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Abstract

A STUDY OF THE UPPER DOMATIC NUMBER OF A GRAPH

Nicholas Phillips
B.S., Appalachian State University
M.S., Appalachian State University

Chairperson: Alice McRae

Given a graph G we can partition the vertices of G into k disjoint sets represented as

π = {V1, V2, . . . , Vk}. We say a set A of vertices dominates another set of vertices, B, if

for every vertex b ∈ B there exists some vertex a ∈ A adjacent to b. The upper domatic

number of a graph G is written D(G) and defined as the maximum integer k such that G

can be partitioned into k sets where for every pair of sets Vi, Vj ∈ π either Vi dominates

Vj or Vj dominates Vi or both. In this thesis we introduce the upper domatic number of a

graph and provide various results on the properties of the upper domatic number, notably

that D(G) ≤ ∆(G), as well as relating it to other well-studied graph properties such as the

achromatic, pseudoachromatic, and transitive numbers.
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Chapter 1: Introduction

1.1 An Overview

Around the middle of the 19th century, one of the most famous problems in graph theory

was first posed: Is it true that any map drawn on a plane (i.e., a planar graph 1) can

be colored with only four colors in such a way that no two countries sharing a common

border have the same color? This problem became known far and wide as the Four-Color

Problem. Alfred Kempe in 1879 provided the first recorded proof of the four color theorem,

but an error was found eleven years later [14]. His work was not in vein though, it was

used as the basis for the theorem stating that the problem could definitely be solved with

five colors. The Four-Color Problem, however, would go on unsolved for over 70 years

before in the 1970s the Four-Color Problem became the Four-Color Theorem after several

mathematicians constructed a proof by computer. [14]

This problem opened up an entire new realm of study in graph theory based on coloring

the vertices of a graph 2. A graph G = (V,E) is comprised of a set of vertices and edges

between vertices, denoted as V (G) and E(G) respectively. Maps can be easily transformed

into graphs by representing countries with vertices and if two countries share a common

border then the two corresponding vertices share an edge. The quality required in the Four-

Color Problem that adjacent countries, or vertices, not use the same color is formalized as

a proper coloring in graph theory. Another way to phrase the problem would be to ask do

all planar graphs have a proper coloring using only four colors? One of the early fruits in

the new study of coloring was the chromatic number, a number which encapsulated the idea

of the Four-Color Problem. The chromatic number is but one of many graph parameters,

1A planar graph is a graph that can be drawn on a plane without any edges crossing over one another,
2Graphs can be colored by edges, vertices, or both. Here we will focus only on vertex graph colorings.
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or properites, that are commonly studied and represent some quality about the graph. For

example, the chromatic number is a form of measure of a quality called independence that

we will come back to shortly.

The idea of coloring can be abstracted into the idea of partitioning, the process of

separating the vertices in a graph into disjoint sets. We can think of each of these sets

as being one particular color. We can define the chromatic number of a graph G as the

smallest integer k for which the vertex set of G can be partitioned into k independent

sets. An independent set of vertices is a set in which no two vertices are adjacent to one

another. Graph theorists began investigating different ways of partitioning a graph based

on different properties like independence or domination following the Four-Color Problem.

A dominating set of vertices is a set where every vertex in a graph G that is not in the

dominating set is adjacent to at least one vertex from the dominating set. In other words, a

set D of vertices from G is a dominating set if and only if for any vertex v /∈ D there exists

some vertex u ∈ D such that vu ∈ E(G)3. In a similar way to how the chromatic number

relates independence and partitioning, there is a graph parameter that relates domination

and partitioning. The domatic number of a graph, G, is the maximum integer k such that

V (G) can be partitioned into k dominating sets. The term ‘domatic’ comes from the words

‘dominating’ and ‘chromatic’ [1].

The process of finding and studying new graph parameters is frequently based on making

changes to requirements of previously studied parameters. First there was the chromatic

number. Adding in a requirement for the relationships between the different color classes

brought about study of the Grundy number [2] and the achromatic number [8]. Removing

the independence property from the achromatic number introduces the pseudoachromatic

number [15]. Lowering the requirement for the relationships between different color classes

for the Grundy number creates the partial Grundy number [5]. Instead of partitioning based

on independence with the the chromatic number, partitioning on domination introduced the

domatic number [3]. Then changing the relationships between the color classes introduced

the transitive number [11]. Lowering the domination requirement for the domatic number

to only requiring domination in at least one direction instead of both between color classes

3Edges can more formally be written as (v, u) but we will use the shorthand vu in this thesis
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creates the upper domatic number.

An understanding of the history of research around graph parameters serves to illuminate

the importance and relevance of the upper domatic number. In order to better understand

a problem, it often helps to view the problem under a different lens, thus tweaking the re-

quirements of a known parameter allows the parameter to be seen from a new perspective.

The numerous known and studied graph parameters all serve to further the body of knowl-

edge not just about graphs but also about complexity and NP-completeness. By teasing

out the relationships between different requirements, we are better able to understand what

makes a problem more or less difficult or when a problem becomes NP-hard. The upper

domatic number is a new perspective from which we can better understand other graph

parameters, graphs as a whole, and how the domination property relates to complexity. For

example, we will later see that the achromatic number and the upper domatic number do

not have a clear inequality relationship thus suggesting that there is some similarity in the

two parameters despite being basing partitions of different requirements.

1.2 Vocabulary

We will assume no knowledge of graph theory terminology here beyond the terms previously

defined in this thesis. Therefore the following definitions provide a sufficient knowledge

base from which any reader can follow along with the results reported here. Additionally

an alphabetized list of all graph theory terminology used can be found in Appendix A.

The order and size of a graph, G, specify the number of vertices and edges respectively.

We say that two vertices, v and u, are adjacent if vu ∈ E(G). A subgraph, typically denoted

as H, is a set of vertices from a graph G with all edges from G that are between any pair

of vertices in H.

The degree of a vertex v, written as deg(v), is the number of vertices adjacent to v. The

maximum degree of all vertices in G is written as ∆(G) and the minimum degree is δ(G).

The open neighborhood of a vertex v, denoted N(v), is the set of vertices adjacent to v. The

closed neighborhood of a vertex v, denoted as N [v], is the set N(v) + {v}. A leaf is a vertex

of degree one.
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A star Sn is a graph containing only a single vertex with n leaves.

Figure 1.1: The S4 graph

A complete graph Kn is a graph of order n where there is an edge between every pair of

vertices. A clique is subgraph of a graph that is complete, i.e., an induced Kn subgraph of

a graph G. A k-regular graph is a graph G where ∆(G) = δ(G) = k, i.e., all vertices have

the same degree.

Figure 1.2: The K5 graph which is also an example of a 4-regular graph

A path graph Pn is a graph of order n with exactly two leaves and n − 2 vertices of

degree 2.

Figure 1.3: The P5 graph

A cycle graph Cn is a graph of order and size n and every vertex is of degree 2. In other

words, a cycle graph is an unbroken chain of adjacent vertices that start and end at the

same vertex.

Figure 1.4: The C4 graph

A k-coloring is a coloring of the vertices of a graph G using k colors. We can also think

of this as a partition of G into k disjoint sets of vertices, written as π = {V1, V2, . . . , Vk}.
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A proper k-coloring is a k-coloring where no two adjacent vertices are the same color. An

independent set of vertices is a set in which no two vertices are adjacent to one another.

The chromatic number of a graph G, written χ(G), is the smallest positive integer k for

which G has a proper k-coloring. We can also think of the chromatic number as the smallest

positive integer k such that G can be partitioned into k independent sets.

A complete k-coloring is a proper k-coloring such that for every pair of distinct colors,

there exists two adjacent vertices assigned these two colors; i.e., there exists at least one edge

between every pair of color classes. The achromatic number of a graph G, denoted α(G), is

the largest positive integer k such that G has a complete k-coloring. The pseudoachromatic

number of a graph G, written as ψ(G), is the largest positive integer k for which G has a

k-coloring where there exists at least one edge between every distinct pair of color classes

but the coloring does not have to be proper.

A dominating set of vertices is a set where every vertex in a graph G that is not in the

dominating set, is adjacent to at least one vertex from the dominating set. The domatic

number of a graph G, denoted d(G), is the maximum integer k such that V (G) can be

partitioned into k dominating sets. A d-partition of a graph G is a partition π that achieves

d(G).

We say a set of vertices A dominates another set of vertices B, written as A→ B, if for

every vertex b ∈ B there is some vertex a ∈ A such that a and b are adjacent. The upper

domatic number of a graph G, denoted D(G), is the maximum integer k such that V (G)

can be partitioned into k sets where for every Vi, Vj ∈ π, where π is a partition of V (G),

either Vi → Vj or Vj → Vi or both. A D-partition of a graph G is a partition π that achieves

D(G).

Another important graph property we will look at is the transitive number of a graph,

denoted Tr(G). The transitive number of a graph G is the largest positive integer k such

that G can be partitioned into k sets where for every pair of sets, Vi, Vj ∈ π if i < j then

Vi → Vj . A transitive partition is a partition π that achieves Tr(G).

One way to visualize the domination relationships between sets of vertices in a partition

is with a domination digraph [7]. A digraph, or directed graph, is a graph where edges have

direction, called arcs, and every arc has a start and end vertex. Let π = {V1, V2, . . . , Vk} be

5



a partition of the vertices of a graph, G, into k sets. From this partition a digraph D(π)

can be constructed where the sets in π are represented by the vertices in D(π), and there

is an arc from Vi to Vj if Vi → Vj . This digraph is the domination digraph of the partition

π of a graph G.

For example, consider the graph G shown in Figure 1.5.

Figure 1.5: A graph G with π = {R,B,G}

Then the resulting domination digraph is shown in Figure 1.6.

Figure 1.6: A domination digraph of the color partitions of G from Figure 1.5

A domatic partition of a graph will yield a domination digraph where every possible

edge is included. On the other hand, an upper domatic partition will create a domination

digraph where there is some edge between every pair of vertices. The domination digraph

shown in Figure 1.6 is an example upper domatic partition. The transitive partition of a

graph will yield a particular kind of domination digraph like the one shown in Figure 1.7.

Figure 1.7: A domination digraph showing a transitive partition

In Chapter 2 we will provide a brief review of the vast literature on coloring and par-

titioning and a small sampling of results for the domatic number. Following that, Chapter

3 contains numerous results for the upper domatic number broken into several different
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categories. Chapter 4 provides results relating the upper domatic number to other graph

parameters in the form of inequalities. Next, Chapter 5 lists some open problems and

Chapter 6 lists references.
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Chapter 2: Literature Review

A brief review of the vast literature on graph properties is presented here. The review

is split into two sections, one outlining the areas of interest frequently studied in graph

property research and the second reviewing the domatic number in particular.

2.1 General Review

There is a very deep, rich literature of graph theory research exploring the nature of nu-

merous graph parameters. In particular, colorings of graphs are incredibly well studied.

There are several common areas of interest for researchers to study for graph parameters

such as bounds for classes of graphs, Nordhaus-Gaddum inequalities, and relating graph

parameters to one another with inequality chains.

One of the most obvious questions a researcher can ask when studying a graph parameter

is: What are the bounds for this parameter for different classes of graphs? Gerard Chang [1]

determined bounds and values for different graphs obtained from small graphs by performing

graph operations such as union, join, and Cartesian product. Another paper on the domatic

number presents bounds for different classes of regular graphs such as random r-regular

graphs and 3-regular random graphs [4]. Several French professors published a paper in a

similar vein of study, but with an inverted approach [6]. They studied r-regular graphs that

have a Grundy number of r + 1 and determined classes of graphs that had these qualities

instead of looking at specific classes of graphs and determining the Grundy number for

those classes. A little further around the world, a couple of researchers in India published a

paper on the pseudoachromatic number of a graph in which they presented bounds for the

parameter for a variety of classes of graphs [15].

In 1956, two researchers, Nordhaus and Gaddum [13], gave lower and upper bounds
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for both the sum of the chromatic number of a graph and the chromatic number of the

complement along with the product of these numbers. Results of this type were soon studied

for numerous graph parameters and became known as Nordhaus-Gaddum inequalities. In

1968, Frank Harary and Stephen Hedetniemi published a study on the achromatic number

[8] with Nordhaus-Gaddum results for the achromatic number. Later, in 1993 Harary [9]

provided numerous Nordhaus-Gaddum inequalities for a few different domination-related

parameters.

The matter of relating graph parameters to one another is another area of particular

interest for research. A paper on iterated colorings [10] focuses on relating the found

values to other graph parameters and investigating those relationships. When Hedetniemi

and Cockayne introduced the domatic number [3] they made sure to include several results

relating the new parameter to other previously studied parameters. Again when Hedetniemi

and others wrote on the partial grundy number [5], they included a study of the number’s

relationships with other graph parameters.

Clearly, answering questions about the bounds of a graph parameter, determining

Nordhaus-Gaddum inequalities for a graph parameter, and relating graph parameters to

one another are important steps in the study of a new parameter. With the introduction

of the upper domatic number, it would be prudent to begin research on this new parameter

with these general areas. Hence, these areas of research, will be the focus for this study of

the upper domatic number.

2.2 Brief Review of the Domatic Number

The domatic number was first formalized by Cockayne and Hedetniemi in 1977 [3]. Perhaps

the most important result of this paper was the connection drawn between the theory of

domination and the theory of colorings. A simple upper bound for the domatic number was

also presented as follows:

Proposition 2.1 (Cockayne, Hedetniemi). For any graph G, d(G) ≤ δ(G) + 1.

This result is derived from the basic observation that in a domatic partition, a vertex,

v, in some set Vi can be dominated by at most deg(v) other sets. From this, we gain the

9



term domatically full used to describe a graph G where d(G) = δ(G) + 1.

Later, in 1990 Chang found an entire class of graphs that were always domatically full

[12].

Theorem 2.1 (Chang). d(G) = δ(G) + 1 for any interval graph G.

And again in 1991 Chang found that all 2-dimensional graphs, with two exceptions, are

domatically full [1].

Theorem 2.2 (Chang). For all n1 ≥ n2 ≥ 2, d(Pn1 × Pn2) = 3, unless n1 = n2 = 2 or

n1 = 4 and n2 = 2.

A few years after the original paper defining the domatic number, Zelinka provided a

lower bound in 1983 [16].

Proposition 2.2 (Zelinka). For any graph G of order n, d(G) ≥ | n
n−δ(G) |.

Cockayne and Hedetniemi additionally provided a Nordhaus-Gaddum result for the

domatic number in the original paper [3].

Theorem 2.3 (Cockayne, Hedetniemi). For any graph G of order n, d(G) + d(G) ≤ n+ 1,

with equality if and only if G = Kn or Kn.

10



Chapter 3: Results for the Upper Domatic

Number

In this chapter, we will provide numerous results for the upper domatic number. These

results are broken into subsections based on the content of the results.

3.1 Classes and General Results

Define a class of k-regular graphs, denoted NKn, of even order n where NKn is identical

to a complete graph minus a perfect matching. A matching is an independent edge set, in

other words, no two edges in the matching share a common vertex. A perfect matching is

a matching in which every vertex is incident to exactly one edge of the matching.

Figure 3.1: The NK8 graph

Theorem 3.1. D(NKn) =
⌊
3n
4

⌋
.

Proof. Let G be an arbitrary NKn graph. Let S be a set of half of the vertices in V (G)

such that S is a clique of order n
2 and let S′ be the remaining vertices. It is clear that S′

is also a clique of order n
2 , and that for any vertex v ∈ S, there exists a vertex u ∈ S′ such

that N [v] = V (G)−{u}. Now, assign each vertex in S a unique color, creating n
2 singleton

color classes. Every one of these colors dominates and is dominated by all of the colors

11



currently assigned. The vertices in S′ each have one color that is not adjacent. Therefore,

the vertices in S′ must be assigned colors in pairs. If n
2 is even, then pick any two vertices

in S′ and assign them a new color, and repeat until all of the vertices have been colored.

Otherwise pick any two vertices in S′ and assign them a new color and repeat until only 3

vertices remain. Assign all 3 vertices a new color. Therefore, we get
⌊
n
4

⌋
colors from S′. In

total, there are n
2 colors from the vertices in set S and

⌊
n
4

⌋
colors from the vertices in set

S′. Thus, D(NKn) ≥
⌊
3n
4

⌋
.

Next we must show that D(NKn) ≤
⌊
3n
4

⌋
. Observe that if two vertices v and u are in

singleton color classes, then there must be an edge from v to u in the graph. Therefore in

this graph with maximum clique size n
2 , there can be no more than n

2 singleton sets in π.

Therefore, D(NKn) ≤ n
2 +

n
2
2 . Hence, D(NKn) =

⌊
3n
4

⌋
.

We would like to next show a relationship between D(G) and the maximum degree

of the graph ∆(G). To do this, we will need to first present an algorithm that will be

necessary in proving the relationship between D(G) and ∆(G). Therefore, we will provide

an algorithm that constructs a graph, G′, from a graph G such that ∆(G′) ≤ ∆(G). Let

π = {V1, V2, . . . , Vm} be a D-partition of G such that |V1| ≥ |V2| ≥ . . . ≥ |Vm|.

12



Algorithm 1
Input: Graph G, D-partition of G π = {V1, V2, . . . , Vm}
Output: graph G′ with ∆(G′) ≤ ∆(G), π is both a D-partition and a Transitive partition
for G′

1: initialize graph G′ such that G′ = G
2: remove any edges between two vertices belonging to the same set in π
3: for (z = m; z > 1; z −−) do
4: for (i = z − 1; i ≥ 1; i−−) do
5: while Vi does not dominate Vz do
6: find a vertex x ∈ Vz that is not dominated by Vi
7: find a vertex y ∈ Vz that has multiple neighbors in Vi
8: let ay, by, be edges between y and Vi
9: if deg(x) < ∆(G) then

10: remove edge ay and add edge ax
11: else if x has multiple neighbors in some other set Vp then
12: let cx be an edge between x and Vp
13: remove edges ay, cx and add edges ax, cy (if edge cy does not already exist)
14: else
15: let Vk be a set in π such that there exists an edge fx where f ∈ Vk and y has

no neighbors in Vk
16: remove edges fx, ay and add edges ax, fy
17: end if
18: end while
19: end for
20: end for

Proof of Algorithm 1 Correctness. We will show the following:

1. ∆(G′) ≤ ∆(G).

2. π is a D-partition throughout the algorithm and is a transitive partition at algorithm

termination.

3. Algorithm 1 terminates.

Note: we will use the term “line” here to refer to a specfic line of pseudocode in the algorithm

above.

1. We can easily show that ∆(G′) ≤ ∆(G) throughout the entire algorithm and at termina-

tion. Initially, ∆(G′) = ∆(G) after line 1 completes. On line 2 of the algorithm, some edges

may be removed from G′ therefore ∆(G′) ≤ ∆(G). At line 10, vertex x will have its degree

increased by one but only if deg(x) ≤ ∆(G), vertex y will have it’s degree decreased by one,
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and vertex a will have the same degree. This will maintain the relationship ∆(G′) ≤ ∆(G).

In lines 13 and 16, all vertices involved lose an edge and gain an edge so the degrees of each

vertex is unchanged. Hence, ∆(G′) never increases higher than ∆(G) but it may be lower.

2. The D-partition π will remain a D-partition for G′ throughout the execution of the

algorithm since no domination relationships are ever removed during execution. We will

look at lines 2, 10, 13, and 16 since these are the only lines that remove edges from the

graph. Line 2 does not remove any domination relationships since only edges between

vertices in the same set are removed. At line 10, since π is a D-partition, either Vi → Vz

or Vz → Vi, but we know Vi does not dominate Vz thus Vz → Vi. After line 10, the vertex

a ∈ Vi is still dominated by Vz so the domination relationship is unchanged. On line 13,

either Vp → Vz or Vz → Vp. If Vp → Vz then vertex x ∈ Vz is still dominated by Vp since

it has neighbors in Vp other than vertex c. If instead Vz → Vp then that remains the same

since vertex c ∈ Vp is still dominated by vertex y ∈ Vz. At line 16, set Vk does not dominate

set Vz since vertex y has no neighbors in Vk. If Vz → Vk then that still holds true since

vertex f ∈ Vk is dominated by vertex y ∈ Vz instead of by vertex x ∈ Vz. Hence, throughout

execution of the while loop no domination relationships are ever removed, only new ones are

added. Therefore, π remains a D-partition throughout execution of the algorithm. After

the algorithm terminates, for every Vi, Vj ∈ π, where i < j, Vi → Vj therefore π is also a

transitive partition.

3. In order to show that Algorithm 1 terminates, we must show that the while loop on

line 4 terminates successfully. We can safely say that line 5 will always find such a vertex,

otherwise the while loop condition would not be met and the statement would not be

reached. As has already been shown, Vz → Vi and this relationship is not changed during

the while loop. Therefore, for any vertex v ∈ Vi, there exists a vertex u ∈ Vz such that

u ∈ N(v). But since |Vi| ≥ |Vz| and because there is a vertex x ∈ Vz with no neighbor in

Vi, there must be at least one vertex y ∈ Vz with multiple neighbors in Vi. After the nested

if-else tree beginning on line 9 completes, the vertices x and y will both have neighbors in

Vi. Therefore, during every iteration of the while loop at least one more vertex becomes

dominated by Vi than in the previous iteration of the while loop. Now we must show that
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at least one branch of the if-else tree beginning on line 9 will always be applicable. If the

first two conditions fail, then we know that deg(x) = ∆(G) and that x has at most one

neighbor in any given set. Since we know vertex y has at least two neighbors in set Vi and

deg(y) ≤ deg(x), there must be at least one set Vk that vertex y has no neighbors in but

vertex x does. Therefore, at least one branch of the if-else tree will always be applicable.

Theorem 3.2. D(G) ≤ ∆(G) + 1.

Proof of 3.2. Let G be an arbitrary, undirected graph of order n. Let π = {V1, V2, . . . , Vm}

be a D-partition of G ordered such that |V1| ≥ |V2| ≥ . . . ≥ |Vm|. Let G′ be a graph

constructed from G using Algorithm 1. The construction assures that ∆(G′) ≤ ∆(G).

Because π is a D-partition, D(G) = |π|. With respect to G′, for every i, j, 1 ≤ i ≤ j ≤ m,

Vi → Vj for all Vi, Vj ,∈ π. Thus, π is a transitive partition of G′ and therefore |π| ≤ Tr(G′).

As Hedetniemi proved [11], Tr(G′) ≤ ∆(G′)+1. Hence, D(G) = |π| ≤ Tr(G′) ≤ ∆(G′)+1 ≤

∆(G) + 1, or more simply, D(G) ≤ ∆(G) + 1.

Corollary 3.2.1. For any Pn where n ≥ 4, D(Pn) = 3.

Proof. For any vertex, v ∈ Pn, deg(x) ≤ 2 so D(Pn) ≤ ∆(Pn) + 1 = 3. Since n ≥ 4 we can

let a, b, c ∈ V (Pn) such that ab, bc ∈ E(Pn). If we assign vertex a color 1, vertex b color 2,

and vertex c color 3, then we just need an edge between colors 1 and 3. Let d ∈ V (Pn).

If ad ∈ E(Pn) then assign vertex d color 3. Thus color 3 dominates colors 1 and 2 while

colors 1 and 2 dominate each other. If cd ∈ E(Pn) then assign vertex d color 1. Thus color

1 dominates colors 2 and 3 while colors 2 and 3 dominate each other. If n ≥ 4 then we

can simply assign all remaining vertices the same color as vertex d. Hence, D(Pn) = 3 if

n ≥ 4.

Corollary 3.2.2. For any Cn where n ≥ 3, D(Cn) = 3.

Proof. For any vertex, v ∈ Cn, deg(x) = 2, so D(Cn) ≤ ∆(Cn) + 1 = 2 + 1 = 3. Therefore,

we know that D(Cn) ≤ 3 so we must simply show that D(Cn) ≥ 3. Since n ≥ 3 we can

let a, b, c ∈ V (Cn) such that ab, bc ∈ E(Cn). If we assign vertex a color 1, vertex b color

2, and vertex c color 3, then we just need an edge between colors 1 and 3. If n = 3 then
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there exists ac ∈ E(Cn). Otherwise, if n > 3 then the remaining vertices can all simply

be assigned color 1. Therefore color 1 dominates all colors, and colors 2 and 3 are both

dominated by and dominate each other. Thus, D(Cn) ≥ 3. Hence, D(Cn) = 3 if n ≥ 3.

Theorem 3.3. For any star, Sn, D(Sn) = 2.

Proof. Let c ∈ Sn be the center vertex that has n leaves, call them v1, v2, . . . , vn. For any

leaf, vi, N(vi) = {c}. Without loss of generality, we can assign vertex c the color 1 and

pick a leaf, vi, and assign it the color 2. If we assign another leaf, vj , any color but 1 or

2 then there can be no domination relationship between that color and color 2. Hence,

D(Sn) = 2.

Theorem 3.4. If there exists a D-partition of a graph G with a sink set, then there exists

a D-partition of G with a sink set of cardinality 1.

Proof. Let π = {V1, V2, . . . , Vn} be a D-partition of a graph G with a sink set. Let U ∈ π

be the sink set. Because U is a sink set, we know that every element in U is dominated by

every other set in π, or, more simply, every element u ∈ U has at least one neighbor from

every other set in π. Therefore, we can move all but one element from U into any other

set in π, say set X, without removing any domination relationships. The one element left

in U is still dominated by some element from every other set in π. The moved elements

are still adjacent to at least one element from every set. Thus if set X is dominated by

some subset of π each of the sets in this subset will dominate the new elements so the

domination relationships are maintained. Note that if set X dominated some subset of π it

still dominates each set from this subset.

Theorem 3.5. If there exists a D-partition of a graph G such that there exists a set V in

the partition that is dominated by all but one other set, U , then there is also a D-partition

of G such that set V is a sink set.

Proof. Let π = {V1, V2, . . . , Vn} be a D-partition of a graph G. Let the set V ∈ π be the

set that is dominated by all but one other set, say set U . Since set V is not dominated

by set U in a D-partition, then set V dominates set U . Note that there exists at least one
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vertex v ∈ V that does not have a neighbor in set U . If we move all such vertices from

set V to set U then set V becomes a sink set. Now every element in V has a neighbor in

every other set, thus set V is dominated by every other set. The moved elements now in

U are still adjacent to at least one element from every set other than set V . Thus if set

U is dominated by some subset of π each of the sets in this subset will dominate the new

elements so the relationships are maintained. Note also if set U dominated some subset of

π it still dominates each set from this subset.

3.2 Subgraphs and Joins

3.2.1 Subgraphs

Theorem 3.6. For a graph, G, D(G) ≥ µ where µ is the size of the largest clique subgraph

in G.

Proof. Let G be an arbitrary graph of order n such that the largest clique of the graph is of

order µ. Let V (µ) = {v1, v2, . . . , vµ} be the set of vertices in the largest clique of G. Assign

each vertex in V (µ) a unique color. The rest of the graph can be colored any one previously

used color to achieve D(G) = µ. If every vertex, vi ∈ V (µ) has at least one neighbor not in

V (µ) then the rest of the graph can be assigned the color µ+ 1 to achieve D(G) > µ.

Theorem 3.7. For a graph G with subgraph H there is no strict relation between D(G)

and D(H).

Proof. First we will show that D(G) can be larger than D(H). Consider the complete graph

of order n, Kn. Let m be a positive integer such that m < n. Then there is a subgraph Km

of the graph Kn. As shown previously, D(Kn) = n. Hence, D(Kn) > D(Km).

Second we will show that D(H) can be larger than D(G). Consider the graph G shown

in Figure 3.2. By Theorem 3.2 we can see that D(G) ≤ 4. But because of the isolate vertex,

there must be a set that dominates all other sets in the upper domatic partition of G. This

can not be achieved in this graph. However, an upper domatic partition of size 3 can be

easily achieved in several ways. Now consider the subgraph, H, of G shown in Figure 3.2

17



The removal of the isolate in the subgraph H allows for an upper domatic partition of size

4 to be achieved for H. Hence, D(H) > D(G).

Figure 3.2: Left: the graph G. Right: the subgraph H

3.2.2 Joins

The graph G+H, called a join graph, is formed from graphs G and H with an edge added

between every vertex in G and every vertex in H. An example is shown in Figure 3.3.

Figure 3.3: From left to right: the graph G, the graph H, the join graph G+H

Let G be an undirected graph. Let H be a subgraph of G such that D(H) is the highest

upper domatic number for any subgraph of G.

Theorem 3.8. D(G+K1) ≥ D(H) + 1.
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Proof. Let π be a D-partition of H. Then we can color all remaining vertices in G+K1 a

new color. This new color dominates all other colors in π because every vertex in H has at

least one neighbor in V (G+K1)− V (H). Hence, D(G+K1) ≥ D(H) + 1.

Let G and H be two undirected graphs.

Theorem 3.9. D(G) +D(H) ≤ D(G+H).

Proof. Consider the graph, G, shown in Figure 3.4.

Figure 3.4: A graph G

Clearly, D(G) = 1.

Now consider the join of G with itself, as shown in Figure 3.5. Note that we will simply

refer to the second copy of G as H.

Figure 3.5: The join of G with itself, i.e. G+H

We can assign one color to the top pair of vertices, a second color to the next pair of

vertices, and so on. This results in a D − partition using 4 colors. Thus, D(G + H) = 4.

But D(G) +D(H) = 2. Therefore, we can see that D(G) +D(H) ≤ D(G+H).

3.3 Corona

In this section we we will discuss the corona G ◦K1. The corona is constructed by using

a graph G and attaching a leaf vertex to every vertex in G. We will refer to these leaf
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vertices as being on the corona and the vertices of G as being inside the corona. When

talking about a specific vertex on the corona, we will call the adjacent vertex that is inside

the corona as the supporting vertex. An example corona can be seen in Figure 3.6.

Figure 3.6: A corona with blue vertices inside the corona and green vertices on the corona

Lemma 3.1. If D(G ◦K1) ≥ 4 then there are no more than two distinct colors assigned to

the vertices on the corona.

Proof. Assume D(G ◦K1) ≥ 4. Suppose for the sake of contradiction that there are three

or more distinct colors assigned to the vertices on the corona. Let X,Y, and Z be three of

the colors on the corona. If a vertex on the corona is assigned the color X, then we know

that X must dominate all colors with the possible exception of whatever color is assigned to

the supporting vertex. This is true for any color on the corona. So suppose the supporting

vertex is assigned the color Y . This leaves 2 cases, either Y dominates X or Y does not

dominate X.

If Y dominates X, then X must dominate Z and therefore Z must dominate Y . This

the corona colors form a cycle domination digraph.

Else if Y does not dominate X then X must dominate Y and thus Y must dominate Z

and Z must dominate X. Again, the corona colors form a cycle domination digraph.

Now suppose some fourth color, A, is assigned to a vertex inside the corona. The

corona vertex adjacent to this vertex cannot be assigned any of the corona colors because

it would sever the relationship between that color and the color that dominates it. This is

a contradiction. Hence, if D(G ◦K1) ≥ 4 then there are no more than two distinct colors
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assigned to the vertices on the corona.

Let G be an undirected graph. Let H be a subgraph of G such that D(H) is the highest

upper domatic number for any subgraph of G.

Theorem 3.10. D(G ◦K1) = D(H) + 1 for D(G ◦K1) ≥ 4.

Proof. We will first show that D(G◦K1) ≥ D(H)+1 and then that D(G◦K1) ≤ D(H)+1

Case 1: D(G ◦K1) ≥ D(H) + 1.

Let π be a D-partition of H. Then we can color all remaining vertices in G ◦K1 a new

color. This new color dominates all other colors in π because every vertex in H has at least

one neighbor in V (G ◦K1)− V (H). Hence, D(G ◦K1) ≥ D(H) + 1.

Case 2: D(G ◦K1) ≤ D(H) + 1.

Note that D(G ◦K1) ≤ D(H) + 1 is equivalent to D(H) ≥ D(G ◦K1) − 1. Also note

that we want to find a subgraph H of G such that there is an upper domatic partition of

H that uses at least D(G ◦K1)− 1 colors. Let π be a D-partition of G ◦K1.

Suppose there is one color and one color only on the vertices of the corona in G ◦K1,

call it X. Remove all vertices that are in set X. This leaves a subgraph, H such that there

is one less color in π. Therefore π − {X} is still an upper-domatic partition for H. Hence,

D(H) ≥ D(G ◦K1)− 1.

Suppose there are two colors on the vertices of the corona in G◦K1, call them X and Y .

Without loss of generality let X dominate Y since one must dominate the other. Remove

all vertices in the set X and all corona vertices to create a subgraph, H. Clearly, none of

the colors aside from X and Y are affected. Since Y was dominated by X then any corona

vertex that was color Y was adjacent to one and only one vertex which had to be color X.

Therefore all remaining colors had to be dominated by Y vertices not on the corona and Y

still dominates all colors. Hence, D(H) ≥ D(G ◦K1)− 1.

3.4 Nordhaus-Gaddum

Here we will look at Nordhaus-Gaddum results for the upper domatic number. Nordhaus-

Gaddum results relate properties of a graph and the complement of a graph in inequalities.
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The complement of a graph G, denoted G, has the same vertices as G and all possible edges

not found in G.

Note that Sn is the star graph with n leaf vertices.

Theorem 3.11. D(Sn) +D(Sn) = 2 + n.

Proof. As was previously shown, D(Sn) = 2. Therefore we must show that D(Sn) = n.

Note that the graph Sn is a single isolate vertex and a clique of order n. Thus, D(Sn) ≥ n.

The only other vertex in the graph is an isolate which must be a member of a dominating

set. Since every color used is in a clique, all colors are dominating sets. Thus, the isolate

must be assigned one of the colors already used and can not be a new color. Therefore,

D(Sn) ≤ n. Hence, D(Sn) +D(Sn) = 2 + n.

Theorem 3.12. D(Pn) +D(Pn) ≤
⌊
3(n+1)

4

⌋
+ 3 for n ≥ 4.

Proof. As was previously shown, D(Pn) = 3 if n ≥ 4. Therefore we must show that

D(Pn) ≤ q
⌊
3(n+1)

4

⌋
. The graph Pn has an independent set of

⌈
n
2

⌉
vertices starting with one

leaf vertex and adding every second vertex after that. This same set of vertices is a clique

in Pn. We know that every vertex in a clique can belong to it’s own set so D(Pn) ≥
⌈
n
2

⌉
.

Of the remaining vertices, every new color must have at least two vertices in order to have

some domination relation with each color in the clique. Therefore D(Pn) ≥
⌈
n
2

⌉
+
⌊
n
4

⌋
.

Theorem 3.13. D(Cn) +D(Cn) ≤
⌊
3n
4

⌋
+ 3 for n > 4.

Proof. As was previously shown, D(Cn) = 3 for n ≥ 3. Therefore we must show that

D(Cn) ≤
⌊
3n
4

⌋
. The graph Pn has an independent set of

⌊
n
2

⌋
vertices starting with any

vertex and adding every second vertex after that. This same set of vertices is a clique

in D(Cn). Thus D(Cn) ≥
⌊
n
2

⌋
. Of the remaining vertices, every new color must have at

least two vertices in order to have some domination relation with each color in the clique.

Therefore D(Cn) ≥
⌊
n
2

⌋
+
⌊
n
4

⌋
.
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Chapter 4: Inequalities for the Upper Domatic

Number

In this chapter we will evaluate the upper domatic number’s relationships with various

other previously studied graph parameters. We will relate the upper domatic number to

the domatic number, the transitive number, achromatic number, and the pseudoachromatic

number. As previously defined, the domatic number of a graph G is the maximum integer

k such that V (G) can be partitioned into k dominating sets, denoted d(G).

Theorem 4.1. d(G) ≤ D(G).

Proof. First note that every d-partition is also a D-partition but every D-partition is not

a d-partition. Therefore we know that at least d(G) = D(G). Now consider the graph

C4. We know that D(C4) = 3 by corollary 3.2.2. But d(C4) = 2 since there are only two

dominating sets in C4. Hence d(G) ≤ D(G).

We can also remember the transitive number of a graph G is the largest positive integer

k such that G can be partitioned into k sets where for every pair of sets, Vi, Vj ∈ π if i < j

then Vi → Vj .

Theorem 4.2. Tr(G) ≤ D(G).

Proof. First note that every transitive partition is also a D-partition but every D-partition

is not a transitive-partition. Therefore we know that at least Tr(G) = D(G). Now consider

the graph G shown in Figure 4.1. Then consider the partition of G and the resulting

domination digraph shown in Figure 4.2.

Clearly, D(G) = 4. Now we must determine Tr(G). First note that a transitive partition

of size k requires two adjacent vertices each with degree at least k − 1. This is required so

that the sink set in a transitive partition and the set dominated by every other set aside from
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Figure 4.1: The graph G

Figure 4.2: G and resulting domination digraph

the sink set can each have a neighbor from every other set. Otherwise, the set dominated by

every set but the sink set would not be able to dominate the sink set and by dominated by

all other sets. But G only has two adjacent vertices of at least degree 2. Thus, Tr(G) = 3.

Hence, Tr(G) ≤ D(G).

Recall that the achromatic number of a graph is the largest positive integer k such that

G has a complete k-coloring and is denoted α(G).

Theorem 4.3. There is no relation between the upper domatic number of a graph and the

achromatic number of a graph.

Proof. To show that there is no relation between D(G) and α(G) we will show that D(G)

can be either arbitrarily larger or smaller than α(G). First we will show that D(G) can be

arbitrarily larger than α(G). Consider the NKn class of graphs described in the previous
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chapter. We know by theorem 3.1 that D(NKn) =
⌊
3n
4

⌋
. So we must show that D(NKn)

can be arbitrarily larger than α(NKn). Let S be a set of half of the vertices in V (NKn)

such that S is a clique of order n
2 and let S′ be the remaining vertices. It is clear that S′

is also a clique of order n
2 . It is also clear that for any vertex v ∈ S there exists a vertex

u ∈ S′ such that N [v] = V (G)−{u}. Now, assign each vertex in S a unique color. If a new

color is assigned to one of the vertices v ∈ S′ then there will be some vertex u ∈ S such

that vu /∈ E(NKn). So there must be at least two vertices assigned the new color in S′.

But they will be neighbors so the coloring is not proper. Hence, there can be no new colors

in S′. Each pair of vertices, one in S and one in S′ that are not adjacent must be assigned

the same color. Thus, α(NKn) = n
2 . Therefore α(NKn) < D(NKn).

Now we must show that D(G) can be arbitrarily smaller than α(G). Consider a graph,

G, that is comprised of s disjoint stars, each of which has n leaves. We know that D(Sn) = 2

but that is only for a single star. Thankfully, D(G) = 2 as well since having two leaves with

two different colors both adjacent to the same center vertex means that the center vertex

must be one of those two colors in order to have some domination relationship between the

two colors. This means that any additional disjoint stars in a graph can not increase the

upper domatic number since no new colors can be introduced. Hence,D(G) = 2. On the

other hand, the achromatic number can take advantage of the additional disjoint stars. Let

s = n + 1, in other words every disjoint has as many leaves as there are disjoint stars in

the graph plus one. Then a star can have a color in the center and a different color on

every leaf. So if every star has a different color in the center and the remaining colors on

the leaves, then there is at least one edge between every pair of colors. Thus, α(G) = s.

Therefore, α(G) can scale with the number of disjoint stars and be arbitrarily larger than

D(G). Hence, there is no relation between D(G) and α(G).

Also recall that the pseudoachromatic number of a graph, denoted ψ(G) is the same as

the achromatic number but that the color classes do not need to be independent.

Theorem 4.4. For any graph, G, D(G) ≤ ψ(G).

Proof. Clearly any D-partition of a graph is also a pseudoachromatic coloring of the graph.

Therefore we know that at least D(G) = ψ(G). Consider the graph C8 with the coloring as
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shown:

Figure 4.3: The C8 graph with partition π = {B,R,G, Y }

Here we can see that ψ(C8) = 4 since there is at least one edge between every pair of

distinct color classes. But we know that D(C8) = 3 from corollary 3.2.2. Hence, D(G) ≤

ψ(G).

From these results, two inequality chains become clear:

d(G) ≤ D(G) ≤ ψ(G)

and:

Tr(G) ≤ D(G) ≤ ψ(G)

Therefore we must determine the relationship between Tr(G) and d(G).

Theorem 4.5. d(G) ≤ Tr(G).

Proof. Clearly, by the definition of the domatic and transitive numbers, we can see that

every d-partition is also a transitive partition but not vice versa. Therefore we know that at

least d(G) = Tr(G). Consider the house graph, G, shown in Figure 4.4 with two different

partitions, π and π′. If we examine the graph G we see that there are two dominating sets

possible, the red and blue sets in π are both dominating sets. Then, if we note that π is

a transitive partition and that π′ is a d-partition, we can clearly see that Tr(G) = 3 and

d(G) = 2. Hence, d(G) ≤ Tr(G).

Now we can construct a single inequality chain to relate the domatic, transitive, upper

domatic, and pseudoachromatic numbers:
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Figure 4.4: G with partition π (left) and partition π′ (right)

Corollary 4.5.1. d(G) ≤ Tr(G) ≤ D(G) ≤ ψ(G).

Proof. This result follows directly from Theorem 4.5 combined with the previous inequality

chains.
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Chapter 5: Open Problems

• Is there a graph G with |V (G)| < 10 where D(G) < α(G)?

• What is the smallest δ(G) such that D(G) < δ(G)?

• Is there a high level algorithm for finding an upper domatic partition of a graph?

• How much larger can D(H) be than D(G) where H is a subgraph of G?

• Do there exist graphs with no D-partition that contains a sink set?

• What is the time complexity of deciding if a given graph has D(G) ≥ 4? D(G) ≥ 5?

• What classes of graphs can be described as “upper domatically full,” if any?

28



Bibliography

[1] Gerard J. Chang. The domatic number problem. Discrete Mathematics, 125(1):115–

122, 1994.

[2] Claude A. Christen and Stanley M. Selkow. Some perfect coloring properties of graphs.

Journal of Combinatorial Theory Series B, 27(1):49–59, 1979.

[3] E. J. Cockayne and S. T. Hedetniemi. Towards a theory of domination in graphs.

Networks, 7:247–263, 1977.

[4] Peter Dankelmann and Neil Calkin. The domatic number of regular graphs. Ars Comb.,

73, 2004.

[5] Paul Erdos, Stephen T. Hedetniemi, Renu C. Laskar, and Geert C.E. Prins. On the

equality of the partial grundy and upper ochromatic numbers of graphs. Discrete

Mathematics, 272(1):53–64, 2003.

[6] Nicolas Gastineau, Hamamache Kheddocui, and Oliver Togni. On the family of r-

regular graphs with grundy number r+1. Discrete Mathematics, 328:5–15, 2014.

[7] Wayne Goddard, Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Alice A. McRae.

The algorithmic complexity of domination digraphs. Journal of Combinatorial Math-

ematic and Combinatorial Computing, 80:367–384, 2012.

[8] Frank Harary and Stephen Hedetniemi. The achromatic number of a graph. Journal

of Combinatorial Theory, 8(2):154–161, 1970.

[9] Frank Haray and Teresa W. Haynes. Combinatorics nordhaus-gaddum inequalities for

domination in graphs. Discrete Mathematics, 155(1):99–105, 1996.

29



[10] Sandra M. Hedetniemi, Stephen T. Hedetniemi, Alice A. McRae, Dee Parks, and

Jan Arne Telle. Iterated colorings of graphs. Discrete Mathematics, 278(1-3):81–108,

2004.

[11] Stephen T. Hedetniemi, Alice A. McRae, and Nicholas K. Phillips. The transitivity of

a graph. Author’s Notes.

[12] Tung-Lin Lu, Pei-Hsin Ho, and Gerard J. Change. The domatic number problem in

interval graphs. Society for Industrial and Applied Mathematics, 3(4):531–536, 1990.

[13] E. A. Nordhaus and J. W. Gaddum. On complementary graphs. American Mathemat-

ical Monthly, 63:175–177, 1956.

[14] Vitaly I. Voloshin. Graph coloring: History, results, and open problems. Alabama

Journal of Mathematics, Spring/Fall, 2009.

[15] V. Yegnanarayanan and B. Logeshwary. On vertex coloring of graphs. International

Journal of Mathematical Analysis, 9(17):857–868, 2015.

[16] Bohdan Zelinka. On k-domatic numbers of a graph. Czech. Math. J., 33:309–313, 1983.

30



Appendix: Alphabetized Vocabulary

Here we provide an alphabetized list of most of the terms used in this thesis for easy

reference.

Definition 1. The achromatic number of a graph G is the largest positive integer k such

that G has a complete k-coloring, denoted α(G).

Definition 2. Two distinct vertices v and u are adjacent if vu ∈ E(G) and we say v and

u are neighbors.

Definition 3. The chromatic number of a graph G is the smallest positive integer k for

which G has a proper k-coloring and is written as χ(G).

Definition 4. A clique is subgraph of a graph that is complete, i.e. an induced Kn subgraph

of a graph G.

Definition 5. The closed neighborhood of a vertex v is the set of adjacent vertices plus v,

denoted N [v].

Definition 6. The complement of a graph G, denoted G, has the same vertices as G and

all possible edges not found in G.

Definition 7. A complete graph Kn is a graph of order n where there is an edge between

every pair of vertices.

Definition 8. A complete k-coloring is a proper k-coloring such that for every pair of

distinct colors, there exists two adjacent vertices assigned these two colors, i.e. there exists

at least one edge between every pair of color classes.

Definition 9. A cycle graph Cn is a graph of order and size n and every vertex is of degree

2. In other words, a cycle graph is an unbroken chain of adjacent vertices that start and

end at the same vertex.
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Figure 1: The C4 graph

Definition 10. The degree of a vertex v is the number of adjacent vertices, denoted deg(v).

Definition 11. A digraph, or directed graph, is a graph where edges have direction, called

arcs, and every arc has a start and end vertex.

Definition 12. The domatic number of a graph G is the maximum integer k such that

V (G) can be partitioned into k dominating sets, denoted d(G).

Definition 13. A d-partition of a graph G is a partition π that achieves d(G).

Definition 14. A D-partition of a graph G is a partition π that achieves D(G).

Definition 15. A dominating set of vertices is a set where every vertex in a graph G that

is not in the dominating set, is adjacent to at least one vertex from the dominating set.

Definition 16. A domination digraph, denoted D(π), is a digraph representation of a

partition π of a graph G where the vertices represent the k sets of π, and there is an arc

from Vi to Vj if Vi → Vj .

Definition 17. A graph G is a set V (G) of vertices and a set E(G) of edges.

Definition 18. An independent set of vertices is a set in which no two vertices are adjacent

to one another.

Definition 19. A k-coloring is a coloring of the vertices of a graph G using k colors.

Definition 20. A k-regular graph is a graph G where ∆(G) = δ(G), i.e. all vertices have

the same degree.

Definition 21. A leaf is a vertex of degree 1.
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Figure 2: The K5 graph which is also an example of a 4-regular graph

Definition 22. The open neighborhood of a vertex v is the set of adjacent vertices, denoted

N(v).

Definition 23. The order of a graph G is the number of vertices, i.e., |V (G)|.

Definition 24. A path graph Pn is a graph of order n with exactly two leaves and n − 2

vertices of degree 2.

Figure 3: The P5 graph

Definition 25. A proper k-coloring is a k-coloring where no two adjacent vertices are the

same color.

Definition 26. The pseudoachromatic number of a graph G is the largest positive integer

k for which G has a k-coloring where there exists at least one edge between every distinct

pair of color classes but the coloring does not have to be proper, denoted ψ(G).

Definition 27. A star Sn is a graph containing only a single vertex with n leaves.

Figure 4: The S4 graph

Definition 28. The size of a graph G is the number of edges, i.e., |E(G)|.

Definition 29. A subgraph, typically denoted as H, is a set of vertices from a graph G

with all edges from G that are between any pair of vertices in H.
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Definition 30. The transitive number of a graph G is the largest positive integer k such

that G can be partitioned into k sets where for every pair of sets, Vi, Vj ∈ π if i < j then

Vi → Vj .

Definition 31. A transitive partition is a partition that achieves Tr(G).

Definition 32. The upper domatic number of a graph G is the maximum integer k such

that V (G) can be partitioned into k sets where for every Vi, Vj ∈ π, where π is a partition

of V (G), either Vi → Vj or Vj → Vi or both.
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