84,048 research outputs found

    Air pollution modelling using a graphics processing unit with CUDA

    Get PDF
    The Graphics Processing Unit (GPU) is a powerful tool for parallel computing. In the past years the performance and capabilities of GPUs have increased, and the Compute Unified Device Architecture (CUDA) - a parallel computing architecture - has been developed by NVIDIA to utilize this performance in general purpose computations. Here we show for the first time a possible application of GPU for environmental studies serving as a basement for decision making strategies. A stochastic Lagrangian particle model has been developed on CUDA to estimate the transport and the transformation of the radionuclides from a single point source during an accidental release. Our results show that parallel implementation achieves typical acceleration values in the order of 80-120 times compared to CPU using a single-threaded implementation on a 2.33 GHz desktop computer. Only very small differences have been found between the results obtained from GPU and CPU simulations, which are comparable with the effect of stochastic transport phenomena in atmosphere. The relatively high speedup with no additional costs to maintain this parallel architecture could result in a wide usage of GPU for diversified environmental applications in the near future.Comment: 5 figure

    ARCHANGEL: Tamper-proofing Video Archives using Temporal Content Hashes on the Blockchain

    Get PDF
    We present ARCHANGEL; a novel distributed ledger based system for assuring the long-term integrity of digital video archives. First, we describe a novel deep network architecture for computing compact temporal content hashes (TCHs) from audio-visual streams with durations of minutes or hours. Our TCHs are sensitive to accidental or malicious content modification (tampering) but invariant to the codec used to encode the video. This is necessary due to the curatorial requirement for archives to format shift video over time to ensure future accessibility. Second, we describe how the TCHs (and the models used to derive them) are secured via a proof-of-authority blockchain distributed across multiple independent archives. We report on the efficacy of ARCHANGEL within the context of a trial deployment in which the national government archives of the United Kingdom, Estonia and Norway participated.Comment: Accepted to CVPR Blockchain Workshop 201

    Observation of topologically protected helical edge modes in Kagome elastic plates

    Full text link
    The investigation of topologically protected waves in classical media has opened unique opportunities to achieve exotic properties like one-way phonon transport, protection from backscattering and immunity to imperfections. Contrary to acoustic and electromagnetic domains, their observation in elastic solids has so far been elusive due to the presence of both shear and longitudinal modes and their modal conversion at interfaces and free surfaces. Here we report the experimental observation of topologically protected helical edge waves in elastic media. The considered structure consists of an elastic plate patterned according to a Kagome architecture with an accidental degeneracy of two Dirac cones induced by drilling through holes. The careful breaking of symmetries couples the corresponding elastic modes which effectively emulates spin orbital coupling in the quantum spin Hall effect. The results shed light on the topological properties of the proposed plate waveguide and opens avenues for the practical realization of compact, passive and cost-effective elastic topological waveguides

    Smart hospital emergency system via mobile-based requesting services

    Get PDF
    In recent years, the UK’s emergency call and response has shown elements of great strain as of today. The strain on emergency call systems estimated by a 9 million calls (including both landline and mobile) made in 2014 alone. Coupled with an increasing population and cuts in government funding, this has resulted in lower percentages of emergency response vehicles at hand and longer response times. In this paper, we highlight the main challenges of emergency services and overview of previous solutions. In addition, we propose a new system call Smart Hospital Emergency System (SHES). The main aim of SHES is to save lives through improving communications between patient and emergency services. Utilising the latest of technologies and algorithms within SHES is aiming to increase emergency communication throughput, while reducing emergency call systems issues and making the process of emergency response more efficient. Utilising health data held within a personal smartphone, and internal tracked data (GPU, Accelerometer, Gyroscope etc.), SHES aims to process the mentioned data efficiently, and securely, through automatic communications with emergency services, ultimately reducing communication bottlenecks. Live video-streaming through real-time video communication protocols is also a focus of SHES to improve initial communications between emergency services and patients. A prototype of this system has been developed. The system has been evaluated by a preliminary usability, reliability, and communication performance study

    Ambiguities of modernist nationalism: architectural culture and nation-building in early Republican Turkey

    Get PDF
    Reviews the book "Modernism and Nation Building: Turkish Architectural Culture in the Early Republic," by Sibel Bozdogan
    • …
    corecore