2,250 research outputs found

    Dual-Loop Adaptive Iterative Learning Control for a Timoshenko Beam With Output Constraint and Input Backlash

    Get PDF

    Combined Backstepping/Second-Order Sliding-Mode Boundary Stabilization of an Unstable Reaction-Diffusion Process

    Get PDF
    In this letter we deal with a class of open-loop unstable reaction-diffusion PDEs with boundary control and Robin-type boundary conditions. A second-order sliding mode algorithm is employed along with the backstepping method to asymptotically stabilize the controlled plant while providing at the same time the rejection of an external persistent boundary disturbance. A constructive Lyapunov analysis supports the presented synthesis, and simulation results are presented to validate the developed approach

    Current-Loop Control for the Pitching Axis of Aerial Cameras via an Improved ADRC

    Get PDF
    An improved active disturbance rejection controller (ADRC) is designed to eliminate the influences of the current-loop for the pitching axis control system of an aerial camera. The improved ADRC is composed of a tracking differentiator (TD), an improved extended state observer (ESO), an improved nonlinear state error feedback (NLSEF), and a disturbance compensation device (DCD). The TD is used to arrange transient process. The improved ESO is utilized to observe the state extended by nonlinear dynamics, model uncertainty, and external disturbances. Overtime variation of the current-loop can be predicted by the improved ESO. The improved NLSEF is adopted to restrain the residual errors of the current-loop. The DCD is used to compensate the overtime variation of the current-loop in real time. The improved ADRC is designed based on a new nonlinear function newfal(·). This function exhibits enhanced continuity and smoothness compared to previously available nonlinear functions. Thus, the new nonlinear function can effectively decrease the high-frequency flutter phenomenon. The improved ADRC exhibits improved control performance, and disturbances of the current-loop can be eliminated by the improved ADRC. Finally, simulation experiments are performed. Results show that the improved ADRC displayed better performance than the proportional integral (PI) control strategy and traditional ADRC

    Research on reconfigurable control for a hovering PVTOL aircraft

    Get PDF
    This paper presents a novel reconfigurable control method for the planar vertical take-off and landing (PVTOL) aircraft when actuator faults occur. According to the position subsystem within the multivariable coupling, and the series between subsystems of position and attitude, an active disturbance rejection controller (ADRC) is used to counteract the adverse effects when actuator faults occur. The controller is cascade and ensures the input value of the controlled system can be tracked accurately. The coordinate transformation method is used for model decoupling due to the severe coupling. In addition, the Taylor differentiator is designed to improve the control precision based on the detailed research for tracking differentiator. The stability and safety of the aircraft is much improved in the event of actuator faults. Finally, the simulation results are given to show the effectiveness and performance of the developed method

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    Active Disturbance Rejection Based Robust Trajectory Tracking Controller Design in State Space

    Full text link
    This paper proposes a new Active Disturbance Rejection based robust trajectory tracking controller design method in state space. It can compensate not only matched but also mismatched disturbances. Robust state and control input references are generated in terms of a fictitious design variable, namely differentially flat output, and the estimations of disturbances by using Differential Flatness and Disturbance Observer. Two different robust controller design techniques are proposed by using Brunovsky canonical form and polynomial matrix form approaches. The robust position control problem of a two mass-spring-damper system is studied to verify the proposed robust controllers.Comment: Accepted by ASME Journal of Journal of Dynamic Systems, Measurement, and Control in 201
    • …
    corecore