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Abstract. A total domatic k-partition of a graph is a partition of its
vertex set into k subsets such that each intersects the open neighborhood
of each vertex. The maximum k for which a total domatic k-partition
exists is known as the total domatic number of a graph G, denoted by
dt(G). We extend considerably the known hardness results by showing
it is NP-complete to decide whether dt(G) ≥ 3 where G is a bipartite
planar graph of bounded maximum degree. Similarly, for every k ≥ 3, it
is NP-complete to decide whether dt(G) ≥ k, where G is a split graph or
k-regular. In particular, these results complement recent combinatorial
results regarding dt(G) on some of these graph classes by showing that
the known results are, in a sense, best possible. Finally, for general n-
vertex graphs, we show the problem is solvable in 2nnO(1) time, and
derive even faster algorithms for special graph classes.

1 Introduction

Domination is undoubtedly one of the most intensively studied concepts in graph
theory. Besides being a fundamental graph property, domination also routinely
appears in real-world applications related to data transfer (see e.g., [9, 31, 16]).

Let G = (V,E) be a graph. A dominating set of G is a set of vertices S ⊆ V
such that every vertex in V either is in S or is adjacent to a vertex in S. The
domination number of a graph G, denoted by γ(G), is the size of a minimum
dominating set in G. A classical variant of domination is the concept of total
domination, introduced by Cockayne et al. [7] in 1980. Here, a set of vertices
D ⊆ V is a total dominating set of G if every vertex in V is adjacent to some
vertex in D. The total domination number of G, denoted by γt(G), is the size of a
minimum total dominating set in G. Note that every total dominating set is also
a dominating set, but the converse is not true in general. Given the centrality
of the topic, much is known about total domination in graphs. For instance,
Bollobás and Cockayne [5] proved that γt(G) ≤ 2γ(G). For other combinatorial
results, we refer the reader to the books [18, 17] and the recent monograph [22].
From the viewpoint of complexity, the problem of deciding whether a graph G
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Fig. 1: The graph G = C6 has dt(G) = 3.

has a total dominating set of size at most k is well-known to be NP-complete,
even for bipartite graphs [27]. The reader interested in computational results is
referred to the survey [20].

In this work, we focus on the problem of partitioning the vertex set of a graph
into a maximum number of total dominating sets, a concept also introduced by
Cockayne et al. [7]. For ease of presentation, we follow Zelinka [32] and use a
definition rooted in graph colorings. A total domatic k-coloring is a partition
of V into k color classes such that each vertex in V is adjacent to a member
from each class. The maximum k for which a graph G has a total domatic k-
coloring is known as the total domatic number of G, and is denoted by dt(G).
This is equivalent to the maximum number of total dominating sets the vertex
set of G can be partitioned into. For convenience, we can say a graph G is
total domatic k-colorable if dt(G) ≥ k. It is immediate from the definition that
for any nontrivial graph G, we have that 1 ≤ dt(G) ≤ δ(G) ≤ ∆(G), where
δ(G) and ∆(G) denote the minimum and maximum degree, respectively. For an
illustration of the concept, consider the graph G = C6, i.e., the complement of
a 6-cycle (see Fig. 1). As G is 3-regular, we have that dt(G) ≤ 3. On the other
hand, a total domatic 3-coloring of G is straightforward to construct proving
that dt(G) = 3.

Zelinka [33] proved that no minimum degree condition suffices to guarantee
dt(G) = 2. Later on, Heggernes and Telle [19] showed that deciding whether
dt(G) ≥ 2 is NP-complete for bipartite graphs. The study of total domatic
number has regained attention lately. Recently, motivated by communication
problems in large multi-robot networks, Chen et al. [6] reintroduced the concept
under the name coupon coloring. In particular, they called the total domatic
number the coupon coloring number. Subsequently, and seemingly unaware of
the earlier work by Zelinka [32–34], the coupon coloring number was studied by
Shi et al. [30]. In particular, Zelinka [32] determined the total domatic number
of cactus graphs, majorizing Shi’s et al. [30] result for cycles.

As further motivation, we mention a slight variation of an application in net-
work science described by Abbas et al. [1]. Imagine a network of agents where
each agent holds an instrument (e.g., thermometer, hygrometer, or so on). More-
over, interaction between agents is limited such that an agent can only commu-
nicate with its neighbors. As an agent requires access to each instrument, it
needs to be copied across the agents to form a particular kind of dominating
set. Indeed, to accommodate e.g., power limitations or system failures, we do
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not rely on the instrument an agent itself holds. Now, each instrument forms
a total dominating set, and the maximum number of instruments that can be
made available is precisely the total domatic number of the network. Abbas et
al. [1] also stress that “... the underlying network topology of multirobot net-
works plays a crucial role in achieving the system level objectives within the
network in a distributed manner.” This motivates the study of the complexity
of computing the total domatic number on restricted topologies. Furthermore,
we also remark that Henning [20, Problem 12] calls for a deeper investigation of
total domination on planar graphs.

Our results. We considerably extend the known hardness results for computing
the total domatic number of a graph.

– For Section 3, our main result is that it is NP-complete to decide whether a
bipartite planar graph G of bounded maximum degree has dt(G) ≥ 3. This
complements the recent combinatorial results of Goddard and Henning [14]
who showed that no planar graph G′ has dt(G

′) = 5. In other words, our
result shows that it is unlikely one could have a polynomial-time character-
ization of planar graphs with described total domatic numbers.

– In Section 4, we prove that for every k ≥ 3, it is NP-complete to decide
whether a k-regular graph G has dt(G) ≥ 3. In contrast, Akbari et al. [2]
characterized the 3-regular graphs H with dt(H) ≥ 2. This is best possible in
the sense that our hardness result gives strong evidence for the non-existence
of a polynomial-time characterization of k-regular graphs with dt(G) ≥ k.

– In Section 5 we focus on chordal graphs. We begin by proving that it is
NP-complete to decide whether dt(G) ≥ 2 where G is a split graph. On a
positive side, we show that the total domatic number can be computed in
polynomial-time for threshold graphs.

– Finally, in Section 6, we give fast exact exponential-time algorithms for the
problem. In particular, we show how the problem can be solved in 2nnO(1)

time for general graphs, and derive even faster algorithms for special graph
classes.

Statements whose proofs are located in the appendix are marked with ?.

2 Preliminaries

For a positive integer n, we write [n] = {1, 2, . . . , n}.
In what follows, we define the graph-theoretic concepts most central to our

work. For graph-theoretic notation not defined here, we refer the reader to [10].
We also briefly introduce decision problems our hardness results depend on.

Graph parameters and classes. All graphs we consider are undirected and
simple. For a graph G, we denote by V (G) and E(G) its vertex set and edge set,
respectively. To reduce clutter, an edge {u, v} is often denoted as uv. Two vertices
x and y are adjacent (or neighbors) if xy is an edge of G. The neighborhood of a
vertex v, denoted by N(v), is the set of all vertices adjacent to v. Let G = (V,E).
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When we identify two distinct vertices v, w ∈ V , we obtain the graph with vertex
set V \ {v, w} ∪ {u} and edge set E \ {{v′, v′′} | v′ ∈ V, v′′ ∈ {v, w}} ∪ {{v′, u} |
v /∈ {v, w} and {v′, v} ∈ E or {v′, w} ∈ E}.

A vertex-coloring is a function c : V → [k] assigning a color from [k] to each
vertex of a graph G = (V,E). The coloring is said to be proper if c(u) 6= c(v) for
every uv ∈ E. A graph G is said to be k-colorable if there exists a proper vertex-
coloring using k colors for it. The minimum k for which a graph G is k-colorable
is known as its chromatic number, denoted by χ(G). In particular, a 2-colorable
graph is bipartite. Similarly, an edge-coloring is a function f : E → [k] assigning
a color from [k] to each edge. We say that f is proper if two adjacent edges
receive a distinct color under f . A graph G is said to be k-edge-colorable if there
exists a proper edge-coloring using k colors for it. The minimum k for which G
is k-edge-colorable is known as its chromatic index, denoted by χ′(G).

A chord is an edge joining two non-consecutive vertices in a cycle. A graph
is chordal if every cycle of length 4 or more has a chord. Equivalently, a graph
is chordal if it contains no induced cycle of length 4 or more. A graph is a split
graph if its vertex set can be partitioned into a clique and an independent set. It
is known that all split graphs are chordal. A well-known subclass of split graphs
is formed by threshold graphs, which are the graphs that can be formed from
the empty graph by repeatedly adding either an isolated vertex or a dominating
vertex (see [25, Theorem 1.2.4]).

Finally, we mention the following well-known structural measure for “tree-
likeness” of graphs. A tree decomposition of G is a pair (T, {Xi : i ∈ I}) where
Xi ⊆ V , i ∈ I, and T is a tree with elements of I as nodes such that:

1. for each edge uv ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi, and
2. for each vertex v ∈ V , T [{ i ∈ I | v ∈ Xi }] is a tree with at least one node.

The width of a tree decomposition is maxi∈I |Xi|−1. The treewidth of G, denoted
by tw(G), is the minimum width taken over all tree decompositions of G.

Decision problems. Our main focus is the computational complexity of the
following problem.

Total Domatic k-Partition
Instance: A graph G = (V,E).
Question: Can V be partitioned into k total dominating sets, i.e., is
dt(G) ≥ k?

Our NP-completeness results are established by polynomial-time reductions
from well-known coloring problems. We introduce them here for completeness.
In both k-Coloring and Edge k-Coloring, the input is a graph G = (V,E).
In the former, we must decide whether χ(G) ≤ k, while in the latter, we are
asked whether χ′(G) ≤ k. Both problems are NP-complete for every k ≥ 3 (see
e.g., [12, 24]). Finally, in the Set Splitting problem, we are given a universe
U = [n] and a set system F ⊆ 2U . The task is to decide whether the elements of
U can be colored in 2 colors such that each member of F contains both colors.
This problem is well-known to be NP-complete as well.
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Fig. 2: The edge ij replaced by a diamond in the construction of Lemma 2.

3 Total domatic partitioning of planar graphs

It is well-known that every planar graph G has a vertex with degree at most
five, so we have that 1 ≤ dt(G) ≤ 5. However, very recently, Goddard and
Henning [14] proved that no planar graph G has dt(G) = 5 by establishing the
following tight bounds.

Theorem 1 (Goddard and Henning [14]). Any planar graph G has 1 ≤
dt(G) ≤ 4. Moreover, these bounds are tight.

In the following, we prove that there is likely no straightforward (i.e., polynomial-
time) characterization of planar graphs with specified total domatic numbers.
More precisely, we show that it is NP-complete to decide whether a planar graph
G of bounded maximum degree has dt(G) ≥ 3. We first make the idea of the
reduction clear, and then introduce slightly more complex gadgets that establish,
using the same correctness argument, the same result for bipartite planar graphs
of bounded maximum degree.

Lemma 2. 3-Coloring reduces in polynomial time to Total Domatic 3-
Partition.

Proof. Let G be an instance of 3-Coloring. In polynomial time, we will create
the following instance G′ of Total Domatic 3-Partition, such that G is
3-colorable if and only if G′ is total domatic 3-colorable.

The graph G′ = (V ′, E′) is obtained from G by replacing each edge with a
diamond (see Fig. 2), and by attaching to each vertex of G a copy of C6 (see
Fig. 1). Formally, we let V ′ = V ∪ {xij , x′ij | ij ∈ E} ∪ {wvi | v ∈ V, i ∈ [5]}. Set
E′ = D ∪ C, where

D = {ixij , ix′ij , xijx′ij , jxij , jx′ij | ij ∈ E},
C = {wviwvi+1, wv1wv5, wv2wv4, vwv1, vwv3, vwv5 | 1 ≤ i < 4, v ∈ V }.

This finishes the construction of G′.
Let c : V → [3] be a proper vertex-coloring of G. We will construct a total

domatic 3-coloring c′ : V ′ → [3] as follows. We retain the coloring of the vertices
in V , that is, c′(v) = c(v) for every v ∈ V . Then, as the degree of xij is 3, it
holds that in any valid total domatic 3-coloring of G′, the colors from [3] must
be bijectively mapped to the neighborhood of xij ; by symmetry, the same holds
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Fig. 3: (a) A replacment gadget for edge ij, and (b) a gadget each vertex v is
identified with. Both gadgets are planar and bipartite.

for x′ij . Then consider two adjacent vertices i and j in G. We set c′(xij) =
c′(x′ij) = f , where f is the unique color in [3] neither c(i) nor c(j). Clearly, the
neighborhood of both xij and x′ij contains every color from [3]. Finally, consider
an arbitrary vertex v ∈ V . Without loss of generality, suppose c(v) = 1. We will
then finish the vertex-coloring c′ as follows (see also Fig. 1):

c′(wv5) = 1 , c′(wv1) = 2 , c′(wv3) = 2 , c′(wv2) = 3 , c′(wv4) = 3 .

It is straightforward to verify that c′ is indeed a total domatic 3-coloring of G′.
For the other direction, suppose that there is a total domatic 3-coloring c′

of G′. Again, it holds that every color from [3] is bijectively mapped to the
neighborhood of xij , for every i and j. Moreover, it holds that c′(xij) = c′(x′ij),
implying that c′(i) 6= c′(j). Thus, c′ restricted to G gives a proper 3-coloring for
G. This concludes the proof. ut

It is known that deciding whether a planar graph of maximum degree 4 can be
properly 3-colored is NP-complete [12]. This combined with the previous lemma
establishes the following.

Theorem 3. It is NP-complete to decide whether a planar graph G of maximum
degree 11 has dt(G) ≥ 3.

Corollary 4. It is NP-complete to decide whether a bipartite planar graph G
of maximum degree 19 has dt(G) ≥ 3.

Proof. To buildG′, we proceed with a construction similar to Lemma 2. However,
for each edge ij ∈ E(G), instead of a diamond, we construct the gadget shown
in Fig. 3 (a). For each vertex v ∈ V , instead of C6, we identify v with the gadget
shown in Fig. 3 (b).

It is straightforward to verify that both gadgets are planar and bipartite.
Clearly, G′ is planar. Moreover, G′ is bipartite as an odd cycle of G has even
length in G. Correctness follows by the same argument as in Lemma 2. ut
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We remark that Lemma 2 has consequences for the complexity of total domatic
3-coloring graphs of bounded treewidth, and further consequences for planar
graphs as well. Before proceeding, we briefly recall that a parameterized problem
I is a pair (x, k), where x is drawn from a fixed, finite alphabet and k is an integer
called the parameter. Then, a kernel for (x, k) is a polynomial-time algorithm
that returns an instance (x′, k′) of I such that (x, k) is a YES-instance if and
only if (x′, k′) is a YES-instance, and |x′| ≤ g(k), for some computable function
g : N → N. If g(k) is a polynomial (exponential) function of k, we say that I
admits a polynomial (exponential) kernel (for more, see Cygan et al. [8]). We
then recall the following earlier result.

Theorem 5 (van Rooij et al. [29]). For every k ≥ 1, Total Domatic
k-Partition parameterized by treewidth admits an exponential kernel.

In the following, we show that this is the best possible, i.e., there is no poly-
nomial kernel under reasonable complexity-theoretic assumptions. We make the
following observations regarding the gadget construction in Lemma 2.

Observation 6. It holds that tw(C6) = 3.

By identifying a C6 with a vertex of a bounded treewidth graph G, we do not
considerably increase the treewidth of G.

Observation 7. Let G be a graph of treewidth k, let G′ be a graph of treewidth
k′, and let H be the graph obtained through the identification of two vertices
v ∈ V (G) and v′ ∈ V (G′). Then tw(H) ≤ max{k, k′}.

Finally, Bodlaender et al. [4] proved that 3-Coloring does not admit a polyno-
mial kernel parameterized by treewidth unless NP ⊆ coNP/poly. As the proof
of Lemma 2 gives a parameter-preserving transformation guaranteeing tw(G′) ≤
tw(G) + 3, we have the following.

Theorem 8. Total Domatic 3-Partition parameterized by treewidth does
not admit a polynomial kernel unless NP ⊆ coNP/poly.

Another consequence of Lemma 2 is captured by the following observation. For
its statement, we recall the well-known exponential time hypothesis (ETH), which
is a conjecture stating that there is a constant c > 0 such that 3-SAT cannot
be solved in time O(2cn), where n is the number of variables.

Corollary 9 (?). Total Domatic 3-Partition for planar graphs cannot be
solved in time 2o(

√
n) unless ETH fails, where n is the number of vertices. How-

ever, the problem admits an algorithm running in time 2O(
√
n) for planar graphs.

4 Total domatic partitioning of regular graphs

Recently, Akbari et al. [2] characterized the 3-regular graphs with total domatic
number at least two. In particular, they showed that these are precisely the 3-
regular graphs that do not contain a particular tree of maximum degree 3 as an
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induced subgraph. Moreover, it follows from the work of Henning and Yeo [21]
that all k-regular graphs for k ≥ 4 have dt(G) ≥ 2. We remark that the result
of Akbari et al. [2] is the best possible in the sense that it is NP-complete to
decide whether a k-regular graph G has dt(G) ≥ k, for every k ≥ 3. We establish
this by reducing from Edge k-Coloring on k-regular graphs, where k ≥ 3, a
problem shown to be NP-complete by Leven and Galil [24].

Essentially, our construction to follow is used already by Heggernes and
Telle [19, Theorem 5], but we describe it in the appendix for completeness.

Theorem 10 (?). For every k ≥ 3, it is NP-complete to decide whether a k-
regular graph G has dt(G) ≥ k.

5 Total domatic partitioning of chordal graphs

In the spirit of the previous sections, we begin by proving that total domatic
coloring of chordal graphs is computationally difficult. More precisely, we show
that for every k ≥ 2, deciding whether dt(G) ≥ k is NP-complete already for split
graphs. The result is obtained by showing polynomial-time equivalence between
this problem and Hypergraph Rainbow k-Coloring, studied by Guruswami
and Lee [15] among others. In the latter, we are given a universe U = [n] and
a set family F ⊆ 2U . The goal is to decide whether the elements of U can be
colored in k colors such that each member of F contains each of the k colors.
The problem is equivalent to Set Splitting for k = 2.

Theorem 11 (?). For every k ≥ 1, Total Domatic k-Partition for split
graphs is equivalent to Hypergraph Rainbow k-Coloring.

Theorem 12 (?). For every k ≥ 2, it is NP-complete to decide whether a split
graph G has dt(G) ≥ k.

Given this negative result, it is interesting to consider split graphs with further
restrictions on their structure. For instance, every complete graph is a split
graph, and the total domatic number of complete graphs is known.

Proposition 13 (Shi et al. [30]). Let G be the complete graph with n vertices.
Then dt(G) = bn/2c.

However, complete graphs have a very special structure: can we impose a weaker
structural requirement on split graphs to obtain a graph class G for which dt(G)
can be computed in polynomial time? Before giving a positive answer to this
question, we show the following.

Lemma 14. Let G = (V,E) be a graph, and let S be a subset of V such that
every s ∈ S is a dominating vertex. Then dt(G) ≥ min{bn/2c, |S|}.

Proof. Denote ` = |S| and h = |V \ S|. Suppose first that h ≥ `. We will prove
that dt(G) ≥ `. Construct a total domatic `-coloring c : V → [`] as follows. Map
[`] bijectively to S and surjectively to V \ S. Then, each v /∈ S is dominated
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by each s ∈ S, and thus each color from [`] appears in the neighborhood of v.
Similarly, by construction, [`] is mapped surjectively to V \S and s ∈ S dominates
each vertex not in S. Therefore, when h ≥ `, we conclude that dt(G) ≥ `.

Finally, suppose that h < `. Let q = b(`+ h)/2c = bn/2c, and choose A ⊆ S
such that |A| = q. Map [`] bijectively to the vertices in A and surjectively to
V \A. By the above argument, this is a valid total domatic q-coloring. Therefore,
we have that dt(G) ≥ q, concluding the proof. ut

Theorem 15. Let G = (V,E) be a connected threshold graph with n vertices,
and let S be a subset of V such that every s ∈ S is a dominating vertex. Then
dt(G) = min{bn/2c, |S|}.

Proof. It is well-known that every threshold graph G can be represented as a
string s(G) of characters u and j, where u denotes the addition of an isolated ver-
tex, and j the addition of a dominating vertex (see [25, Theorem 1.2.4]). Observe
that if the last symbol of s(G) is u, then G is not connected and consequently
dt(G) = 0. Thus, it holds that the last symbol of s(G) is j.

Denote ` = |S| and h = |V \ S|. Suppose h ≥ `, and consider the first
occurrence of symbol u in s(G). The corresponding vertex has degree `, and no
other vertex has degree less than `. Thus, dt(G) ≤ `. By Lemma 14, it follows
that in this case, dt(G) = `. Finally, suppose h < `. In the extremal case, ` = n,
i.e., each vertex of G is a dominating vertex. By Proposition 13, we have that
dt(G) ≤ (b`+ hc)/2 = bn/2c. On the other hand, Lemma 14 gives us a matching
lower bound. This concludes the proof. ut

By the previous theorem, the total domatic number can be computed efficiently
for threshold graphs.

Finally, despite Theorem 12, we observe that for some graphs G we can
always guarantee dt(G) ≥ 2.

Proposition 16. Let G be an n-vertex Hamiltonian graph where n is a multiple
of four. Then dt(G) ≥ 2.

Proof. Let v0v1 · · · vn be a Hamiltonian cycle in G such that n mod 4 = 0.
Consider a vertex-coloring c : V → [2] such that c(vi) = c(vi+1) = 1 and
c(vi+2) = c(vi+3) = 2 for i = 0, 4, . . . , n−4. By construction, each neighborhood
contains both colors 1 and 2, so we are done. ut

6 On exact algorithms for total domatic partitioning

When a problem of interest is shown to be NP-complete, it motivates the con-
sideration of alternative algorithmic approaches and easier special cases. Our
results show that Total Domatic k-Partition remains hard for several spe-
cial cases. In addition, parameterization (see, e.g., [8]) by the number of colors k
seems uninteresting since the problem remains NP-complete for constant values
of k. These observations further motivate the study of exact (exponential-time)
algorithms. A brute-force algorithm tries every possible k-coloring and outputs

9



YES if and only if one of the k-colorings is a total domatic k-coloring. Such an
algorithm runs in time knnO(1), where n is the number of vertices. Can we do
considerably better? In what follows, we show this to be the case, and give even
faster algorithms for special graph classes.

To obtain a moderately exponential algorithm, we apply a result of
Björklund et al. [3] for the Set Partition problem. In this problem we are
given a universe U = [n], a set family F ⊆ 2U , and an integer k. The task is
to decide whether U admits a partition into k members of F . Using algebraic
methods, Björklund et al. showed the following.

Theorem 17 (Björklund et al. [3, Thms. 2 and 5]). Set Partition can
be solved in 2nnO(1) time. If membership in F can be decided in nO(1) time, then
Set Partition can be solved in 3nnO(1) time and nO(1) space.

We apply this result to the set family consisting of all total dominating sets of
a given graph. Since we can decide in polynomial time whether a given set of
vertices is a total dominating set, we get the following.

Corollary 18. Total Domatic k-Partition can be solved in 3nnO(1) time
and polynomial space. In exponential space, the time can be improved to 2nnO(1).

We note that Björklund et al. give a similar application to domatic number.
Relying on sophisticated algorithms for enumerating minimal dominating sets
due to Fomin et al. [11], they further improve the polynomial-space results by
lowering the constant of the exponential from 3 to 2.8718. Currently, the lowest
constant is 2.7139, due to Nederlof et al. [26].

For total domatic number we discover another way to improve the
polynomial-space algorithm, however, restricting ourselves to regular graphs.
We get the following result by a simple reduction to graph coloring, for which
the constant was recently improved to 2.2355 by Gaspers and Lee [13].

Theorem 19. One can decide in O(2.2355n) time and polynomial space whether
a given k-regular graph G with n vertices has dt(G) ≥ k.

Proof. Define a graph G′ = (V,E′), where we put an edge between two vertices
u, v ∈ V exactly when they occur in the same neighborhood in G. It holds that
dt(G) = k if and only if χ(G′) = k. ut

As noted by Chen et al. [6], Total Domatic k-Partition for k = 2 corre-
sponds to the well-known problem of hypergraph 2-coloring, also known as Set
Splitting. To see this, we construct an instance of Set Splitting with the
universe corresponding to the vertex set of the graph, and the set family to
the neighborhoods. We obtain the following bound exploiting the algorithms of
Nederlof et al. [26] for Set Splitting.

Theorem 20. One can decide in O(1.8213n) time and polynomial space whether
a given graph G with n vertices has dt(G) ≥ 2. In exponential-space, the time
can be improved to O(1.7171n).
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7 Concluding remarks

Our hardness results mirror those known for domatic number. Indeed, the com-
putation of the domatic number was shown to be NP-complete for split graphs by
Kaplan and Shamir [23], while hardness for bipartite planar graphs was proved
by Poon et al. [28]. For positive results on special graph classes, results appear
more scattered. For instance, it seems unknown whether domatic number can
be solved in polynomial time for threshold graphs.

Concerning exact algorithms for total domatic number, an intriguing question
is whether one can beat the 3n time bound in polynomial space in general graphs.
For domatic number the known algorithms achieve that via inclusion–exclusion
and a branching algorithm that either lists minimal dominating sets or counts
dominating sets. Currently we do not know whether these branching algorithms
can be effectively adapted to total dominating sets.

Acknowledgments. This work was supported in part by the Academy of
Finland, under Grant 276864 (M.K.), and by the Emil Aaltonen Foundation,
under Grant 160138 N (J.L.).
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A Proofs for Section 3

Proof of Corollary 9

Proof. Observe that the graph G′ constructed in the proof of Lemma 2 has size
linear in the size of the input graph G. The claimed lower bound then follows by a
known chain of reductions originating from 3-SAT (see e.g., [8, Theorem 14.3]).

The claimed upper bound follows from combining the single-exponential dy-
namic programming algorithm on a tree decomposition of van Rooij et al. [29]
with the fact that an n-vertex planar graph has treewidth O(

√
n). ut

B Proofs for Section 4

Proof of Theorem 10

Proof. We proceed with a polynomial-time reduction from Edge k-Coloring
on k-regular graphs, where k ≥ 3. We will construct a k-regular graph G′ such
that G is k-edge-colorable if and only if dt(G

′) ≥ k.
We replace every vertex of G = (V,E) by a k-clique. More precisely, let v ∈ V

be a vertex with the neighbors N(v) = {v1, v2, . . . , vk}. Subdivide the edge vv`
for ` ∈ [k] by a vertex u`. Add all possible

(
k
2

)
edges between the vertices in

{u1, u2, . . . , uk} and delete v. This completes the construction of G′. Clearly, as
G is k-regular, so is G′.

Suppose G is k-edge-colorable. A total domatic k-coloring c′ : V (G′) → [k]
for G′ is constructed as follows. Suppose the edge vvi for some i ∈ [k] was colored
with color f in G. We set c′(ui) = f . Now, since G is k-edge-colorable, the vertex
ui has [k] mapped bijectively to its neighborhood, and we are done.

On the other hand, suppose G′ is total domatic k-colored under c′. Let v ∈ V ,
and denote by Cv the k-clique formed by u1, . . . , uk in G′. As the degree of
u ∈ Cv is k, it must be the case that c′ assigns a distinct color to each u in Cv,
for otherwise there would be a vertex in Cv whose neighborhood is missing at
least one color in [k]. Now consider w ∈ V adjacent to v in G. Again, it must
hold that c′ assigns a distinct color to each u′ ∈ Cw. Moreover, it must be the
case that c′(u) = c′(u′), for otherwise N(u) would be missing at least one color in
[k]. Thus, to construct an edge-coloring c : E(G)→ [k], we let c(vvi) = c′(ui) for
each v ∈ V and i ∈ [k]. It follows that c is a proper k-edge-coloring concluding
the proof. ut

C Proofs for Section 5

Proof of Theorem 11

Proof. The claimed equivalence is established by the following claims.

Claim 11.1. For every k ≥ 1, Hypergraph Rainbow k-Coloring reduces
in polynomial-time to Total Domatic k-Partition for split graphs.
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Proof. Let (U,F) be an instance of Hypergraph Rainbow k-Coloring for
any k ≥ 1. We construct a split graph G such that U can be colored in k
colors such that each member of F contains each of the k colors if and only if
dt(G) ≥ k. Indeed, let G = (C ∪ I, E) where C = {x | x ∈ U}, I = {y | y ∈ F},
and E = {xx′ | x, x′ ∈ C} ∪ {yx | y ∈ I ∧ x is in the set y corresponds to in F}.
Clearly, it holds that C forms a clique while I is an independent set. Thus, G is
a split graph.

Suppose that each member of F contains each of the k colors under a vertex-
coloring c : U → [k]. Then c restricted to C witnesses that dt(G) ≥ k. In the
other direction, any total domatic k-coloring of V (G) guarantees, in particular,
that [k] is mapped surjectively to N(y) for each y ∈ I. This concludes the proof.
�

We then show the reverse direction.

Claim 11.2. For every k ≥ 1, Total Domatic k-Partition for split graphs
reduces in polynomial-time to Hypergraph Rainbow k-Coloring.

Proof. Let G = (C∪I, E) be a split graph where C induces a clique and I forms
an independent set. We construct an instance (U,F) of Hypergraph Rainbow
k-Coloring as follows. Let U = V , and for each y ∈ I we add N(y) to F . We
claim that dt(G) ≥ k if and only if U can be colored in k colors such that each
member of F contains each of the k colors.

Observe that when dt(G) ≥ k holds under some vertex-coloring c, it follows
that each y ∈ I has [k] surjectively mapped to N(y). Moreover, by the structure
of G, each vertex of N(y) is in U . Thus, c restricted to U guarantees that each
member of F contains each of the k colors. In the other direction, a rainbow k-
coloring of U witnesses that dt(G) ≥ k since [k] is surjectively mapped to N(y)
for each y ∈ I. �

We have shown both directions, so the theorem follows. ut

Proof of Theorem 12

Proof. For k = 2, the claim follows by observing that Hypergraph Rainbow
k-Coloring is equivalent to Set Splitting which is well-known to be NP-
complete.

For k ≥ 3, we proceed with a polynomial-time reduction from Edge k-
Coloring on k-regular graphs. We construct a split graph G′ such that the
input graph H is k-edge-colorable if and only if dt(G

′) ≥ k.
The split graph G′ is constructed from the graph H by subdividing every edge

ej ∈ E(H) = {e1, e2, . . . , em} with a new vertex wj . These vertices are made
adjacent by adding the edges wiw`, where 1 ≤ i < ` ≤ m. We can then verify
that H is a split graph with the set W = V (G′)\V (H) forming a clique, and the
set I = V (H) being independent. We will then prove that H is k-edge-colorable
if and only if dt(G

′) ≥ k.
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Suppose H is k-edge-colorable. Since H is k-regular, a vertex v ∈ I has degree
exactly k. Moreover, δ(G′) = k, and thus dt(H) ≤ k. We will then show that G′

is total domatic k-colorable. Indeed, we assign to the vertex w ∈ W the color
appearing on the edge corresponding to w in H. Clearly, every color from [k]
appears in the neighborhood of v ∈ I. Finally, consider an arbitrary w ∈W . By
construction, it holds that deg(w) = m + 1. It follows, in particular, that w is
adjacent to each vertex in N(u), where u ∈ V (H). As H is k-edge-colorable, we
have that [k] is mapped bijectively to N(u), so G′ is total domatic k-colorable.

For the other direction, again note that a vertex v ∈ I has degree exactly k.
Furthermore, as G′ is total domatic k-colorable, there is a vertex-coloring under
which every vertex adjacent to v has received a distinct color. These adjacent
vertices are all in W , and correspond to edges of H. Thus, we obtain a k-edge-
coloring for H. This completes the proof. ut
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