gamma_t(G), we consider 13 domination invariants in graphs GG. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain some complexity results for the studied invariants, in particular regarding the existence of approximation algorithms and inapproximability bounds.Comment: 45 pages, 4 tables, 7 figure

    NP-completeness results for partitioning a graph into total dominating sets

    Get PDF
    A total domatic k-partition of a graph is a partition of its vertex set into k subsets such that each intersects the open neighborhood of each vertex. The maximum k for which a total domatic k-partition exists is known as the total domatic number of a graph G, denoted by d(t) (G). We extend considerably the known hardness results by showing it is NP-complete to decide whether d(t) (G) >= 3 where G is a bipartite planar graph of bounded maximum degree. Similarly, for every k >= 3, it is NP-complete to decide whether d(t) (G) >= k, where G is split or k-regular. In particular, these results complement recent combinatorial results regarding d(t) (G) on some of these graph classes by showing that the known results are, in a sense, best possible. Finally, for general n-vertex graphs, we show the problem is solvable in 2(n)n(O(1)) time, and derive even faster algorithms for special graph classes. (C) 2018 Elsevier B.V. All rights reserved.Peer reviewe

    Meta-Kernelization with Structural Parameters

    Full text link
    Meta-kernelization theorems are general results that provide polynomial kernels for large classes of parameterized problems. The known meta-kernelization theorems, in particular the results of Bodlaender et al. (FOCS'09) and of Fomin et al. (FOCS'10), apply to optimization problems parameterized by solution size. We present the first meta-kernelization theorems that use a structural parameters of the input and not the solution size. Let C be a graph class. We define the C-cover number of a graph to be a the smallest number of modules the vertex set can be partitioned into, such that each module induces a subgraph that belongs to the class C. We show that each graph problem that can be expressed in Monadic Second Order (MSO) logic has a polynomial kernel with a linear number of vertices when parameterized by the C-cover number for any fixed class C of bounded rank-width (or equivalently, of bounded clique-width, or bounded Boolean width). Many graph problems such as Independent Dominating Set, c-Coloring, and c-Domatic Number are covered by this meta-kernelization result. Our second result applies to MSO expressible optimization problems, such as Minimum Vertex Cover, Minimum Dominating Set, and Maximum Clique. We show that these problems admit a polynomial annotated kernel with a linear number of vertices

    Determining Distributions of Security Means for WSNs based on the Model of a Neighbourhood Watch

    Full text link
    Neighbourhood watch is a concept that allows a community to distribute a complex security task in between all members. Members of the community carry out individual security tasks to contribute to the overall security of it. It reduces the workload of a particular individual while securing all members and allowing them to carry out a multitude of security tasks. Wireless sensor networks (WSNs) are composed of resource-constraint independent battery driven computers as nodes communicating wirelessly. Security in WSNs is essential. Without sufficient security, an attacker is able to eavesdrop the communication, tamper monitoring results or deny critical nodes providing their service in a way to cut off larger network parts. The resource-constraint nature of sensor nodes prevents them from running full-fledged security protocols. Instead, it is necessary to assess the most significant security threats and implement specialised protocols. A neighbourhood-watch inspired distributed security scheme for WSNs has been introduced by Langend\"orfer. Its goal is to increase the variety of attacks a WSN can fend off. A framework of such complexity has to be designed in multiple steps. Here, we introduce an approach to determine distributions of security means on large-scale static homogeneous WSNs. Therefore, we model WSNs as undirected graphs in which two nodes connected iff they are in transmission range. The framework aims to partition the graph into nn distinct security means resulting in the targeted distribution. The underlying problems turn out to be NP hard and we attempt to solve them using linear programs (LPs). To evaluate the computability of the LPs, we generate large numbers of random {\lambda}-precision unit disk graphs (UDGs) as representation of WSNs. For this purpose, we introduce a novel {\lambda}-precision UDG generator to model WSNs with a minimal distance in between nodes

    A Study Of The Upper Domatic Number Of A Graph

    Get PDF
    Given a graph G we can partition the vertices of G in to k disjoint sets. We say a set A of vertices dominates another set of vertices, B, if for every vertex in B there is some adjacent vertex in A. The upper domatic number of a graph G is written as D(G) and defined as the maximum integer k such that G can be partitioned into k sets where for every pair of sets A and B either A dominates B or B dominates A or both. In this thesis we introduce the upper domatic number of a graph and provide various results on the properties of the upper domatic number, notably that D(G) is less than or equal to the maximum degree of G, as well as relating it to other well-studied graph properties such as the achromatic, pseudoachromatic, and transitive numbers
    corecore